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Radim Jiroušek, Ivan Kramosil,
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Managing Editors:

Karel Sladký
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— Address of the Editor: P.O. Box 18, 182 08 Prague 8, e-mail: kybernetika@utia.cas.cz.
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Czech Republic, e-mail: myris@myris.cz. — Sole agent for all “western” countries: Kubon
& Sagner, P.O. Box 34 01 08, D-8 000 München 34, F.R.G.

Published in December 2001.

c© Institute of Information Theory and Automation of the Academy of Sciences of the
Czech Republic, Prague 2001.

http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.utia.cas.cz
http://www.kybernetika.cz/board.html
http://www.kybernetika.cz/contact.html
http://www.kybernetika.cz
http://www.kybernetika.cz/content/376.html


KY BERNET I K A — V OL UME 3 7 ( 2 0 0 1 ) , N UM B ER 6 , PAGE S 7 2 5 – 7 3 5

NEW COPRIME POLYNOMIAL FRACTION
REPRESENTATION OF TRANSFER FUNCTION MATRIX

Yelena M. Smagina

A new form of the coprime polynomial fraction C(s) F (s)−1 of a transfer function matrix
G(s) is presented where the polynomial matrices C(s) and F (s) have the form of a matrix
(or generalized matrix) polynomials with the structure defined directly by the controllability
characteristics of a state-space model and Markov matrices HB, HAB, . . .

1. INTRODUCTION

In many practical control problems it is desirable to have the right or left coprime
polynomial matrix fraction (or matrix fraction descriptions (MFD)) of the transfer
matrix G(s) = C(s) F (s)−1 where C(s) and F (s) are polynomial matrices in the
Laplace operation s and F (s) is a nonsingular matrix. For example, decomposition
of this type plays the key role in the methods of H∞ problem [7] and model reduction
techniques [9]. Polynomial matrix descriptions are widely used in the design of state
estimators and regulators [6, 8, 14, 18].

In this paper we obtain a MFD formula for the transfer function matrix of a
multi-input multi-output (MIMO) control system in the state-space. This formula
has a special structure that is different from the existing matrix fractions [4, 8, 10,
17]: the new MFD C(s)F (s)−1 includes the matrix polynomials C(s) and F (s) of
the order depended on controllability characteristics of state-space system. Block
coefficients of the ‘numerator’ C(s) are expressed in the terms of the Markov matrices
HB,HAB,HA2B, . . . So, a new analytical expression for the polynomial matrix
fraction introduced in the paper can be considered as a generalization of the classic
representation of transfer functions (TF) studied in ([10], p. 38).

It is known that important properties of TF for a classic single-input single-output
case are related to Markov parameters (the number of a finite and infinite zeros, in-
vertibility, the relative degree of a control system [6] etc.). Certain relationships
between the matrices HAiB and MIMO system properties have already been stud-
ied in the works [5, 11, 15]. New MFD form presented in the paper reveals the direct
connection between TFM of MIMO system and Markov matrices that allows to pre-
dict some TFM properties (e. g. degeneracy [3], invertibility, existence and number
of transmission zeros etc.) without performing complex calculations. These proper-
ties can be obtained without the MFD computation by evaluating Markov matrices



726 Ye.M. SMAGINA

that can be calculated from the state-space model. The method proposed in this
paper is a development of the result presented in the IFAC Conference, Belford,
France, May 1997 [13].

2. PRELIMINARY NOTIONS AND PROBLEM STATEMENT

Let a linear multivariable time-invariant system be described in the state-space by

ẋ = Ax + Bu (1)

y = Hx (2)

where x is a state n-vector, u is an input r-vector, y is an output l-vector, A, B,
H are real constant matrices of appropriate sizes, r, l ≤ n. It is assumed that
rankB = r and the pair (A, B) is controllable.

Consider the transfer function matrix G(s) of system (1), (2)

G(s) = H(sI −A)−1B (3)

that is the l× r matrix with elements presented by strictly proper rational functions
of complex element s with real coefficients. It is known [16, 17] that any l×r rational
matrix G(s) can be always (nonuniquely) represented as the product

G(s) = C(s) F (s)−1 (4)

where C(s) and F (s) are relatively right prime polynomial matrices of sizes l × r
and r × r respectively with F (s) is nonsingular and column proper matrix [17].

Introduce polynomial matrices with an ordered structure. By a matrix polynomial
of the order m and the size l× r we understand a polynomial matrix of the form [2]

F (s) = F0 + F1s + · · ·+ Fm−1s
m−1 + Fmsm (5)

where Fi, i = 0, 1, . . . , m are l × r real constant matrices.
By a generalized matrix polynomial we shall understand the following polynomial

matrix [12]

F (s) = F0 + F1diag(Ilm−l1 , Il1s) + F2diag(Ilm−l2 , Il2−l1s, Il1s
2) + · · ·

· · ·+ Fm−1diag(Ilm−lm−1 , Ilm−1−lm−2s, · · · , Il1s
m−1)

+Fmdiag(Ilm−lm−1s, Ilm−1−lm−2s
2, · · · , Il1s

m)

(6)

where li, i = 1, 2, . . . , m are some integers that satisfy the inequalities: l1 ≤ l2 ≤
· · · ≤ lm.

It is obvious that form (6) is a generalization of the matrix polynomial (5) struc-
ture represented as: F (s) = F0 + F1(Irs) + F2(Irs

2) + · · ·+ Fm(Irs
m).

Using these notions we will define the right coprime factorization (4) with the
matrices C(s) and F (s) of structure (5) or (6).
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3. FACTORIZATION OF TRANSFER FUNCTION MATRIX

Assertion 1. The transfer function matrix of the system (1), (2) with n ≤ rν can
be always factored into the product

G(s) = C(s)F (s)−1Q∗ (7)

where Q∗ = QMT is a constant matrix, the polynomial l×r and r×r matrices C(s)
and F (s) are the following generalized matrix polynomials

C(s) = [0, C1] + [0, C2]diag(Ir−l1 , Il1s) + [0, C3]diag(Ir−l2 , Il2−l1s, Il1s
2) + . . .

. . . + Cνdiag(Ir−lν−1 , Ilν−1−lν−2s, · · · , Il1s
ν−1)

(8)

F (s) = [0, F1] + [0, F2]diag(Ir−l1 , Il1s) + · · ·
· · ·+ [0, Fν−1]diag(Ir−lν−2 , Ilν−2−lν−1s, · · ·
· · · , Il1s

ν−2) + Fνdiag(Ir−lν−1 , Ilν−1−lν−2s, · · · , Il1s
ν−1)

+Irdiag(Ir−lν−1s, Ilν−1−lν−2s
2, · · · , Il1s

ν).

(9)

If the pair matrices (A,H) is observable than the polynomial matrices C(s) and
F (s) are right coprime.

In (8), (9) the matrices F1, F2, . . . , Fν are defined from the Yokoyama canonical
form [19] for the controllable pair (A,B) with the transformed matrices

Ā=NAN−1 =




0 [0, Il1 ] 0 · · · 0
0 0 [0, Il2 ] · · · 0
...

...
...

. . .
...

0 0 0 · · · [0, Ilν−1 ]
−F1 −F2 −F3 · · · −Fν




, B̄=NBM =




0
0
...
0
Q




(10)
where N is a transformation n × n matrix. In (10) the permutation r × r ma-
trix M rearranges the columns of the matrix B such that the last columns of
the matrices AiBM, i = 1, 2, . . . , ν − 1 are linearly independent from the first
columns. The controllability index ν is the smallest integer that satisfies the equa-
tion rank[B, AB, . . . , Aν−1B] = n. The integers l1, l2, . . . , lν can be derived from the
relations:

li = rank[B,AB, . . . , Aν−iB]− rank[B, AB, . . . , Aν−i−1B], i = 1, . . . , ν − 1,

lν = rank B = r

and they satisfy the inequalities: l1 ≤ l2 ≤ · · · ≤ lν , l1 + l2 + · · ·+ lν = n. The lν× li
blocks Fi, i = 1, 2, . . . , ν have no special structure, [0, Ili ] – li × li+1 submatrices, Ili

– the identity matrices of the order li and Q is a nonsingular low triangular r × r
matrix with unit elements on the principal diagonal. In Section 5 we describe a new
recurrent algorithm for the matrices Q and F1, F2, . . . , Fν calculations.
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In (8) Ci are l × li blocks of the matrix

C = HN−1 = [C1, C2, . . . , Cν ]. (11)

The p r o o f of Assertion 1 is based on the calculation of TFM for canonical
system (10), (11). The details are discussed in [12].

Consider a particular case when n = rν, l1 = l2 = · · · = lν = r and the pair
(A,B) is reduced into Asseo’s canonical form [1] with matrices

Ā =




0 In−r

. . . . . . . . .
−F1,−F2 . . . ,−Fν


 , B̄ =

[
0
Ir

]

where Fi, i = 1, 2, . . . , ν are r×r blocks. It follows immediately from the Assertion 1.

Corollary 1. The transfer function matrix of the system (1), (2) with n = rν can
be always factored into the product G(s) = C(s)F (s)−1 where the polynomial l×r
and r × r matrices C(s) and F (s) are the following matrix polynomials

C(s) = C1 + C2s + · · ·+ Cνsν−1 (12)

F (s) = F1 + F2s + · · ·+ Fνsν−1 + Irs
ν . (13)

Corollary 2. The transfer function vector of system (1), (2) with scalar input
(r = 1, l1 = l2 = · · · = ln = 1 ) can be always factored into the product G(s) =
C(s)f(s)−1 where the vector polynomial C(s) has structure (12) for ν = n and
f(s) = det(sI −A).

Remark 1. The similar approach may be applied to an observable pair (H,A) to
find the left coprime fraction G(s) = N(s)−1Q(s) with l × l and l × r matrices
N(s) and Q(s) respectively. The factorization obtained will be the left coprime for
the controllable pair (A,B).

In the next section we will scrutinize the block coefficients Ci and Fi, i =
1, 2, . . . , ν of the generalized matrix (matrix) polynomials C(s) and F (s). First we
analyze the relationship between the block coefficients Ci and Markov parameters
(matrices) HB, HAB,HA2B, . . ..

4. CALCULATION OF Ci

Let us denote by R1, R2,. . . , Rν the n× li blocks of the matrix in the partition

N−1 = [R1, R2, . . . , Rν ] (14)

and express matrix C (11) in the following form

C = HN−1 = [HR1,HR2, . . . , HRν ] = [C1, C2, . . . , Cν ]. (15)
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Then generalized matrix polynomial (8) can be represented as

C(s) = H[0, R1] + H[0, R2]diag(Ir−l1 , Il1s)

+H[0, R3]diag(Ir−l2 , Il2−l1s, Il1s
2) + . . .

. . . + HRνdiag(Ir−lν−1 , Ilν−1−lν−2s, · · · , Il1s
ν−1)

(16)

where [0, Ri] are n×r blocks. We are going to express the blocks Ri via the matrices
A, B, Fi and Q. At first, we use the relation B̄ = NBM : BM = N−1B̄ =
[R1, R2, . . . , Rν ]B̄ = RνQ that allows to evaluate the last block of the matrix N−1

(14)
Rν = BMQ−1. (17)

To find the n× r blocks [0, Ri], i = ν− 1, ν− 2, . . . , 1 we apply the formula AN−1 =
N−1Ā that can be written as A[R1, R2, . . . , Rν ] = [R1, R2, . . . , Rν ]Ā. Taking into
account the special structure of the matrix Ā we can write

ARi = Ri−1[0, Ili−1 ]−RνFi, i = ν, ν − 1, . . . , 2 (18)

and then express the blocks Ri−1[0, Ili−1 ] as

Ri−1[0, Ili−1 ] = ARi + BMQ−1Fi, i = ν, ν − 1, . . . , 2. (19)

Recurrent formula (19) can be applied to find the n×r blocks [0, Rν−1], [0, Rν−2],. . .,
[0, R1]. For i = ν relation (19) takes the following form

Rν−1[0, Ilν−1 ] = ARν + BMQ−1Fν .

Using the formula Rν−1[0, Ilν−1 ] = [0, Rν−1] we can present [0, Rν−1] as

[0, Rν−1] = ABMQ−1 + BMQ−1Fν . (20)

For i = ν − 1 relation (19) can be written as

Rν−2[0, Ilν−2 ] = ARν−1 + BMQ−1Fν−1. (21)

Postmultiply both sides of (21) by the lν−1 × r matrix [0̃, Ilν−1 ] where 0̃ is lν−1 ×
(r − lν−1) zero block. Then using the formula [0, Ilν−2 ] [0̃, Ilν−1 ] = [0̃, Ilν−2 ] where
[0̃, Ilν−2 ] is lν−2 × r matrix we can present (21) as

[0, Rν−2] = A[0, Rν−1] + BMQ−1[0, Fν−1] (22)

where [0, Rν−2], [0, Rν−1], [0, Fν−1] are n × r, n × r, r × r matrices respectively.
Substitution the matrix [0, Rν−1] from (20) into (22) results in

[0, Rν−2] = A2BMQ−1 + ABMQ−1Fν + BMQ−1[0, Fν−1]. (23)

Continue the same procedure we can obtain the n× r matrices [0, Rν−3], . . . , [0, R1]

[0, Rν−i] = AiBMQ−1 + Ai−1BMQ−1Fν + . . .

. . . + ABMQ−1[0, Fν−i+2] + BMQ−1[0, Fν−i+1].
(24)
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Substituting Rν , [0, Rν−1],. . . , [0, R1] into (16) we can find the structure of C(s)

C(s) = (HAν−1BMQ−1 + HAν−2BMQ−1Fν + · · ·
· · ·+ HABMQ−1[0, F3] + HBMQ−1[0, F2])

+(HAν−2BMQ−1 + HAν−3BMQ−1Fν + · · ·
· · ·+ HBMQ−1[0, F3]) diag(Ir−l1 , Il1s) + · · ·
· · ·+ (HABMQ−1+HBMQ−1Fν) diag(Ir−lν−2 , Ilν−2−lν−3s, · · · , Il1s

ν−2)

+HBMQ−1diag(Ir−lν−1 , Ilν−1−lν−2s, · · · , Il1s
ν−1).

(25)

Remark 2. If the system (1), (2) is reduced to Asseo’s canonical form with l1 =
l2 = · · · = lν = r, n = rν, Q = Ir, M = Ir, [0, Fi] = Fi then the matrix polynomial
C(s) takes the following form

C(s) = (HAν−1B + HAν−2BFν + · · ·+ HABF3 + HBF2)

+(HAν−2B + HAν−3BFν + · · ·
· · ·+ HBF3)s + · · ·+ (HA2B + HABFν + HBFν−1)sν−3

· · ·+ (HAB + HBFν)sν−2 + HBsν−1.

(26)

Remark 3. For system (1), (2) with scalar input the vector polynomial C(s) has
the simple structure

C(s) = (HAn−1b + HAn−2bαn + · · ·+ HAbα3 + Hbα2)

+(HAn−2b + HAn−3bαn + · · ·
· · ·+ Hbα3)s + · · ·+ (HA2b + HAbαn)sn−2 + Hbsn−1

(27)

where α2, . . . , αn are the coefficients of the characteristic polynomial of A : det(sI−
A) = sn + αnsn−1 + · · ·+ α2s + α1.

5. CALCULATION OF Fi

In this section we discuss a new recurrent method for calculating the matrix Q
and block coefficients F1, F2, . . . , Fν of the polynomial matrix F (s) in right coprime
polynomial fraction (4). Contrary to the previous approach [19] the method does
not use the calculation of the full transformation matrix N . Moreover, the original
formula for the characteristic polynomial coefficients can be easy obtained from the
proposed method.

As it has been shown in [11] the transformation n×n matrix N has the following
structure

NT =
[

NT
ν , NT

ν−1, · · · NT
1

]
(28)
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where (lν−i+1 × n) blocks Ni, i = 1, 2, . . . , ν are calculated from the formulas

Nν = Pν , Nν−1 =
[

Pν−1

PνA

]
, Nν−2 =




Pν−2

Pν−1A
PνA2


 , . . . , N1 =




P1

P2A
...

PνAν−1


 (29)

and (lν − lν−1)× n, (lν−1 − lν−2)× n,. . . , (l2 − l1)× n, l1 × n blocks P1, P2,. . . ,Pν

are computed from the following linear algebraic equation



Pν

Pν−1

...
P1




(
BM,ABM

[
0

Ilν−1

]
, . . . , Aν−1BM

[
0
Il1

])

=




0 0
... · · · ... 0 0

... Iν

0 0
... · · · ... Iν−1 0

... X

0 0
... · · · ... X X

... X
...

...
... · · · ...

...
...

...
...

I1 0
... · · · ... X X

... X




(30)

where Ii are the identity matrices of the order (lν−i+1− lν−i), X are some matrices.

Assertion 2. In Yokoyama’s canonical form (10) the blocks Q, Fν ,Fν−1,. . . ,F1 are
expressed via the r × n matrix N1 in the recurrent formulas

Q = N1BM
Fν = −N1ABMQ−1

Fν−1 = (−N1A
2 − FνN1A)BMQ−1

[
0

Ilν−1

]

...
F1 = (−N1A

ν − FνN1A
ν−1 − [0, Fν−1] N1A

ν−2 − · · ·
· · · − [0, F2]N1A)BMQ−1

[
0
Il1

]

(31)

(see the Appendix for proof).

Corollary 3. Expressions (31) take a simple shape for the pair (A,B) reduced in
Asseo’s canonical form

Q = N1B
Fν = −N1AB

Fν−1 = −N1A
2B − FνN1AB

...
F1 = −N1A

νB − FνN1A
ν−1B − Fν−1N1A

ν−2B − · · · − F2N1AB

(32)



732 Ye.M. SMAGINA

where the r × n matrix N1 is calculated from the formula [11]

N1 = [0, . . . , 0, Ir] [B,AB, . . . , Aν−1B]−1Aν−1. (33)

Corollary 4. If r = 1 (B = b is a column vector) then the recurrent formula for
coefficients of the matrix A characteristic polynomial can be derived from

αn = −qAb, αn−1 = −qA2b− αnqAb, . . . ,

α1 = −qAnb− αnqAn−1b− · · · − α2qAb
(34)

where n row vector q satisfies the relation:

q = [0, 0, . . . , 0, 1] [b, Ab, . . . , An−1b]−1An−1.

In conclusion, we present an algorithm of calculating the right coprime MFD that
can be easy implemented on the computer.

STEP 1. Calculate integers ν and l1, l2,. . . ,lν for the controllable pair (A,B).

STEP 2. Calculate the matrix M and blocks Q, F1, F2, . . . , Fν (formulas (31) –
(34)).

STEP 3. Using formula (9) or (13) construct the polynomial matrix F (s).

STEP 4. Calculate HB, HAB, . . . , HAν−1B. Using formulas (25) – (27) find the
polynomial matrix C(s).

6. EXAMPLE

Let us find factorization (7) for controllable and observable system (1), (2) with the
matrices

A =




2 1 0 0
0 1 0 1
0 2 0 0
1 1 0 0


 , B =




1 0
0 0
0 0
0 1


 , H =

[
1 −1 1 0
1 1 0 1

]
. (35)

As it has been shown in ([11], p.31) this system has ν = 3, l1 = l2 = 1, l3 = 2. The
pair (A,B) is transformed into Yokoyama’s canonical form with M = I2. Using
(29) – (31) we can calculate

N1 =
[

1 0 0 0
0 1 0 1

]
, Q =

[
1 0
0 1

]
, F1 =

[
0
0

]
,

F2 =
[ −1
−1

]
, F3 =

[ −2 0
−1 −1

]



New Coprime Polynomial Fraction Representation of Transfer Function Matrix 733

and then construct the 2× 2 generalized matrix polynomial using formula (9)

F (s) = [0, F1] + [0, F2] diag(Ir−l1 , Il1s) + F3diag(Ir−l2 , Il2−l1s, Il1s
2)

+Irdiag(Ir−l2s, Il2−l1s
2, Il1s

3)

= [0, F1] + [0, F2] diag(1, s) + F3diag(1, s2) + diag(s, s3)

=
[

0 0
0 0

]
+

[
0 −s
0 −s

]
+

[ −2 0
−1 −s2

]
+

[
s 0
0 s3

]
=

[
s− 2 −s
−1 s3 − s2 − s

]
.

To evaluate the the 2× 2 generalized matrix polynomial C(s) we will apply formula
(25) that takes the following form for Q = I2, M = I2

C(s) = (HA2B+HABF3+HB[0, F2])+(HAB+HBF3) diag(1, s)+HB diag(1, s2).

Substituting the matrices

HB =
[

1 0
1 1

]
, HAB =

[
2 −1
3 1

]
, HA2B =

[
3 2
7 3

]

we find

C(s) =
[

0 2
0 0

]
+

[
0 −s
0 0

]
+

[
1 0
1 s2

]
=

[
1 2− s
1 s2

]

and write the right polynomial fraction of G(s) as follows

G(s) =
[

1 2− s
1 s2

] [
s− 2 −s
−1 s3 − s2 − s

]−1

.

This factorization is right coprime as the pair (H, A) is observable.
Examples for the cases when n = rν, l1 = l2 = · · · = lν = r and r = 1, l1 = l2 =

· · · = ln−1 = 1 can be found in [13].

7. CONCLUSION

In the paper a new polynomial fraction representation for a transfer function matrix
of a multivariable system in state-space has been discussed. The ‘numerator’ and
‘denominator’ of the fraction have the structure of matrix or generalized matrix
polynomial. It has been shown that the block coefficients of the ‘numerator’ are
defined via Markov matrices HB, HAB, HA2B, . . . . The results presented in the
paper can be considered as a generalization of the classic TF notions.

APPENDIX

Proof of the Assertion 2. Since Ā = NAN−1, B̄ = NBM then the following
equality takes place

[B̄, ĀB̄, . . . , ĀνB̄] = N [BM, ABM, . . . , AνBM ]. (A1)
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Using (10) we can calculate

B̄ =
[

0
Q

]
, ĀB̄ =




0[
0, Ilν−1

]
Q

−FνQ


 ,

Ā2B̄ =




0[
0, Ilν−2

]
Q

− [
0, Ilν−1

]
FQ

− [0, Fν−1] Q− Fν(−Fν)Q


 , . . .

Then using the following notations

[W1,W2, . . . , ,Wν+1] = [0, Ir] [B̄, ĀB̄, . . . , ĀνB̄] (A2)

we can obtain the recurrent formulas for Wi : W1 = Q, Wi = −[0, Fν−i+2]W1 −
[0, Fν−i+3]W2 − . . . − [0, Fν−1]Wi−2 − FνWi−1, i = 2, . . . , ν + 1. These relations
allow to express Q, Fν , [0, Fν−1],. . . , [0, F1] (det Q 6= 0) as

Q = W1,

Fν = −W2Q
−1

[0, Fν−1] = (−W3 − FνW2)Q−1

[0, Fν−2] = (−W4 − FνW3 − [0, Fν−1]W2)Q−1

...
[0, F1] = (−Wν+1 − FνWν − [0, Fν−1]Wν−1 − . . .− [0, F2] W2)Q−1.

(A3)

On the other hand using (A2) and (A1) we can represent the blocks Wi in the form

[W1,W2, . . . , Wν+1]=[0, Ir]N [BM, ABM, . . . , AνBM ]=N1[BM, ABM, . . . , AνBM ].

Substitution these Wi in (A3) results in formulas (31). 2
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