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CONTROL OF NONHOLONOMIC SYSTEMS
VIA DYNAMIC COMPENSATION1

Alessandro DeLuca and MarikaD. DiBenedetto

The problem of controlling nonholonomic systems via dynamic state feedback and its
structural aspects are analyzed. Advantages and drawbacks with respect to the use of static
state feedback laws are discussed. In particular, nonholonomic constraints are shown to
yield possible singularities in the dynamic extension process. Nevertheless, these singular-
ities can be avoided by the proper design of a discontinuous external control law achieving
stabilization of the transformed linear system. This is illustrated through simulations for
a unicycle.

1. INTRODUCTION

Analysis and synthesis of control strategies for nonlinear systems with nonholonomic
constraints are the subject of extensive research. These systems are typical of me-
chanical applications such as wheeled mobile robots (rolling constraints) [4, 12, 13,
15], free-space manipulators (conservation of angular momentum) [19, 23] and re-
dundant manipulators subject to a given inverse kinematic control [8].

From the theoretical point of view, the control of nonholonomic systems presents
interesting aspects. First of all, the control problem is a true nonlinear one since a
nonlinear nonholonomic system is not linearly controllable. Moreover, controllabil-
ity in the nonlinear setting — which is strictly related to the nonholonomic nature of
the system —does not imply stabilizability by smooth time-invariant feedback [3].
As a consequence, a combination between feedforward (off-line planning) and feed-
back laws of a more general kind (e. g. discontinuous [1, 5] or periodic time-varying
control [6, 17, 20]) is necessary.

A nonholonomic vector constraint for a system with state x ∈ X, an open subset
of Rn, is often written in the Pfaffian form

c(x) ẋ = 0, (1)

where c(x) is a p×n matrix of smooth functions, having full row rank for all x. All p
constraints in (1) are assumed to be non-integrable; if some of these constraints were
integrable (holonomic), then the state-space dimension could be reduced accordingly.

1Work supported in part by ESPRIT III Project # 6546 (PROMotion)
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When the state x coincides with the set of generalized coordinates q of a mechanical
system, the problem is considered at a kinematic level and ẋ are physical velocities.
When the full dynamic model is considered [2], then x = (q, q̇) = (x1, x2) and
a differential first-order kinematic constraint of the form J(q)q̇ = 0 can still be
written in the form (1) as

[
J(x1) 0

] [
ẋ1

ẋ2

]
= 0. (2)

However, we note that second-order kinematic constraints may fit also in the same
framework. For example, in [16] underactuated robot arms with no gravity are
considered and their dynamic model is partitioned as

[
Ba(q)
Bu(q)

] [
q̈a
q̈u

]
+

[
ca(q, q̇)
cu(q, q̇)

]
=

[
u
0

]
, (3)

where the p joint variables qu have no explicit control input. Since the Coriolis and
centrifugal terms can always be factored as c(q, q̇) = S(q, q̇)q̇, the second set of p
dynamic equations in (3) takes again the form (1) with

[
Su(q, q̇) Bu(q)

] [
q̇
q̈

]
= 0. (4)

Under the full rank assumption, we can always express an admissible ẋ as a linear
combination of n− p vector fields nj(x), j = 1, · · · , n− p, which are a basis for the
kernel of the matrix c:

c(x)
[
n1(x) · · · nn−p(x)

]
= c(x)n(x) = 0. (5)

Depending on the structure of the control system and assuming linearity in the input,
equations of motion can be derived as

ẋ =
m∑

i=1

gi(x)ui = g(x)u, m ≤ n− p (6)

for systems with no drift , and

ẋ = f(x) + g(x)u, (7)

in the more general case of systems with drift . In (6), the columns of g(x) have to
be specified as linear combinations of the vector fields nj(x), j = 1, . . . , n− p, with
coefficients taken in the space of analytic functions of x. In the following, we set
for simplicity m = n − p, i. e. full control on the null space of c(x). Moreover, we
assume that f and gi’s are analytic, f(0) = 0, and rank g(x) = m, for all x ∈ X.

In both (6) and (7), the system vector fields induce only motion in the subspace
of the tangent space characterized by the columns of the matrix n(x). In particular,
for systems with drift,

f(x) +
m∑

i=1

gi(x)ui ∈ spann(x), (8)
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for any admissible input u = (u1, . . . , um), although, in this case, state equations
are not derived only from the satisfaction of the nonholonomic constraints.

Associated with (6) or (7), an output characterizing the quantities to be controlled
is defined as

y = h(x), (9)

where y ∈ Rm and h is assumed to be analytic.
Most contributions on motion planning and control for nonholonomic systems

have addressed systems of the form (6) [12, 13, 15]. This is due to two main reasons:
first, in view of the above mechanical analogy, nonholonomy usually involves only
first-order kinematic constraints so that velocity inputs are assumed to be available
for control; second, controllability results for this class of nonlinear systems are much
stronger than in the general case. More precisely, for system (6), the concepts of
accessibility and controllability coincide and the rank test of [22] for accessibility is
satisfied if, and only if, the associated constraint (1) is nonholonomic. ů Instead,
for system (7), only a sufficient test exists for proving small–time local controllabil-
ity [21], which in turn is only a sufficient condition for controllability.

The interest in analyzing the case in which a drift is present, as in (7), arises
from the need of handling the rather common kinematic situation of acceleration
inputs (as for the Hilare mobile robot [13]) and for including dynamic feedback
compensation in the planning and control synthesis. Some structural properties and
solutions of the control problem for nonholonomic dynamical systems have already
been considered in [1, 2, 4]. Some preliminary results on dynamic feedback are given
in [7].

In this paper, issues related with the use of dynamic state feedback laws (see
e. g. [9]) are analyzed for both (6) and (7), in the presence of the nonholonomic
constraint (1). First, in Section 2, control objectives which can be achieved by
using static state feedback input-output linearization are reviewed. Then, Section 3
illustrates in particular: (i) what are the advantages of using dynamic extension for
solving the tracking and stabilization problems; (ii) what are the relations between
the nonholonomic nature of the system and the singularities possibly arising in
dynamic extension procedures [10]. In Section 4, it is shown that the preliminary use
of a dynamic linearization technique allows the design of a singularity-free feedback
stabilization scheme, based on the linear equivalent model. Simulation results for a
unicycle show the feasibility of the proposed control approach.

2. CONTROL VIA STATIC STATE FEEDBACK

Consider the driftless system (6). Under the full rank hypothesis for g, it is possible
to find a change of coordinates z = φ(x) and an invertible static feedback u = β(x)v,
both globally defined in X, such that (6) reduces to the form

ż1 = v
ż2 = ψ(z)v, (10)

with z1 ∈ Rm, z2 ∈ Rn−m [14]. Matrix ψ(z) can take special forms, e. g. the
chained form of [15]. Note that no row of ψ(z) can ever be zero, since this would
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contradict the assumption that system (6), viz. (10), is subject exactly to p = n−m
nonholonomic constraints. Moreover, if some rows of ψ(z) were constant, i. e.

ż1 = v
ż21 = ψ21v

ż22 = ψ22(z)v,
(11)

by replacing the coordinates z21 by z̃21 = z21 −ψ21z1, the equations would become

ż1 = v

˙̃z21 = 0

ż22 = ψ̃22(z1, z̃21, z22)v,

(12)

leading again to a contradiction.
Choosing z1 = φ1(x) as the output, the form (10) shows that (6) can be input-

output linearized by regular static state feedback so that the control of y = φ1(x) is
achieved using well-established linear results. Being the diffeomorphism φ(x) leading
to (10) not unique, different sets of m outputs can be easily controlled in this way;
however, a given output function may still not be compatible with a linearizing
coordinate transformation.

Example. Consider the kinematic equations of a unicycle [15]:

ẋ1 = cosx3 u1

ẋ2 = sinx3 u1

ẋ3 = u2,

(13)

where x1, x2 and x3 denote, respectively, the two position coordinates of the contact
point and the orientation of the unicycle. This is a special case of the car-like model,
where in addition the turning rate u2 is upper bounded by a positive function that
goes to zero with the rolling rate u1 [13]. The two vector fields g1 and g2 in (13)
span the kernel of c(x) in the non-integrable rolling constraint

c(x)ẋ = ẋ1 sinx3 − ẋ2 cosx3 = 0. (14)

By choosing as new coordinates

z1 = x3

z2 = x1 cosx3 + x2 sinx3

z3 = x1 sinx3 − x2 cosx3

(15)

and performing the regular static state feedback

u =
[
z3 1
1 0

]
v, (16)

system (13) takes a chained structure, a special form of (10), i. e.

ż1 = v1

ż2 = v2

ż3 = z2v1.

(17)
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Hence, control of the orientation (z1) and of the position in the instantaneous for-
ward direction (z2) as physical outputs can be achieved independently and with
any prescribed linear error dynamics. Moreover, nonlinear smooth state feedback
can always be used for stabilizing the unicycle to the constant desired equilibrium
manifold M = {z1 = z1d, z2 = z2d}, parameterized by z3 itself.

However, no smooth feedback control can stabilize simultaneously also z3 to
z3d [3]. Indeed, for controlling z1, z2, and z3 one could design a suitable trajec-
tory z1d(t), z2d(t) such that the unicycle ‘lands’ close to the desired value z3d on M.
Any such trajectory can be tracked in closed loop using appropriate v1 and v2 and
control (16). Once the manifold M is reached, open-loop control [15], discontinu-
ous [1] and time-varying feedback control [20], or a combination of the two [18] can
be used for adjusting z3 to the desired value z3d.

Assume that the reference state is xd = 0 (viz. zd = 0), and that a nonlinear
static state feedback control has already achieved z1 = z2 = 0. In terms of the
original state variables, we start then at time t = t0 in

x1(t0) = 0
x2(t0) = −z3(t0) 6= 0
x3(t0) = 0.

(18)

A possible switching strategy to complete the motion, i. e. to reach z = 0 at time
t0 + ∆, is the following:

v1(t) = {V, 0,−V, 0}
v2(t) = {0, V sign(z3(t0)), 0,−V sign(z3(t0))},

(19)

where switchings between different values of the external control v occur at time
intervals of ∆/4 and the amplitude V is given by

V =
4
√
|z3(t0)|
∆

. (20)

When applying (16) with v given by (19), the unicycle will never rotate about itself
without rolling at the same time. Hence, this open-loop design of the external input
v also applies to the car-like situation [13].

In the above example, we note that any perturbation (disturbance) occurring
during the open-loop control phase will lead to a final error in z3 (and, in general,
on both z1 and z2). Therefore, we would like to pursue alternative control designs
where the maximum amount of feedback information is used. On the other hand, the
recently proposed design of time-varying (periodic) controllers, although of appealing
theoretical relevance, is still rather difficult to be carried out even in this simple case.
Furthermore, the above example shows the limit of static control laws. If the position
of the unicycle is chosen as the output to be controlled, then y = (x1, x2) and from
(13) it follows that the input-output behavior cannot be decoupled nor linearized by
static state feedback1. In this case, dynamic feedback may be useful for obtaining
the desired linear input-output behavior as shown in the following section.

1If this were possible, we could reach the desired position (x1d, x2d) in the plane with linear
error dynamics and then simply rotate to reach the desired orientation. This strategy, however, is
not allowed in the car-like case.
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3. CONTROL VIA DYNAMIC STATE FEEDBACK

Extending the class of control laws to dynamic state feedback of the form

ξ̇ = γ(x, ξ) + δ(x, ξ)v, ξ ∈ Rν

u = α(x, ξ) + β(x, ξ)v,
(21)

has been shown to help in designing controllers based on feedback equivalence to
linear systems [11]. Indeed, the class of systems that can be input-output linearized
via dynamic feedback includes all those systems (with or without drift) which are
right-invertible [9]. Moreover, if (6) or (7) are controllable, their dynamic extensions
obtained by adding an integrator on each of the input channels also are control-
lable [22].

In this section, we consider systems of the general form (7). Note that, even if
the original system is without drift, the application of a dynamic extension leads
to an extended system having a drift term, provided that the functions α(x, ξ) and
γ(x, ξ) are not zero. A drift term can also be introduced by a static state feedback
of the form u = α(x)+β(x)v, if the function α(x) is not identically zero. It is shown
next that a major problem in using dynamic feedback for linearizing nonholonomic
systems consists in the occurrence of singularities in the dynamic extension process.

Proposition 1. Suppose that system (7), (9) has no zero-dynamics (in the sense
of [11]), locally around the origin. Then, either

(i) system (7), (9) is input-output decoupable around the origin by dynamic ex-
tension;

or
(ii) system (7) is associated with a nonholonomic constraint.

P r o o f. The proof is by contradiction. Suppose that (i) holds and let Σe be the
extended input-output decoupled system obtained from (7), (9) by the application
of one of the existing dynamic extension algorithms. Let ne be the dimension of its
state space and {re

1, r
e
2, · · · , re

m} its vector relative degree. Since the zero-dynamics
is left unchanged under the addition of integrators on the input channels and invert-
ible static state feedback [11], the absence of zero-dynamics for (7), (9) implies the
absence of zero-dynamics for the extended system Σe. Hence,

re
1 + re

2 + · · ·+ re
m = ne. (22)

Then, after dynamic compensation, the system becomes globally diffeomorphic to a
controllable and observable linear system and thus is stabilizable by smooth state
feedback. Suppose now that (ii) also holds. Then, the nonholonomic system (7)
would be smoothly stabilizable, contradicting the result of [3]. 2

Most of the existing dynamic decoupling algorithms (e. g. [9]) are based on the
application of an invertible static feedback and the addition of integrators on selected
inputs, i. e. on the dynamic extension procedure referred to in assumption (i) of
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Proposition 1. Regularity conditions [10] are associated with each dynamic extension
algorithm: these are sufficient conditions for (i) to hold.

The proof of the above proposition can be easily extended to minimum phase
systems, that is, systems which possess an asymptotically stable zero-dynamics.

Corollary 2. Suppose that system (7), (9) is minimum phase. Then, (i) and (ii)
of Proposition 1 are mutually exclusive.

As a consequence of the above results, the straightforward application of a dy-
namic linearizing control is not feasible. The previous unicycle example can be
used to highlight the typical nature of dynamic singularities arising in the control of
nonholonomic systems.

Example (reprise). Consider again equations (13) with

y1 = x1, y2 = x2. (23)

The application of the algorithm of [9] yields a one-dimensional dynamic decoupling
controller of the form

ξ̇ = cosx3v1 + sinx3v2

u1 = ξ

u2 = 1
ξ

(− sinx3v1 + cosx3v2).
(24)

The extended system has re
1 = re

2 = 2 and ne = 4, so that, in the new coordinates

z1 = x1, z2 = x2,

z3 = ξ cosx3, z4 = ξ sinx3,
(25)

it is fully described by two chains of two input-output integrators. For the original
system (13), no zero-dynamics can be defined in the sense of [11] and Proposition 1
cannot be used directly. Nevertheless, any motion of x3, obtained with u1 = 0 and
an arbitrary u2(t), is compatible with the output (23) being constantly zero. Since
the extended system is completely linear and controllable, in appearance smooth
feedback stabilization would be allowed. However, the linearizing control law (24)
has a singularity in ξ = 0, i. e. when the unicycle is not rolling because u1 = 0.
Intuitively, in this situation an infinite amount of energy is required on the second
input u2 for moving the output y without using the first input u1.

From the example above, two observations follow: (i) when the output reference
trajectory is persistently non-zero and sufficiently smooth, then the dynamic com-
pensator (24) (properly initialized) can be effectively used as a tracking control law,
as pointed out also in [7]; (ii) for a typical point-to-point motion, the use of (24) as
it stands would fail.

This recognized critical flaw of the dynamic linearization approach may be avoided
by using the additional degree of freedom left in the design, namely the free initial-
ization (at any time) of the dynamic compensator, together with a suitable synthesis
of the control input v. This will be illustrated in the next section.
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4. STABILIZATION DESIGN

In this section, we illustrate how to construct a feedback stabilizing controller for (13)
in a point-to-point motion. The proposed approach is based on the preliminary
use of (24) and takes advantage of the linear equivalent structure of the closed-
loop system. The unicycle is used here to point out this possibility, although, in
general, each situation would require a case-by-case solution. The final control law
is discontinuous, but contains as much feedback information as possible.

Without loss of generality, the desired state is chosen as the origin of the state
space, xd = 0. The reference frame in which the motion is described is determined
accordingly. We assume first that the initial conditions of the unicycle are such that
x1(0) 6= 0 and that cosx3(0) > 0. In a second step of the design procedure, we will
show how the more general situation can be reduced to this one.

Consider system (13) with outputs (23) and apply the dynamic compensator (24).
Then, the extended system is diffeomorphic to the linear controllable system

ż1 = z3, ż3 = v1,
ż2 = z4, ż4 = v2,

(26)

where the new coordinates z are defined by (25) in terms of x and of the compensator
state ξ. The validity of this representation is restricted by the assumption that
ξ(t) 6= 0 at all times t. Thus, the control design will have to ensure that this
constraint is never violated. In terms of the new states, the control objective can be
restated as

lim
t→∞

z1(t) = 0, (first position component)

lim
t→∞

z2(t) = 0, (second position component)

lim
t→∞

ATAN2{z4(t), z3(t)} = 0, (orientation)

z2
3(t) + z2

4(t) 6= 0, ∀t, (singularity avoidance).

(27)

The function ATAN2 is the well-known two arguments inverse tangent function,
using the signs of both arguments to locate the solution in the proper quadrant.

The control law that we propose will achieve the point-to-point motion of the
unicycle in a finite time, denoted t̄. The following external control v(t) is chosen for
t ∈ [0, t̄]:

v1(t) = 0,
v2(t) = −k sign

(
z2(t) + z4(t)|z4(t)|

2k

)
,

(28)

where t̄ is yet to be defined, and k > 0 can be chosen such that, at time t̄, the two
variables z2 and z4 have reached zero (see e. g. [19]). To complete the design of the
dynamic controller, we need to specify the initial condition ξ(0). This is chosen as:

ξ(0) = − sign(x1(0))ξ̄
cosx3(0)

6= 0, (29)

where ξ̄ is an arbitrary positive constant. As a consequence of the previous choices,

z3(t) = z3(0) = −ξ̄ sign(z1(0)), (30)



Control of Nonholonomic Systems via Dynamic Compensation 601

and hence sign(z3(t)) = −sign(z1(0)). Since ξ2(t) = z2
3(t) + z2

4(t), we note that ξ(t)
is bounded away from zero, thus keeping the same sign for all t (the one chosen at
t = 0). Moreover,

z1(t) = z1(0)− ξ̄ sign(z1(0))t. (31)

Therefore, imposing z1(t̄) = 0 gives

t̄ =
z1(0)

ξ̄ sign(z1(0))
=
|x1(0)|
ξ̄

> 0. (32)

To verify that all the objectives have been satisfied, it remains to show that
sign(cosx3(t̄)) > 0 so that ATAN2{z4(t̄), z3(t̄)} = 0. Since cosx3(t) = z3(t)/ξ(t),
then

sign(cosx3(t̄)) =
− sign(z1(0))
− sign(ξ(0))

> 0, (33)

giving x3(t̄) = 0 (not π!).

A couple of remarks are now in order.

– If a disturbance occurs, feedback is used to counteract the perturbation; time
t̄ will not be anymore the final instant, but this does not affect the overall
behavior. A robust controller is designed so that the variables z2 and z4
converge to the origin faster than z1. The way z1 converges to the origin is
governed by the choice of the constant ξ̄, as shown by (32).

– In a practical approach, the stabilizing terminal controller v2 in (28) is replaced
by a continuous version yielding arbitrary exponential rate of convergence for
the variables z2 and z4:

v2(t) = −kpz2(t)− kdz4(t), kp, kd > 0. (34)

The gains kp and kd are selected so that the error on z2 = x2 becomes less
than a small tolerance error ε, before time t̄.

If the initial state of the unicycle does not satisfy the conditions x1(0) 6= 0 and
cosx3(0) > 0, it is still possible to use the above stabilizing control by the preliminary
application of the following feedback law for both inputs v, for t ∈ [−t0, 0]:

v1(t) = − sinx3(t),
v2(t) = cosx3(t).

(35)

The duration t0 of this first control phase will be such that x1(0) 6= 0 and cosx3(0) >
0, so that the previously described control phase can be successfully started. In fact,
from (24), it is seen that the control law (35) yields a constant ξ = ξ(−t0) and that
the original inputs become

u1 = ξ(−t0), u2 =
1

ξ(−t0) . (36)

It follows that z2
3(t) + z2

4(t) = ξ2(−t0) and the two variables z3 and z4 will vary
on a circle of radius |ξ(−t0)|. Therefore, there exists a finite time t0 such that z3
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will become of the same sign required for the initial condition of the compensator at
time zero, i. e. sign(z3(0)) = sign(ξ(0)) and cosx3(0) will be thus positive. From (25)
and (26), it follows that the same control (35) leads to a value for x1(0) which is
different from zero.

Intuitively, control (35) makes the unicycle rotate so that the angle formed with
the x-axis will belong to the interval

(−π
2 ,

π
2

)
. In the second phase, the control

law (28) makes the unicycle move forwards (or backwards) to the origin, whenever
its initial position is in the left (respectively, right) half-plane. As a result, the
two control phases can be patched together without changing structure, but just
resetting the compensator state ξ and the external inputs v1 and v2. We note that
this automatically leads to a discontinuous control input u1 and u2.

Simulation results with the previous stabilizing dynamic control law are reported
next for two different point-to-point motions. In both cases, the exponential stabi-
lizing controller (34) is used, with gains chosen as

kp = 25, kd = 10, (37)

corresponding to a double real pole at −5 for the error dynamics of the second
component of the output. The final error norm tolerance is set to ε = 0.0005.

Fig. 1. Output evolution (case I).

Fig. 2. Unicycle orientation x3 (case I).
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Fig. 3. Driving input u1 (case I).

Fig. 4. Steering input u2 (case I).

In the first simulation (case I), the initial state is

x1(0) = 5, x2(0) = 5, x3(0) = π/3, (38)

thus with the unicyle in the positive quadrant. The compensator state is initially
set to ξ(0) = −6. Figures 1 – 5 show the motion of the unicycle in the (x, y)-
plane, its orientation, the original control input u, and the compensator state. The
overall motion is very smooth, with the driving input being always negative (the
unicycle rolls backwards). The sudden change in Fig. 3 corresponds to the reaching
of the origin. Note that the compensator state in Fig. 5 is bounded away from zero,
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ensuring in turn bounded control effort.

Fig. 5. Compensator state ξ (case I).

In the second simulation (case II), the initial state is

x1(0) = −5, x2(0) = 0, x3(0) = −9π/20, (39)

while the initial state of the compensator is set to ξ(0) = −18. Figures 6 – 10 refer
to the associated motion, which is now performed always in the forward rolling
direction. Since the initial position is on the negative x-axis and the unicycle points
almost at −90◦, the control will not immediately force the system towards the origin,
allowing simultaneous reorientation during motion. After 0.2 seconds, the unicycle
is in a more convenient state to be pushed to its final destination with reduced effort.

Fig. 6. Output evolution (case II).
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Fig. 7. Unicycle orientation x3 (case II).

Fig. 8. Driving input u1 (case II).

Fig. 9. Steering input u2 (case II).
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Fig. 10. Compensator state ξ (case II).

5. CONCLUDING REMARKS

In this paper, the question whether it is possible to use dynamic compensation for
achieving tracking and stabilization of nonholonomic nonlinear systems has been
investigated. First, the relation between the presence of nonholonomic constraints
and that of singularities in the dynamic extension process has been established.
Then, for a unicycle example, it has been shown that dynamic compensation can
nevertheless be used by fully exploiting the degrees of freedom of the control scheme,
in particular the proper initialization of the dynamic part of the controller.

The proposed stabilizing control law shows discontinuities due to the re-initializ-
ation of the dynamic compensator state “on the fly”, with the same control structure
being preserved. The overall stabilization design is simpler than that of time-varying
feedback control laws since it takes full advantage of the linear equivalent system
under feedback linearizing dynamic control. Moreover, the proposed control scheme
contains as much feedback information as possible, thereby presenting obvious ben-
efits of robustness with respect to open-loop solutions.

(Received March 23, 1993.)
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