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ON THE COVER PROBLEMS OF
GEOMETRIC THEORY

Nicos Karcanias and Dimitris Vafiadis

For linear systems, a family of cover problems of the geometric theory are introduced as
extensions of the standard cover problem and a matrix pencil formulation of such problems
is given. It is shown that the solvability of such problems is reduced to a problem of
Kronecker Invariant Transformation by Matrix Pencil Augmentation and a Matrix Pencil
Realisation Problem. Necessary, as well as sufficient conditions for solvability of both
problems are given, which lead to a number of conditions for solvability of the partial, as
well as standard cover problem. The special cases of left regular, regular solutions of the
cover problem are investigated and a parametrisation of such families of solutions is given.

1. INTRODUCTION

The cover problems arise in the study of several control problems such the observer
design [14], the exact model matching, the disturbance decoupling, the identification
[2] and the squaring down problem [8]. For a partial realization approach to the cover
problem see [1].

The standard cover problem that has been considered so far belongs to a more
general class of problems that arise within the general area of selection of input,
output schemes for a given system [5]. Althought the formulation of these problems
is geometric in nature (find a certain type of invariant subspace that covers a given
subspace and is contained in another one), their solvability and parametrisation of
solutions is closer in nature to problems of invariant structure assignment. The
matrix pencil framework [7, 3] for the characterisation of invariant subspaces of the
geometric theory [12, 13] seems to be more suitable for the study of such problems,
since it brings together the geometric and Kronecker invariant structure aspects of
the problem; furthermore, the constructive nature of the matrix pencil tools allows
the computation and parametrisation of solutions in a simple manner. Extending the
matrix pencil framework to this new family of geometric problems is essential in the
effort to provide unifying matrix pencil tools for the geometric synthesis methods.

The aim of this paper is to provide a classification and a matrix pencil formulation
of the family of cover problems of geometric theory, give necessary as well as sufficient
conditions for the existence of certain types of solutions and parametrise special
families of solution spaces. An integral part of this approach is the splitting of
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the overall problem into a Kronecker invariant transformation problem by matrix
pencil augmentation and a matrix pencil realisation problem. The first deals with
the study of the effect of adding matrix pencil columns to a given pencil on the
resulting Kronecker structure; the second is equivalent to a problem of generating a
given space restricted pencil [7] for a given system. For both problems, we produce
necessary, as well as sufficient conditions for their solvability. These conditions in
turn, provide criteria for the solvability of the original cover problems. Of special
interest are certain families of cover problems, referred to as left regular, regular,
families; for these families we provide also some parametrisation of the solution
spaces.

2. PRELIMINARY DEFINITIONS AND STATEMENT OF THE PROBLEM

Let S(A,B,C) be the system characterised by the following state-space equations

ẋ(t) = Ax(t) + Bu(t) (2.1a)

y(t) = Cx(t) (2.1b)

where A ∈ Rn×n,B ∈ Rn×` and C ∈ Rm×n. It is assumed that both matrices B
and C have full rank and that the system is controllable. If N is a left annihilator
of B (i. e. a basis matrix for the Ker`(B) ) and B† is a left inverse of B (B†B = I`),
then (2.1a,b) are equivalent to

Nẋ = NAx (2.1c)

u = B† ẋ−B†Ax (2.1d)

where (2.1.c) is a “feedback free” system description and the associated pencil
R(s) = sN−NA is known as the restricted input-state pencil [7] of the system. A
family of cover problems of the geometric theory are defined below.

Definition 2.1. Let X be the state-space of the S(A,B) system and let J ⊆ W ⊆
X . Finding all subspaces V of X such that

(i) V is (A,B)-invariant, i. e. AV ⊆ V + B and

J ⊆ V ⊆ W (2.2)

is known as the standard cover problem [1, 2].

(ii) V is an almost (A,B)-invariant, controllability or almost controllability and
(2.2) is also satisfied, will be referred as extended cover problems.

(iii) V is any of the invariant types of subspaces in (i), (ii) and W = X , then the
problem will be called partial cover problem .

The extended cover problems form an integral part of the investigation of Model
Projection Problems (MPP) [5], which arise in the study of selection of control
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structures. Our approach is based on the matrix pencil characterization of the
(A,B)-invariant subspaces [3, 4]. If V is a basis matrix of V, the nature of the
subspace V of the state space of the system as an invariant subspace is characterised
by the nature of the set of strict equivalence invariants (cf. [15]) of the V-restricted
matrix pencil RV(s) = sNV −NAV which is referred in short as a V-restriction
pencil.

Lemma 2.1. [3] A subspace V ⊂ X is an (A,B)-invariant subspace, if and only if
the pencil

sNV −NAV (2.3)

is characterised by c.m.i., f.e.d. and possibly zero r.m.i. In addition if sNV −NAV
is not characterised by f.e.d., then V is a controllability subspace (c.s.).

A similar result has been established in [3] for the matrix pencil characterisation
of Almost (A,B)-invariant and almost controllability subspaces. In this paper, we
shall be mostly concerned with (A,B)-invariant subspaces, whereas almost (A,B)-
invariant case is treated in a similar manner.

The main idea underlying the matrix pencil approach to the study of the cover
problems is the following: Let J be the basis matrix of the subspace to be covered.
Since V is the covering subspace, then V = J ⊕ T where T is some appropriate
subspace, or in matrix form

V = [J,T] (2.4)

The restriction pencil of the covering subspace is then

RV(s) = sNV−NAV = (sN−NA)[J,T] (2.5)

From the above expression, it is clear that the general family of cover problems are
equivalent to problems of Kronecker structure assignment defined below.

Kronecker Structure Assignment Problem (KSAP): Given the J -restriction pencil
RJ (s) = sNJ−NAJ, find an appropriate T -restriction pencil RT (s) = sNT−NAT
such that the column augmented pencil RV(s) in (2.5) has a certain type invariant
structure.

The general Kronecker structure assignment problem may be naturally divided
to the following two subproblems:

Matrix Pencil Augmentation Problem (MPAP): Given the pencil sF−G ∈ Rm×k[s],
find the conditions for the existence of a pencil sF̄− Ḡ ∈ Rm×p[s] such that the
pencil

P(s) = [sF−G, sF̄− Ḡ] (2.6)

has a given set of invariants.

Matrix Pencil Realisation Problem (MPRP): Given the pencil sN−NA ∈ R(n−`)×n[s],
find the conditions under which there exists T ∈ Rn×p such that

sNT−NAT = sF−G (2.7)
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Note that a special case of MPRP has been recently examined in [6] and corresponds
to the case where sN−NA is free. The above two problems are integral parts of the
KSAP and will be examined here. With reference to the general cover problem, of
particular interest are the problems of determining the minimal dimension subspace
solutions, when such solution exist.

The above family of structure assignment problems deal with assignment of cer-
tain types of invariants, rather than the assignment of exact values of pencil invari-
ants; in this sense they are extensions of the zero assignment problems considered
so far [8]. In the following the standard cover problem corresponding to the (A,B)-
invariant subspace case will be considered. The emphasis will be on the partial cover
problem.

3. KRONECKER INVARIANT TRANSFORMATION BY MATRIX PENCIL
AUGMENTATION

In this section, we examine a number of results related to the transformation of
the types of SE-invariants of a matrix pencil by addition of columns (rows). We
consider first an important property established for a general polynomial matrix by
[9] and presented for the case of matrix pencils.

Theorem 3.1. Let P(s) = sF−G be a matrix pencil and let sf − g be a column
pencil and let P′(s) = [sF−G, sf − g]. If θi(s), i = 1, . . . , k, ζj(s), j = 1, . . . , k
or k + 1 are the invariant polynomials of P(s), P′(s) respectively, then

(a) If rankR(s){P(s)} < rankR(s){P′(s)} then the following interlacing property holds

ζ1(s)/θ1(s)/ζ2(s)/θ2(s)/ . . . /θk(s)/ζk+1(s) (3.1)

(b) If rankR(s){P(s)} = rankR(s){P′(s)} then the following interlacing property holds

θ1(s)/ζ2(s)/θ2(s)/ . . . /θk(s)/ζk+1(s) (3.2)

Note that in the above a/b denotes that a divides b. Some obvious further result is
stated below:

Proposition 3.1. Let sF −G be a right regular pencil i. e. it is characterized
only by r.m.i., i.e.d. and f.e.d. Let sF−G be augmented by a single column sf − g
such that its rank is increased. Then the sets of the i.e.d. and f.e.d. of the original
pencil are subsets of the i.e.d. and f.e.d. of the augmented pencil.

P r o o f . From Theorem 3.1 it follows that the invariant polynomials of the origi-
nal and the augmented pencils are related by the interlacing inequalities (3.1). The
invariant factors ζi, i = 1, . . . , `+1 and εi, i = 1, . . . , ` can be factorized as follows:

ζi(s) = (s− α1
i )

λi,1(s− α2
i )

λi,2 . . . (s− αρi

i )λi,ρi (3)

εi(s) = (s− β1
i )µi,1(s− β2

i )µi,2 . . . (s− βφi

i )µi,φi (4)
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The factors (s − αj
i )

λi,j and (s − βl
k)µk,l are the f.e.d. of the augmented and the

original pencil respectively.
From the interlacing inequalities (3.1) it is clear that

εj(s)/ζj+1(s) (3.5)

i. e. ζj+1(s) can be expressed as

ζj+1(s) = xj(s)εj(s) (3.6)

or
ζj+1(s) = xj [(s− β1

j )µj,1(s− β2
j )µj,2 . . . (s− β

φj

j )µj,φj ] (3.7)

The above yields that all the f.e.d. of sF −G are f.e.d. of the augmented pencil
[sF−G, sf − g] and the result follows. 2

The case of the i.e.d. may be proved similarly, taking the “dual” pencil F− ŝG.
It should be mentioned that the multiplicities of the common elementary divisors of
the two pencils may be different, since the polynomial xi(s) may have some of its
roots equal to the roots of εi(s).

An obvious consequence of the above is the following

Proposition 3.2. Consider the pencil [sF−G, sf − g].

(i) If the additional column is linearly dependent on the columns of sF − G, the
number of the c.m.i. is increased by one and the number of the r.m.i. remains
unchanged.

(ii) If the additional column is linearly independent, then the number of the c.m.i
remains unchanged and the number of the r.m.i is reduced by one.

P r o o f . The number of c.m.i. and r.m.i. of sF−G is equal to the dimension of
the right and left null space of sF−G respectively.

(i) If the additional column sf − g is linearly dependent on the columns of sF−G
then rank(sF − G) = rank(sF − G, sf − g) and therefore the dimension of the
right null space of sF −G is increased by one while the dimension of the left null
space remains the same. From the above it follows that the number of the c.m.i. is
increased by one and the number of the r.m.i. remains unchanged.

(ii) In the case where the additional column is linearly independent from the columns
of sF−G we have that rank(sF−G, sf − g) = rank(sF−G) + 1 and therefore the
dimension of the right null space remains unchanged. The dimension of the left null
space is reduced by one since it is equal to the number of rows of the augmented
pencil minus the rank of that pencil. 2

From the above proposition and Theorem 3.1 it follows that when the rank of the
pencil sF−G is increased by 1 with the addition of a single column, the result is the
elimination of one r.m.i. and the possible change of the structure of the f.e.d. / i.e.d.
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Thus, when we want to eliminate the r.m.i. of a pencil, it is necessary to augment
it by a number of linearly independent columns equal to the number of the r.m.i.

Consider now the general pencil sF −G and without loss of generality we may
assume to be in the Kronecker canonical form.

[
sF−G, sF̄−Ḡ

]
=




0 0 0 0 0
0 Lη(s) 0 0 0
0 0 Lε(s) 0 0
0 0 0 D∞(s) 0
0 0 0 0 Df (s)




(3.8)

where the blocks Lε, Lη, D∞, Df correspond to all the nonzero r.m.i., nonzero
c.m.i., i.e.d., f.e.d. respectively.

Proposition 3.3. The number of the zero r.m.i. of the augmented pencil [sF−
G, sF̄− Ḡ] cannot exceed the number of the zero r.m.i of the pencil sF−G.

P r o o f . The number of the z.r.m.i. of sF−G is equal to the dimension of the left
null space of the matrix [F,G] and the number of z.r.m.i of the augmented pencil is
the dimension of the left null space of the matrix [F,G, F̄, Ḡ]. But

N`{[F,G, F̄, Ḡ]} = N`{[F,G]} ∩ N`{[F̄, Ḡ]} ⊆ N`{[F,G]} (3.9)

and therefore

dimN`{[F,G, F̄, Ḡ]} ≤ dimN`{[F,G]}

and the result follows. 2

Lemma 3.1. [9] Let sF − G be the restriction pencil of the system (2.1) on a
subspace V. If V is an (A,B)-invariant subspace then

N`(F) ⊆ N`(G) (3.10)

or equivalently,
col− span{F} ⊇ col− span{G} (3.11)

Proposition 3.4. The matrix pencil [sF − G, sF̄ − Ḡ] is not characterised by
i.e.d. and n.z.r.m.i. only if

col− span{F, F̄} ⊇ col− span{G} (3.12)
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Proposition 3.5. Necessary condition for the augmented pencil [sF−G, sF̄−Ḡ]
to have no i.e.d. and no n.z.r.m.i. is that the number of columns of sF̄−Ḡ is greater
or equal to the total number of the n.z.r.m.i. and i.e.d. of sF−G.

P r o o f . From Proposition 3.3 it follows that in order to eliminate the n.r.m.i.,
we need at least equal number of linearly independent columns. Obviously, the
minimal number of the additional columns is obtained when the composite pencil
[sF−G, sF̄−Ḡ] has equal number of zero r.m.i., to the number of the z.r.m.i. of the
original pencil sF−G. From Proposition 3.1 it follows that as long as we augment
the pencil by linearly independent columns, the resulting pencil is characterised by
i.e.d. Since we keep the number of the z.r.m.i. unchanged, we can assume that the
composite pencil has the form

[
sF−G, sF̄−Ḡ

]
=




0 0 0 0 0 0
0 Lη(s) 0 0 0 sK2−M2

0 0 Lε(s) 0 0 sK3−M3

0 0 0 D∞(s) 0 sK4−M4

0 0 0 0 Df (s) sK5−M5




. (3.13)

where Lη,Lε,D∞,Df are the nonzero r.m.i., nonzero c.m.i., i.e.d. and f.e.d. blocks
respectively.

The structure of that pencil as far as the n.z.r.m.i. and the i.e.d. are concerned,
is identical to the structure of the pencil

[
sF̃−G̃

]
=




0 Lη(s) 0 0 0 sK2−M2

0 0 Lε(s) 0 0 sK3−M3

0 0 0 D∞(s) 0 sK4−M4

0 0 0 0 Df (s) sK5−M5


 . (3.14)

This matrix pencil cannot be characterised by zero r.m.i. since N`{[F̃, G̃]} = {0}.
Therefore pencil (3.14) is not characterised by i.e.d. and n.r.m.i. only if the matrix
F̃ is left regular. From the form of the pencil (3.14) we can see that the matrix F̃
can have full rank only if the matrix that consists of the rows of the pencil sF̄− Ḡ
that correspond to the bottom rows of the blocks of the n.r.m.i. and i.e.d. has full
rank. Since the number of the rows of that matrix is equal to the total number of
i.e.d. and n.r.m.i. of the pencil sF−G, the result follows. 2

One of the major issues in characterising the solvability of the extended cover
problems is the investigation of the conditions under which the resulting pencil after
augmentation has no n.z.r.m.i. By assuming the pencil in the canonical form we
have:

[
sF−G, sF̄−Ḡ

]
=




0 0 0 0 0 sK1−M1

0 Lη(s) 0 0 0 sK2−M2

0 0 Lε(s) 0 0 sK3−M3

0 0 0 D∞(s) 0 sK4−M4

0 0 0 0 Df (s) sK5−M5




(3.15)
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Now it is obvious that necessary and sufficient condition for P′(s) to have any type
of r.m.i., is that the subpencil

P′′(s) =
[

0 sK1−M1

Lη(s) sK2−M2

]
(3.16)

to provide this type of r.m.i. since the rest of the blocks are left regular. We may

summarise as follows:

Proposition 3.6. Necessary and sufficient conditions for P′′(s) to have all its
r.m.i. with values strictly less than those in the Lη block, or P′′(s) has no r.m.i.
are:

(i) IfR(K1,M1),R(K2,M2) are the R(s)-row spaces of the pencils sK1−M1, sK2−
M2 respectively, then

R(K1,M1) ∩R(K2,M2) = {0} (3.17)

(ii) The pencil [sK2 −M2,Lη] is left regular.

(iii) All r.m.i. of sK1 − M1 are strictly less than those of Lη, or the pencil
sK1 −M1 is left regular if P′′(s) has no r.m.i.

P r o o f . Let yt(s) = [yt
1(s),y

t
2(s)] be an R[s] vector in N`(P′′(s)). Then we have

[
yt

1(s),y
t
2(s)

] [
sK1−M1sK2−M2

]
= 0, yt

2(s)Lη(s) = 0

or equivalently
yt

2(s)Lη(s) = 0 (3.18)

yt
1(s)(sK1 −M1) = −yt

2(s)(sK2 −M2) (3.19)

From condition (3.19) we see that either yt
2(s) 6= 0, or yt

2(s) = 0. We distinguish the
following cases:

(i) yt
2(s) 6= 0. In this case, if n̄ is the minimal of the degrees in Lη(s) block, then

∂{yt
2(s)} ≥ n̄ . It is thus a necessary condition that yt

2(s) = 0 for the degree of y(s)
to be less than n̄ .

(ii) If yt
2(s) = 0, then (3.19) is reduced to

yt
1(s)(sK1 −M1) = 0 (3.20)

and it is necessary that N`(sK1−M1) is either {0}, or if it is nonzero, then its r.m.i.
are strictly less than n̄ . Thus necessary conditions are

yt
2(s) = 0 and N`(sK1 −M1) = {0}

or the r.m.i. of sK1 −M1 are strictly less than n̄.
For yt

2(s) = 0 we must determine the necessary conditions for this to happen.
From equation (3.19) we have that:
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(a) If yt
2(s) 6= 0 and yt

1(s) 6= 0 then

R(K1,M1) ∩R(K2,M2) 6= {0} (3.21)

(b) If yt
2(s) 6= 0 and yt

1(s) = 0, then by (3.18) and yt
1(s) = 0 in (3.19) we have

yt
2(s)[sK2 −M2,Lη(s)] = 0 (3.22)

It is clear that from (a) and (b) above that for yt
2(s) = 0 it is necessary that both

(3.21) and (3.22) conditions to be true, which proves the necessity.

To prove the sufficiency we argue as follows:

R(K1,M1) ∩R(K2,M2) = {0} (3.23)

implies that condition (3.19) yields

yt
1(s)(sK1 −M1) = 0 (24)

yt
2(s)(sK2 −M2) = 0 (25)

and from (3.25) and (3.18) we have

yt
2(s)[sK2 −M2,Ln(s)] = 0 (3.26)

which since [sK2 − M2,Ln(s)] is left regular implies yt
2(s) = 0. Since sK1 − M1

is either left regular, or has r.m.i. with values strictly less than n̄ the sufficiency is
established.

4. THE MATRIX PENCIL REALISATION PROBLEM

The analysis of the previous section has assumed that the pencil used in the aug-
mentation process, sF̄− Ḡ , is arbitrary; however, this pencil is generated from the
input-state pencil of the system as

(sN−NA)T = sF̄− Ḡ (4.1)

or equivalently as a solution of the system
[
F̄
Ḡ

]
=

[
N

NA

]
T (4.2)

The problem of matrix pencil realisation is equivalent to finding a T, when (N,A),
(F,G) are given such that (4.2) is satisfied. A more general form of this prob-
lem is the “Invariant Realisation Problem”, [4], where the pair (N,A) is also free.
Our present version of the problem is equivalent to generating an appropriate T -
restriction pencil for the given system. Clearly, this problem, does not always have a
solution i. e. not any pair (F̄, Ḡ) may be created as a T -restriction of a pair (N,NA);
this problem is a generalisation of the zero assignment problems [6]. Clearly, the fam-
ily of pairs (F̄, Ḡ) provide the necessary input to the Matrix Pencil Augmentation
Problem.

In the case of the cover problem the matrices F, G, N, A are given and the
problem is to find T such that (4.1) is satisfied. An obvious result for solvability of
this problem is:
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Remark 4.1. The matrix pencil realisation problem is solvable if and only if

col− span
{[

F̄
Ḡ

]}
⊆ col− span

{[
N

NA

]}
T (4.3)

Proposition 4.1. If n < 2` the matrix pencil realisation problem is always solv-
able.

P r o o f . Since the system S(A,B) is controllable, the pencil sN −NA is char-
acterised only by c.m.i. and has the following canonical form.

sN−NA = block− diag





. . .




s −1 0 . . . 0

0
...

. . . . . .
...

0 . . . 0 s −1


 . . .





(4.4)

where the dimensions of the blocks are (σi − 1) × σi and σi are the controllability
indices of the pair (A,B). From the form of the above pencil we can easily see
that the matrix [Nt,AtNt]t has always full rank. The dimensions of [Nt,AtNt]t

are (2n− 2`)×n. Then if n < 2` the equation

[
F̄
Ḡ

]
=

[
N

NA

]
T (4.5)

is always solvable with respect to T and the result follows. 2

Remark 4.2. For controllable systems with n ≤ 2`, any particular cover problem
is equivalent to a matrix pencil augmentation problem as discussed in the previous
section; otherwise, the Matrix Pencil Realisation Problem becomes an essential part
of the overall cover problem.

5. LEFT REGULAR SOLUTIONS AND THE OVERALL COVER PROB-
LEM

In this section some special cases of the cover problem are investigated and some
sufficient conditions for the solvability of the general case of the cover problem
are given. The left regular cover problem is defined as that where the resulting
augmented pencil has no left null space. For such cases a parametrisation of the
solution spaces is also given. Note that a special case of the left regular case is when
the resulting pencil is square and regular. This is defined as the regular case.

First we tackle the cover problem corresponding to the case where the subspaces
are (A,B)-invariant subspaces and the restriction pencil has no r.m.i. at all. Some
preliminary results are given below:



On the Cover Problems of Geometric Theory 557

Proposition 5.1. If the restriction pencil sNJ −NAJ of the given subspace J
has no zero r.m.i., then the restriction pencil of any solution of the cover problem is
not characterised by r.m.i. at all.

P r o o f . From Proposition 3.4 it follows that, since the number of the z.r.m.i. if
sNJ −NAJ is zero, then any augmentation of that pencil is not characterised by
z.r.m.i. 2

Proposition 5.2. Let L ⊂ Rn,dim {L} = n− `, L be a basis matrix of L. If the
restriction pencil has full rank (over R(s)) and has no i.e.d., then:

(i) L+ J is a solution of the partial cover problem.

(ii) Any subspace defined as

L′ = L+ L̂+ J (5.1)

where L̂ is arbitrary is also a solution of the partial cover problem.

P r o o f . Let L ∈ Rn×(n−`), such that sNL −NAL is regular and has no i.e.d.;
clearly the restriction pencil [sNL −NAL, sNJ −NAJ] has no r.m.i. and thus L
is a solution of the partial cover problem which proves (i).

For any L̂ ∈ Rn×k matrix the augmented pencil

(sN−NA)[L, L̂,J] = [sNL−NAL, sNL̂−NAL̂, sNJ−NAJ] (5.2)

has an (n − `) × (n − `) subpencil, which is regular and thus, the pencil (sN −
NA)[L, L̂,J] has no r.m.i. Given that (sN−NA)L is regular and has no i.e.d., we
have that NL has full rank and thus also N[L, L̂,J]; the latter shows that (sN −
NA)[L, L̂,J] has also no i.e.d. The space L′ = L+ L̂+ J is thus a solution to the
partial cover problem. 2

The specific solution defined by the space L for which the pencil sNL−NAL is
regular and has no i.e.d. will be referred to as a “squaring” solution and conditions
for it existence will be examined next.

Remark 5.1. The family L′ = L + L̂ + J , where L is a squaring solution does
not necessarily cover the hole set of solutions of the partial cover problem; even for
the squaring partial cover problem, different L squaring solutions, in general lead
to different families. The squaring partial cover problem mentioned above may be
formally stated as follows: Given the pencil sN−NA, find L such that

det(sN−NA)L 6= 0, det(NL) 6= 0 (5.3)

The above conditions combined yield that the squaring problem is solvable if and
only if L is such that

deg det{(sN−NA)L} = n− ` (5.4)

or equivalently
det(NL) 6= 0 (5.5)
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Lemma 5.1. The matrix NL has full rank if and only if

L ∩ B = {0} (5.6)

Proposition 5.3. Necessary condition for (5.5) to be true is that

dim {L} ≤ n− ` (5.7)

Theorem 5.1. The squaring partial cover problem is always solvable.

P r o o f . We can always find L such that (5.6) is satisfied. 2

The solution of the squaring cover problem is considered next. Condition (5.6) is
equivalent to

det[B,L] 6= 0 (5.8)

where L is the basis-matrix of L. The above is equivalent to

det{Q[B,L]} 6= 0 (5.9)

where Q is any invertible matrix. Since rank(B) = ` we can always choose Q such
that

QB =
[
B∗

1

0

]
= B∗ (5.10)

where B∗ is an `× ` invertible matrix. Then (5.8) is equivalent to

det
([

B∗
1 L∗1

0 L∗2

])
6= 0 (5.11)

where [
L∗1
L∗2

]
= QL = L∗ (5.12)

Relation (5.11) is equivalent to

det(B∗
1) · det(L∗2) (13)
det(L∗2) 6= 0 (14)

since B∗ is invertible. Note that L∗ is an arbitrary `×(n−`),L∗2 is an (n−`)×(n−`)
matrix. Let now, W be the basis matrix ofW and w = dim (W). Then, since L ⊂ W

rank[W,L] = rank[W] (15)
rank[QW,QL] = rank[QW] (16)
rank[W∗,L∗] = rank[W∗] (17)

where
W∗ = QW, L∗ = QL (5.18)

From (5.18)

rank
([

W∗
1 L∗1

W∗
2 L∗2

]
) = rank(W∗

)
(5.19)
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The above is equivalent to the existence of a matrix K of dimensions w × (n − `)
such that

W∗K = L∗ (5.20)

or [
W∗

1

W∗
2

]
K =

[
L∗1
L∗2

]
(5.21)

or
W∗

1K = L∗1, W∗
2K = L∗2 (5.22)

where L∗2 must be invertible.

Proposition 5.4. Necessary and sufficient condition for the invertibility of L∗2 is
that

rank(W∗
2) = n− ` (5.23)

P r o o f . The necessity is obvious. For the sufficiency, if we assume that (5.23)
holds true, we can choose

K = (W∗
2)

t (5.24)

and the result follows. 2

The matrices K that satisfy the requirement of the invertibility of L∗2 can be
found as follows. From (5.22) we have that K must be such that the intersection
of its column space with the null space of W∗

2 must be the zero space or, in matrix
form

det[Ŵ,K] 6= 0 (5.25)

where Ŵ is the basis matrix of the null space of W∗
2 and has dimensions w×(w−n+

`). From (5.23) we have that rank(Ŵ) = w−n+ `. Then there exists a nonsingular
matrix P such that

PŴ =
[
Ŵ∗

1

0

]
= Ŵ∗ (5.26)

where Ŵ∗ is an (w−n+ `)× (w−n+ `) invertible matrix. Now, (5.25) is equivalent
to

det(
[
Ŵ∗

1 K∗
1

0 K∗
2

]
) 6= 0 (5.27)

or
det(Ŵ∗

1) det(K∗
2) 6= 0 (5.28)

where [
K∗

1

K∗
2

]
= PK (5.29)

Provided that (5.23) holds true, we can always find K such that L∗2 is invertible, by
choosing K∗

2 to be invertible. The expression for the matrix L that satisfies (5.5)
and (5.15) simultaneously is

L = WP−1

[
K∗

1

K∗
2

]
(5.30)



560 N. KARCANIAS AND D. VAFIADIS

Next we are going to investigate (5.23) further and obtain an equivalent condition
in terms of the matrices B and W. Consider the matrix

[B,W] (5.31)

Then
Q [B,W] =

[
B∗

1 W∗
1

0 W∗
2

]
∈ Rn×(`+w) (5.32)

and B∗
1 is invertible. Obviously, rank[B∗

1,W
∗
1] = l and all the nonzero rows of W∗

2

are linearly independent of the rows of [B∗
1,W

∗
1]. Thus,

rank
[
B∗

1 W∗
1

0 W∗
2

]
= rank[B∗

1,W
∗
1] + rank[0,W∗

2] (5.33)

and since B∗
1 is invertible

rank
[
B∗

1 W∗
1

0 W∗
2

]
= rank[B∗

1] + rank[W∗
2] (5.34)

We may now state the following theorem

Theorem 5.2. Necessary and sufficient condition for the solvability of the squar-
ing cover problem is the following

dim {B} ∩ {W} = ` + w − n (5.35)

and the general solution is (5.30) where K∗
1 is completely arbitrary and K∗

2 is an
arbitrary nonsingular matrix.

P r o o f . From (5.34) we get that (5.23) holds true if and only if rank{[B,W]} = n
or equivalently if and only if (5.35) holds true. 2

Theorem 5.3. The left regular cover problem is solvable if and only if the sub-
space W is an (A,B)-invariant subspace and the W-restricted pencil is not charac-
terised by z.r.m.i. If the problem is solvable, then the solutions have the following
form

T = L+ J + L̂ (5.36)

where L has a basis matrix given in (5.9) and L̂ is an arbitrary subspace of W.

P r o o f . Let the left regular cover problem to be solvable. Then from Proposition
5.2 we have that the squaring problem is solvable. Let L be a solution of the
squaring problem. Then there exists a subspace L̂ ⊆ W such that W = L ⊕ L̂ .
Since the L-restricted pencil is characterised by i.e.d. and r.m.i., it follows that the
W-restricted pencil does not have i.e.d. and r.m.i. and therefore W is an (A,B)-
invariant subspace not characterised by r.m.i.

Conversely let W be a subspace such that the W-restricted pencil has neither
i.e.d. nor r.m.i. Then W is a solution to the problem and the result follows. 2
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6. CONCLUSIONS

The results in this paper were mostly concerned with the partial realisation of the
standard cover problem. Extension of the results to the more general cases, where
the subspace V is almost (A,B)-invariant, controllability, almost controllability is
quite natural, using the present formulation of the problem and their treatment
is given in a forthcoming report. The present paper considers the case of proper
(regular) systems, which are also assumed to be controllable. The extension of the
results to the singular systems case is still under investigation. The matrix pencil
framework provides the appropriate tools for the study of the cover problems; the
present results are of a preliminary nature and current work is also directed towards
conditions which take into account the specific algebraic characteristics of the space
to be covered.

(Received March 23, 1993.)
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