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ON SUFFICIENT CONDITIONS FOR THE STABILITY
OF DYNAMIC INTERVAL SYSTEMS

Karel Sladký1

In this note sufficient conditions for the stability of continuous- and discrete-time dynamic
interval systems are investigated. In particular, we focus our attention on stability con-
ditions based on the extensions of Gershgorin’s theorem, i. e. Gershgorin’s theorem is
applied after some similarity transformation, cf. [1], [2] and [6]. We show that the tests on
stability and stability margins of dynamic interval systems suggested in [2] and in [6] can
be considerably improved.

1. INTRODUCTION

An interval matrix is a real matrix in which all the elements are known only to the
extent that each belongs to specified closed interval. In particular, an r× r interval
matrix AI is in fact a set of real matrices

AI = {A = [aij ] : aij ∈ [bij , cij ], i, j = 1, . . . , r},
where bij ≤ cij are given real numbers. Let B = [bij ], C = [cij ], and hence AI =
[B C].

The dynamic interval system is defined as

ẋ(t) = A x(t), x(t0) = x0 where A ∈ AI (1a)

for the continuous-time case, and as

x(k + 1) = Ax(k), x(0) = x0 where A ∈ AI (1b)

for the discrete-time case.
In the present paper we deal with the analysis of stability and marginal stab-

ility of dynamic interval systems. The system (1a) is (asymptotically) stable (i. e.
lim

t→∞
x(t) = 0) if for every A ∈ AI all the eigenvalues of A have negative real parts.

The system (1a) is said to be stable with stability margin h, where h ≥ 0 (or to have
the degree of stability h), if for every A ∈ AI the real part of any eigenvalue of A is
less than −h.

1 The author was sponsored by the Academy of Sciences of the Czech Republic through Grant
No. 27 561.
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Similarly the discrete-time system (1b) is (asymptotically) stable if for every
matrix A ∈ AI the modulus of any eigenvalue of A is less than one. The system (1b)
is said to be stable with stability margin h, where 0 ≤ h < 1 (or to have the degree
of stability h), if the modulus of every eigenvalue of A is less than 1− h.

The stability analysis of dynamic interval systems is very important in the robust
controller design. In recent years, stability of dynamic interval systems has been
studied by many authors and some sufficients conditions for the stability have been
obtained, cf. e. g. [1], [2], [4], [5], [6], [7], [8], [9] and [10].

In this note we shall closely follow the approaches used in Argoun [1], Juang
and Shao [6], and Chen [2] to construct the tightest stability conditions. These
approaches are based on an extension of the well-known Gershgorin’s theorem, i. e.
Gershgorin’s theorem is applied after some similarity transformation of the interval
matrix. Comparing with the approaches based on a direct application of Gersh-
gorin’s theorem, methods based on the extensions Gershgorin’s theorem do not suffer
from a shortcoming that the “end points” cii (diagonal entries of C) must be negative
(resp. less than one) if the continuous-time model (1a) (resp. discrete-time model
(1b)) is considered. The paper by Chen [2] in an elegant way reviews and improves
many previous results on stability of continuous-time interval systems. In particu-
lar, Chen [2] improves the stability conditions proposed by Juang and Shao [6] and
shows that tighter stability conditions may be obtained by suitably manipulating
of some scaling parameters. Moreover, it is shown in [2] that the continuous-time
system (1a) is stable with a given margin h, if the spectral radius of certain matrix
is less than one.

In this note we show that the test on stability and stability margins suggested in
[2] can be improved and that an analogous procedure can be also used for discrete-
time systems. In particular, the improved test procedure immediately yields the
tightest stability margin and the “optimal” scaling parameters can be calculated.
Furthermore, we present a novel algorithm to compute a sequence of stability mar-
gins (for both continuous- and discrete-time systems) converging monotoneously to
the tightest stability margin, along with a sequence of scaling parameters converging
to the “optimally” selected scaling parameters.

The paper is organized as follows. Preliminaries are given in Section 2. Our main
results will be presented in Section 3. Examples and comparison of the presented
results with the work of Juang and Shao [6], and Chen [2] are given in Section 4.
Conclusions are made in Section 5.

2. PRELIMINARIES

In this section we shall briefly review the results given by Juang and Shao [6] and
their improvements given by Chen [2]. The results of [6] are the correct version
of erroneous results of Argoun [1] based on an extension of Gershgorin’s theo-
rem. Recall that according to Gershgorin’s theorem every eigenvalue λ of an r × r
matrix A = [aij ] must be contained in at least one of the circles given by the

inequalities |λ − aii| ≤
r∑

j=1,j 6=i

|aij |, (for i = 1, . . . , r) and hence also Re (λ) ≤
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Re (aii) +
r∑

j=1,j 6=i

|aij |, |λ| ≤ |aii|+
r∑

j=1,j 6=i

|aij | for at least one i = 1, . . . , r.

For a matrix A ∈ AI = [B C] we shall write A = A0 + δA where

A0 =
1
2
(B + C), ∆A =

1
2
(C −B) and |δA| ≤ ∆A

(|.| represents the matrix with modulus elements; symbols ≥, > in a matrix relation
are considered componentwise).
After the similarity transformation T−1 and T we get

T−1AT = T−1A0 T + T−1δA T.

Selecting T such that T−1A0 T is is a Jordan form we get for A ∈ AI such that
A = A0 + ∆A = C

T−1AT = J + T−1∆AT,

where J = Λ + E = T−1A0 T is the Jordan form of A0, Λ = diag[λ11, λ22, . . . , λrr]
with λii being an eigenvalue of A0.
Denoting

F = E + |T−1| ∆A |T |
with F = [fij ], we get for A ∈ AI

T−1AT ≤ T−1A0 T + |T−1| |δA| |T | ≤ T−1A0 T + |T−1|∆A |T | = Λ + F.

In what follows we shall assume that the matrix F is positive, i. e. F > 0. Since the
eigenvalues of the matrices T−1AT and A are the same, for every eigenvalue λ of

A ∈ AI we have Re (λ) ≤ Re (λii) +
r∑

j=1

fij (for i = 1, . . . , r). Hence we can readily

formulate sufficient conditions for the stability of continuous-time interval systems.
In particular (cf. Theorem 2 of [6]), the system (1a) is stable with stability margin
h, if

Re (λii) +
r∑

j=1

fij < −h, for all i = 1, . . . , r. (2)

Similar result2 can be also obtained for the discrete-time systems. Since for every
eigenvalue λ of A ∈ AI we have |λ| ≤ |λii|+

∑r
j=1 fij (for i = 1, . . . , r), the system

(1b) is stable with stability margin h (cf. Theorem 3 of [6]), if

|λii|+
r∑

j=1

fij < 1− h, for all i = 1, . . . , r. (3)

Moreover, since eigenvalues are invariant under similarity transformations, suf-
ficient stability conditions (2.1), (2.2) can be further improved by employing a suit-
able similarity transformation. To this order observe that after the similarity trans-
formation U−1 and U, where U = diag [u1, . . . , ur] (with ui > 0, ∀i = 1, . . . , r),

2For the sake of brevity, unless otherwise stated, these and subsequent results will be stated
only in terms of the rows of the matrix F, analogous results can be stated in terms of the columns
of the matrix F.
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applied on T−1AT ≤ Λ + F, for every eigenvalue λ of A ∈ AI we have

Re (λ) ≤ Re (λii)+u−1
i

r∑

j=1

fij uj , resp. |λ| ≤ |λii|+u−1
i

r∑

j=1

fij uj for i = 1, . . . , r.

Hence we can conclude (cf. Theorem 3.8 of [2]) that the continuous-time system
(1a) is stable with stability margin h, h ≥ 0, if there exist u1, . . . , ur (ui > 0) such
that

Re (λii) +
r∑

j=1

fij
uj

ui
< −h, for all i = 1, . . . , r. (4)

Similarly for the discrete-time models we can conclude that the system (1b) is stable
with stability margin h, 0 ≥ h < 1, if there exist u1, . . . , ur (ui > 0) such that

|λii|+
r∑

j=1

fij
uj

ui
< 1− h, for all i = 1, . . . , r. (5)

Of course, if ui ≡ 1 for all i = 1, . . . , r we obtain the conditions of [6], however
tighter stability conditions may be obtained by manipulating the values ui’s.

Moreover, Chen [2] gives also some condition under which (2.3) is fulfilled. To
this order define a matrix

Γh = [γij ], where γij =
fij

|Re (λii) + h| for i, j = 1, . . . , r. (6)

According to Theorem 3.10 of [2], the system (1a) is stable with a margin h, if
Re (λii) + h < 0 for i = 1, . . . , r and the spectral radius of Γh is less than one.

In the present paper we show that the above stability criterion can be considerably
improved. In particular, we show that a sufficient condition for the stability of the
system (1a), along with the tightest stability margin in (2.3), can be obtained by
calculating the spectral radius of some matrix M (cf. Theorem 1). The optimal
scaling parameters in (2.3) are elements of a right eigenvector corresponding to the
spectral radius of the matrix M. Similar procedures can be also used for discrete-time
systems (cf. Theorem 3). Furthermore, in Theorem 2, resp. Theorem 4, we show
how to find (by a simple algorithmic procedure) the values ûi’s giving the tightest
stability margin h in (2.3), resp. (2.4). Throughout the paper we shall assume that
the system is stable if A = A0.

In what follows, we shall also need some basic properties of nonnegative matrices
and of matrices with nonnegative off-diagonal elements. Recall that, by the well-
known Perron–Frobenius theorem (cf. e. g. [3]), the spectral radius of a nonnegative
matrix is equal to its largest positive eigenvalue (called the Perron eigenvalue) and
the corresponding eigenvector (called the Perron eigenvector) can be selected non-
negative. In case that the matrix is irreducible, the Perron eigenvalue is simple,
the Perron eigenvector is unique up to a multiplicative constant and can be selected
positive. A nonnegative irreducible matrix is acyclic if the Perron eigenvalue is the
unique eigenvalue with the largest modulus.

Similarly, for a matrix with nonnegative off-diagonal elements the eigenvalue with
the largest real part is real and the corresponding eigenvector (called the Perron
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eigenvector) can be selected nonnegative. Moreover, if the matrix is irreducible, this
eigenvalue is simple, the Perron eigenvector is unique up to a multiplicative constant
and can be selected positive. Observe that all the above mentioned facts of matrices
with nonnegative off-diagonal elements trivially follow from the corresponding prop-
erties of nonnegative matrices.

3. MAIN RESULTS

In this section we improve the stability conditions provided in Juang and Shao [6]
and in Chen [2]. Furthermore, we suggest simple iterative procedures (both for
continuous- and discrete-time systems) that generate sequences of stability margins,
based on (2.3) or (2.4), converging monotoneously to the tightest stability margin.

First we shall analyze sufficient conditions for the stability of continuous-time
dynamic interval systems. Let α = − min

i=1,...,r
(Re (λii) + fii) and introduce the (non-

negative) matrix

M = [mij ] where mij = (Re (λii) + α) δij + fij , (7)

(δij denotes the Kronecker symbol).
Observe that since the similarity transformation T is fixed (and selected such that
T−1A0T is a Jordan form), also all λii’s and fii’s are fixed and hence the number
α and the matrix M are well defined. Since F > 0 the matrix M is irreducible;
moreover, we shall assume that the matrix M is acyclic (if M were cyclic, it suffices
only to choose α > − min

i=1,...,r
(Re (λii) + fii), cf. Example 2 of Section 4). In what

follows, ρ(M) is reserved for the spectral radius of M. Since we assume that the
system (1a) is stable if A = A0, all the eigenvalues of A0 have negative real parts,
i. e. if continuous-time system (1a) is considered, we assume that Re (λii) < 0 for
i = 1, . . . , r.

The following theorem improves the results provided in Theorem 3.10 of Chen
[2].

Theorem 1. The system (1a) is stable if ρ(M) < α. Then h? = α − ρ(M) is the
least upper bound on the tightest stability margin of the system (1a) that can be
produced by (2.3), and “optimally” selected scaling parameters in (2.3) are elements
of the right eigenvector u(M) corresponding to ρ(M). Furthermore, if h > h? (2.3)
cannot hold for positive uj ’s (j = 1, . . . , r).

P r o o f . Introducing the (positive column) vector u = [ui], diagonal matrix Λ̃ =
diag [Re (λii)], condition (2.3) can be written in a matrix form

(Λ̃ + F ) · u < −h · u ⇐⇒ M · u < (α− h) · u. (8)

By the Perron–Frobenius theorem M · u(M) = ρ(M) · u(M) > 0, v(M) · M =
ρ(M) · v(M) > 0, (u(M), resp. v(M), is a right, resp. left Perron eigenvector), and
(3.2) holds for u = u(M) and any h > 0 such that h < α − ρ(M) = h? = −σ.



530 K. SLADKÝ

Observe that σ is the eigenvalue with the largest real part of the matrix (Λ̃ + F )
with nonnegative off-diagonal elements, hence also (Λ̃ + F ) · u(M) = σ · u(M).
To finish the proof suppose that M · ũ < (α− h) · ũ for some h > h? and positive ũ.
On premultiplying the above matrix inequality by v(M) we immediately get

v(M) ·M · ũ = ρ(M) · v(M) · ũ < (α− h) · v(M) · ũ =⇒ ρ(M) < α− h

that contradicts h > h?; hence (2.3) can be fulfilled for u > 0 only if h ∈ (0, h?). 2

Now we present an algorithmic procedure generating an increasing sequence of
stability margins converging to the tightest stability margin that can be produced
by (2.3).

Theorem 2. Let for i = 1, . . . , r {ui(n), n = 0, 1, . . .} be defined recursively by

ui(n + 1) = (Re (λii) + α)ui(n) +
r∑

j=1

fij uj(n) where uj(0) > 0 (9)

and let

−h(n) = max
i=1,...,r

Re (λii) ui(n) +
∑r

j=1 fij uj(n)
ui(n)

. (10)

Then

i) lim
n→∞

ui(n)/u1(n) = ûi exists for i = 1, . . . , r,

ii) fulfillment of condition h(n) > 0 for some n = 0, 1, . . . is sufficient for stability of
the system (1a), and under this condition h(n) is a stability margin of the system
(1a),

iii) the sequence {h(n), n = 0, 1, . . .} is nondecreasing (and if M > 0 even increasing)
and h(n) → h? as n →∞,
where

Re (λii) +
r∑

j=1

fij
ûj

ûi
= −h? for i = 1, . . . , r (11)

and h? is the least upper bound on the tightest stability margin of the system (1a)
that can be produced by (2.3).

P r o o f . Let us introduce the vector u(n) = [ui(n)], set ρ = ρ(M) and recall that
M = (Λ̃ + F + α I). Iterating (3.3) we get u(n) = Mn u(0). Since the matrix M is
irreducible and acyclic, there exists lim

n→∞
ρ−n Mn = M? > 0 (cf. e. g. [3]).

To establish part i) observe that lim
n→∞

ρ−n u(n) = M?u(0), and hence

lim
n→∞

ui(n)/u1(n) = ûi > 0 for i = 1, . . . , r (and also lim
n→∞

uj(n)/uk(n) ∀ j, k =

1, . . . , r) exist. Moreover, the r-column vector û = [ûi] is an eigenvector of M
corresponding to ρ.

Part ii) follows immediately from (2.3) or it is a direct consequence of part iii).
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To establish part iii) observe that from (3.4)

(−h(n) + α)u(n) ≥ (Λ̃ + F + α I)u(n) (12)

(recall that ≥ means that equality holds in (3.6) for at least one row).
Premultiplying (3.6) by M = (Λ̃ + F + α I) and employing (3.3) we conclude that

−h(n)u(n + 1) ≥ (Λ̃ + F ) u(n + 1). (13)

Observe that if M > 0 a strict inequality holds in (3.7) implying that −h(n+1) u(n+
1) ≥ (Λ̃ + F )u(n + 1) for some h(n + 1) > h(n). However, {h(n), n = 0, 1, . . .}
is bounded since by part i) {uj(n)/ui(n), n = 0, 1, . . .} must be bounded for any
i, j = 1, . . . , r. Hence h(n) → h? as n → ∞. To finish the proof observe that on
letting n → ∞ from (3.6) we can conclude that (−h? + α) û ≥ M û = ρ û. Hence
−h? is the eigenvalue of (Λ̃ + F ) with the largest real part and (3.5) must hold. 2

Now we shall focus our attention on sufficient conditions for the stability of
discrete-time interval systems. Since we assume that the system (1b) is stable if
A = A0, all the eigenvalues of the matrix A0 lie in the unit disc; hence if the
discrete-time system (1b) is considered, we assume (cf. (2.4)) that |λii| < 0 for all
i = 1, . . . , r.

The following theorem is a discrete-time version of Theorem 1. Let

P = [pij ] where pij = |λii|δij + fij , for i, j = 1, . . . , r (14)

and let ρ(P ) be the spectral radius of P and u(P ) the corresponding right eigenvec-
tor.

Theorem 3. The system (1b) is stable if ρ(P ) < 1. Then h? = 1 − ρ(P ) is the
tightest stability margin on the system (1b) that can be produced by (2.4), and
“optimally” selected parameters in (2.4) are elements of the right eigenvector u(P ).
Furthermore, if h > 1− ρ(P ) (2.4) cannot hold for positive uj ’s (j = 1, . . . , r).

P r o o f . Let Λ = diag[λ, . . . , λrr]. Condition (2.4) can be written in a matrix
form as

(|Λ|+ F ) · u < (− h) · u ⇐⇒ P · u < (− h) · u (15)

By the Perron–Frobenius theorem P ·u(P )=ρ(P )·u(P )>0, v(P )·P =ρ(P )·v(P )>0
and (3.9) holds for u = u(P ) and any 1− h > ρ(P ).
To finish the proof suppose that P · ũ < (1−h) · ũ for some 1−h > ρ(P ) and positive
ũ. On premultiplying the above matrix inequality by v(P ) we immediately get

v(P ) · P · ũ = ρ(P ) · v(P ) · ũ < (1− h) · v(P ) · ũ =⇒ ρ(P ) < 1− h

that contradicts our assumption. 2

The following theorem presents an algorithmic procedure for generating an in-
creasing sequence of stability margins converging to the tightest stability margin
that can be produced by (2.4).
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Theorem 4. Let for i = 1, . . . , r {ui(n), n = 0, 1, . . .} be defined recursively by

ui(n + 1) = |λii|ui(n) +
r∑

j=1

fij uj(n) where uj(0) > 0 (16)

and let

g(n) = max
i=1,...,r

|λii| ui(n) +
∑r

j=1 fij uj(n)
ui(n)

(17)

Then
i) lim

n→∞
ui(n)/u1(n) = ûi exists for i = 1, . . . , r,

ii) fulfillment of condition g(n) < 1 for some n = 0, 1, . . . is sufficient for stability of
the system (1b), and under this condition h(n) = 1 − g(n) is a stability margin of
the system (1b),
iii) the sequence {g(n), n = 0, 1, . . .} is nonincreasing (if P > 0 even decreasing) and
g(n) → g? as n →∞,
where

g? ûi = |λii| ûi +
r∑

j=1

fij ûj for i = 1, . . . , r (18)

and h? = 1 − g? is the least upper bound on the tightest stability margin of the
system (1b) that can be produced by (2.4).

P r o o f . The proof is strictly similar to that of Theorem 2. For the sake of
simplicity we write only ρ instead of ρ(P ). Iterating (3.10) we get lim

n→∞
ρ−n u(n) =

P ? u(0), where P ? = lim
n→∞

ρ−n Pn > 0, and hence lim
n→∞

ui(n)/u1(n) = ûi exists for

i = 1, . . . , r. From (3.11) we immediately get that g(n) u(n) ≥ P u(n) and after
premultiplying this inequality by P we conclude that g(n +1) u(n + 1) ≥ P u(n +1)
for some g(n+1) ≤ g(n) (and g(n+1) < g(n) if P > 0). However, g(n)’s are positive
and hence g(n) → g? as n →∞. Letting n →∞ in (3.11), we get g?û ≥ P û = ρ û,
hence g? = ρ. 2

4. ILLUSTRATIVE EXAMPLES

In this section we compare our methods on concrete examples with the approaches
of Juang and Shao [6] and of Chen [2]. The following examples are borrowed from
[6].

Example 1. Consider the continuous-time dynamic system (1a) with the following
interval matrix

AI =
[

[−4.1 −3.5] [ 1.3 1.9]
[ 0.3 0.9] [−4.5 −3.9]

]

As it is stated in [6]

Λ̃ =
[ −3 0

0 −5

]
, T =

[
1 −0.8

0.5 0.6

]
, T−1 =

[
0.6 0.8
−0.5 1

]
,
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F = |T−1|∆A |T | =
[

0.63 0.59
0.68 0.63

]

From (2.1), we get

Re (λ11) +
2∑

j=1

f1j = −3 + 1.22 = −1.78

Re (λ22) +
2∑

j=1

f2j = −5 + 1.31 = −3.69

so (cf. [6]), we know that the system is stable with stability margin 1.78.
Now we check the stability and stability margins according to methods suggested

in Chen [2]. To this order we need to construct the matrix Γh given by (2.5) for the
considered stability margin h. Choosing h = 0, 2 we get

Γ0 =
[

0.21 0.196
0.1360 0.126

]
, Γ2 =

[
0.63 0.59
0.230 0.21

]

and for the spectral radii we have ρ(Γ0) = 0.323, ρ(Γ2) = 0.84. Since the both
ρ(Γ0), ρ(Γ2) are less than one, the system is stable and has at least stability margin 2.

Now let us compare this test procedure with the approaches suggested in Theo-
rem 1. We only need to construct the matrix M given by (3.1). We get α = 4.37 and

hence M =
[

2 0.59
0.680 0

]
with ρ(M) = 2.183. By Theorem 1 the system is stable

and h? = α − ρ(M) = 2.187 is the tightest stability margin that can be produced
by (2.3).

Now we apply the iterative procedure suggested in Theorem 2. Since α = 4.37,
by (3.3) for n = 0, 1, . . .

u1(n + 1) = 2 u1(n) + 0.59 u2(n)
u2(n + 1) = 0.68 u1(n)

Setting u1(0) = u2(0) = 1, the obtained values are displayed in the following table:

n 0 1 2 3 4
u1(n) 1 2.59 5.58 12.20 26.63
u2(n) 1 0.68 1.76 3.79 8.30
h(n) 1.78 1.78 2.18 2.18 2.18

Conclusion: The considered system is stable with stability margin 2.18.

Note. Observe that since every A ∈ AI has nonnegative off-diagonal elements,
then A1 ≥ A2 (where A1, A2 ∈ AI) implies that σ(A1) > σ(A2). (This property
can be easily verified since the eigenvector correspoding to σ(A) can be selected
positive, cf. e. g. [3].) Hence, within the interval matrix AI , Â ∈ AI , where Â =[ −3.5 1.9

0.9 −3.9

]
, is the matrix with the largest real eigenvalue, and for every A ∈ AI

the real part of any eigenvalue of A is nonngreater than σ(Â) = −2.375. Hence 2.37
is the largest stability margin (up to two decimal points) of the considered system.
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Example 2. Consider the continuous-time dynamic system (1a) with the following
interval matrix

AI =
[

[−3.80 −3.20] [ 0.7 1.3]
[−0.55 0.05] [−2.8 −2.2]

]
.

As it is stated in [6]

Λ̃ =
[ −3 0

0 −3

]
, T =

[
1 −0.8

0.5 0.6

]
, T−1 =

[
0.6 0.8
−0.5 1

]
,

F = |T−1|∆A |T | =
[

0.63 1.59
0.68 0.63

]
.

From (2.1), we obtain

Re (λ11) +
2∑

j=1

f1j = −3 + 2.22 = −0.78

Re (λ22) +
2∑

j=1

f2j = −3 + 1.31 = −1.69

so (cf. [6]), we know that the system is stable with stability margin 0.78.
However, using the approach suggested in Theorem 1, we get α = 2.37, M =[
0 1.59

0.680 0

]
, ρ(M) = 1.04 and the system is stable with margin h? = α−ρ(M) =

1.33.

Now we apply the iterative procedure suggested in Theorem 2. Since α = 2.37,

however, then the matrix M =
[

0 1.59
0.68 0

]
and is obviously cyclic, we choose

α = 3.37 and apply the iterative procedure suggested in Theorem 2. We have for
n = 0, 1, . . .

u1(n + 1) = u1(n) + 1.59 u2(n)
u2(n + 1) = 0.68 u1(n) + u2(n)

The obtained values are displayed in the following table (we set u1(0) = u2(0) = 1):

n 0 1 2
u1(n) 1 2.59 5.26
u2(n) 1 1.68 3.44
h(n) 0.78 1.32 1.33

Conclusion: The considered system is stable with stability margin 1.33.
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Example 3. Consider the discrete-time dynamic system (1b) with the following
interval matrix

AI =
[

[−0.20 0.16] [−0.34 0.02]
[−0.24 0.12] [−0.16 0.20]

]
.

As it is stated in [6]

Λ =
[ −0.1 0

0 0.1

]
, T =

[
1 −0.8

0.5 0.6

]
, T− =

[
0.6 0.8
−0.5 1

]
,

F = |T−1|∆A |T | =
[

0.38 0.36
0.41 0.38

]
.

From (2.2), we get

|λ11|+
2∑

j=1

f1j = | − 0.1|+ 0.74 = 0.84

|λ22|+
2∑

j=1

f2j = 0.1 + 0.79 = 0.89

so (cf. [6]), the system is stable with stability margin 0.11.
Now we check the stability and stability margins according to methods of The-

orem 3. We only need to construct the matrix P given by (3.8), hence P =[
0.39 0.36
0.41 0.39

]
and ρ(P ) = 0.794. Since ρ(P ) is less than one, the system is stable

at least with the margin 0.116.
Now we apply the iterative procedure suggested in Theorem 4. We have for

n = 0, 1, . . .

u1(n + 1) = | − 0.1|u1(n) + 0.74 u2(n)
u2(n + 1) = 0.1 u1(n) + 0.79 u2(n).

Setting u1(0) = u2(0) = 1, the obtained values are displayed in the following table:

n 0 1 2
u1(n) 1 0.84 0.742
u2(n) 1 0.89 0.787
h(n) 0.11 0.115 0.116

Conclusion: The considered system is stable with stability margin 0.116.

Note. The obtained stability margin is not satisfactory in this particular case. For

example, considering Ã ∈ AI , where Ã =
[ −0.20 −0.34
−0.24 −0.16

]
, we get ρ(Ã) = 0.467

and hence 0.53 seems to be close to the tightest margin of the considered system.
Obviously, the spectral radius of every A ∈ AI is nongreater than ρ(B) = 0.486

of the matrix B =
[

0.20 0.34
0.24 0.20

]
, obtained by replacing elements of AI by their

maximum possible absolute values. Hence we are sure that the stability margin of
the considered interval matrix AI does not exceed 0.51.
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5. CONCLUSIONS

We have suggested simple iterative procedures generating sequences of stability mar-
gins of both continuous- and discrete-time dynamic interval systems. The obtained
results improve the sufficient conditions for stability margin h suggested in Juang
and Shao [6] and are also the tightest in the class of stability margins discussed in
Chen [2]. We have stated our results only in terms of the matrix rows, analogous
procedures can be stated in terms of the matrix columns; however, the same margins
will be obtained since the suggested procedures generate the tightest margins within
the considered class of stability margins. Examples show that the margins obtained
on the base of extended Gershgorin’s theorem can be sometimes worse than margins
obtained by other methods. The obtained results are useful to robust control design.
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