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NONLINEAR CONTROL OF A PLANAR
MULTIAXIS SERVOHYDRAULIC TEST FACILITY
USING EXACT LINEARIZATION TECHNIQUES1

H. Hahn, X. Zhang, K.-D. Leimbach and H.-J. Sommer

This paper presents a nonlinear control concept of a planar multi-axis servohydraulic test
facility. Based on nonlinear model equations including servohydraulic actuator dynamics
and test table and payload mechanics a global nonlinear diffeomorphism is derived which
maps the model equations into nonlinear canonical form. A nonlinear control law is derived
using exact linearization techniques. The lengthy controller expressions are calculated by
applying symbolic computer languages.

1. INTRODUCTION

High quality multi-axis servohydraulic test facilities are widely used for testing of
critical components of industrial equipment and of future spacecraft [1]. Theoret-
ical investigations of multi-axis test facilitiy control concepts are usually based on
simplified linear model equations [1, 2]. However, the exact model equations of such
systems are highly nonlinear and strongly coupled. This paper provides a nonlinear
control concept for a planar multi-axis servohydraulic test facility (cf. 1) based on

Fig. 1. Computer drawing of a multi-axis servohydraulic test facility driven by six

actuators.

1Presented at the IFAC Workshop on System Structure and Control held in Prague on September
3–5, 1992.
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nonlinear model equations. The nonlinear controller design is based on input state
linearization of the control plant equations [3, 4]. For this purpose two questions
must be answered:

1. Is the system considered exact linearizable?
2. How can this be achieved?
These two questions are answered subsequently in several steps:
– definition of smooth scalar output functions which depend on all state vari-

ables,
– calculation of the relative degree of the selected output functions in connection

with the control plant equations,
– redefinition of the output functions, if the total relative degree is less than the

system order n.
The output functions selected provide both a transformation of the model equa-

tions into nonlinear canonical form and an input state linearization together with
the nonlinear control law [3, 4, 5].

2. NONLINEAR PLANT MODELING

The planar servohydraulic test facility model considered has been reduced from a
spatial test facility model of six spatial degrees of freedom used in industry (cf. 1).
The dynamic model of the control plant includes the planar equations of motion of
the rigid test table with a rigidly attached rigid payload and the hydraulic actuator
dynamics. In order to describe the planar motion of the test facility the following
notations are used (cf. 2):

Fig. 2. Planar multi-axis test facility with three actuators.

R inertial frame with origin 0,
L body fixed frame with origin P ,
Ki joint fixed frames with origins Qi(i = 1, 2, 3),
θ angle of L with repect to R,
βi angles of Ki(i = 1, 2, 3) with respect to R,

m mass of the rigid body (test table and payload),
JL

Cy moment of inertia with respect to the center of
gravity C, represented in frame L,
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rR
P :=

[
xR

P , zR
P

]T Vector from 0 of R to P of L,
rR
Qi0 :=

[
xR

Qi0, zR
Qi0

]T Vectors from 0 of R to Qi (i = 1, 2, 3),
rL
PiP :=

[
xL

PiP , zL
PiP

]T Vectors from 0 of L to Pi (i = 1, 2, 3),
rL
CP :=

[
xL

CP , zL
CP

]T Vector from P of L to C.
The planar mechanical equations of motion of the test facility are

M (x) · ẍ + JT
x (x) · dk · Jx (x) · ẋ + qC (x, ẋ) + qG (x) = JT

x (x) ·Ak · p (1)

where (cf. 2)

x :=
[
xR

P , zR
P , θ

]T
, p :=

[
p1, p2, p3

]T ∈ IR3 (2)

are the position and orientation vector of the planar test facility degrees of freedom
(of point P and of frame R) and the vector of the actuator pressure differences,
respectively, M(x) is the inertia matrix of the test facility,

M(x) :=




[
m, 0
0, m

]
, m ·

[
cθ, sθ
−sθ, cθ

]
· r̂L

CP

m · (r̂L
CP

)T
[

cθ, −sθ
sθ, cθ

]
, JL

Cy
+ m ·

[ (
xL

CP

)2 +
(
zL
CP

)2
]


(3)

where cθ := cos θ , sθ := sin θ and
(
r̂L
CP

)T
:=

[
zL
CP , −xL

CP

]
, (4)

JT
x (x) and Jx (x) are nonlinear transformation matrices which map the test table

forces and the velocities from joint fixed frames Ki to the degree of freedom repre-
sentation x

Jx (x) =




cosβ1, − sin β1,
(
r̂L
P1P

)T ·
[

cθ, −sθ
sθ, cθ

]
·
(

cos β1
− sin β1

)

sin β2, cosβ2,
(
r̂L
P2P

)T ·
[

cθ, −sθ
sθ, cθ

]
·
(

sin β2
cos β2

)

sin β3, cosβ3,
(
r̂L
P3P

)T ·
[

cθ, −sθ
sθ, cθ

]
·
(

sin β3
cos β3

)




(5)

where
sin β1 =

−AA1√
AA2

1 + BB2
1

, cosβ1 =
BB1√

AA2
1 + BB2

1

,

sin βi =
−BBi√

AA2
i + BB2

i

, cosβi =
AAi√

AA2
i + BB2

i

(i = 2, 3) ,

AAi := zR
P − sin θ · xL

PiP + cos θ · zL
PiP − zR

Qi0,

BBi := xR
P + cos θ · xL

PiP + sin θ · zL
PiP − xR

Qi0

and
(
r̂L
PiP )

)T
:=

[
zT
PiP , −xL

Pip

]
, (i = 1, 2, 3),
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qC (x, ẋ) is the nonlinear vector of the centifugal forces

gc(x, ẋ) :=


 −m ·

[
cθ, sθ
−sθ, cθ

]
· rL

CP · θ̇2

0


 , (6)

qG (x) is nonlinear vector of gravitational force and torque

qG(x) :=




−(0, m · g)T

−(r̂L
CP )T ·

[
cθ, −sθ
sθ, cθ

]
·
(

0
m · g

)

 , (7)

Ak and dk are the diagonal matrices of the actuator piston areas and of the actuator
damping coefficients, respectively,

Ak := diag
(
Ak1, Ak2, Ak3

)
, dk := diag

(
dk1, dk2, dk3

)
. (8)

The actuator dynamics are modeled as:

ṗ = C−1
H [QxKV u + Qpp−AkJx (x) ẋ] , u = [u1, u2, u3]

T ∈ IR3 (9)

where u is the vector of servovalve command inputs and

CH := diag (CH1, CH2, CH3) , Qp := diag (Qp1, Qp2, Qp3) , (10)

Qx := diag (Qx1, Qx2, Qx3) , Kv := diag (KV 1,KV 2,KV 3) , (11)

are the matrices of actuator hydraulic capacities, servovalve pressure coefficients, dis-
placement coefficients and gain factors, respectively. The state space representation
of equations (1) and (9) is

ẋ = f (x) +
3∑

j=1

bjuj ; x ∈ IR9 , u ∈ IR3 (12)
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where

x :=
[
pT , xT

1 , xT
2

]T
,

x1 :=
[
x11, x12, x13

]T :=
[
xR

P , zR
P , θ

]T = x,

x2 :=
[
x21, x22, x23

]T :=
[
ẋR

P , żR
P , θ̇

]T
,

f (x) :=
[
fT
1 (x), fT

2 (x), fT
3 (x)

]T
,

f1 (x) :=
[
f11, f12, f13

]T = Q̃P · p− Ãk · Jx1 (x1) · x2,

f2 (x) :=
[
f21, f22, f23

]T = x2,

f3 (x) :=
[
f31, f32, f33

]T = α̃ (x1, x2) + β̃ (x1) · p,

Ãk := C−1
H ·Ak, Q̃P := C−1

H ·QP ,

β̃ (x1) := M−1 (x1) · JT
x1

(x1) ·Ak, JT
x1

(x1) := JT
x (x) ,

α̃ (x1, x2) := −M−1 (x1) ·
{
JT

x1
(x1) · dk · Jx1 (x1) · x2 + qC (x, ẋ) + qG (x)

}
,

b1 :=
[
b11, 0 , 0, 0, 0, 0, 0, 0, 0

]T
,

b2 :=
[
0, b22, 0, 0, 0, 0, 0, 0, 0

]T
,

b3 :=
[
0, 0, b33, 0, 0, 0, 0, 0, 0

]T
,

and

B1 =




b11, 0, 0
0, b22, 0
0, 0, b33


 := C−1

H ·Qx ·KV .

f (x) and bj(j = 1, 2, 3) in (13) are smooth vector fields.

3. NONLINEAR CONTROLLER DESIGN

3.1. Derivation of the nonlinear diffeomorphism

The derivation of a nonlinear control law for system (12) using exact linearization
techniques is closely related to the construction of a nonlinear diffeomorphism which
transforms the plant into a nonlinear canonical form. To obtain an input state
linearization the following theorem is used [3]:

Theorem. (Exact linearization via state feedback.)
System (12) with output functions

yi = hi (x) = hi

(
p, x1, x2

)T ∈ IR1, (i = 1, 2, 3) (13)

is exactly state linearizable if and only if the following conditions hold:
1.

Lbj L
k
fhi (x) = 0 (14)

for 1 ≤ i, j ≤ 3, for k ≤ ri − 1 and for all x in a neighborhood of x0.
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2.

E (x) =




Lb1L
r1−1
f h1 (x), Lb2L

r1−1
f h1 (x), Lb3L

r1−1
f h1 (x)

Lb1L
r2−1
f h2 (x), Lb2L

r2−1
f h2 (x), Lb3L

r2−1
f h2 (x)

Lb1L
r3−1
f h3 (x), Lb2L

r3−1
f h3 (x), Lb3L

r3−1
f h3 (x)


 (15)

is nonsigular at x = x0.

3. 3∑

i=1

ri = n. (16)

Relations (14) and (15) define the vector relative degree (r1, r2, r3) of the
system (12) and (13) [3]. Lk

fhi (x) are the Lie derivatives of hi (x) with respect
to f .

This theorem essentially depends on the output functions hi (x). These output
functions can be choosen arbitrarily provided there exists an invertible and bijective
transformation which maps the arbitrarily choosen output functions hi (x) to the
physical relevant system outputs (measurements). Using this interpretation the
subject of the subsequent steps is to find those formal output functions which yield
a maximum relative degree of the system considered (hopefully a relative degree
(3,3,3) in the case considered). If such output functions can be found a nonlinear
diffeomorphism can be constructed which maps the given system equations into
nonlinear form where the new state vector is closely related to the selected output
functions hi (x) (comp. (32)). The procedure of finding suitable output functions is
summarized in the following steps (cf. 3):

(i) Start with arbitarily selected output functions hi (x) depending on the state
variables in a most general form,

(ii) calculation of the vector relative degree of the system (12) and those functions
hi (x) (conditions 1 and 2 of the above theorem),

(iii) test of condition 3 of the above theorem,
(iv) stepwise redefining of the output functions hi (x) which don’t satisfy condi-

tion 3,
(v) repetition of steps (ii) to (iv) until condition 3 holds.
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Fig. 3. Flow diagram for selection of the output functions hi.

If equations (13) satisfy conditions (17) then all selected output functions hi (x)
lead to components ri ≥ 1 of the vector relative degree (r1, r2, r3) (first step).

Lbj
L0

fhi (x)
!= 0; i, j = 1, 2, 3 . (17)

The Lie derivatives of (17) are calculated according to relations

Lbj
L0

fhi (x) := Lbj
hi (x) = ∇hi (x) · bj =

∂hi (x)
∂pj

· bjj ; i, j = 1, 2, 3. (18)

If the partial derivatives in (18) are zero then (17) is satisfied for bjj 6= 0 (comp.
(12)). Then the output functions are independent on pj (j = 1, 2, 3). As a conse-
quence the output functions are redefined in a second step as

yi = hi (x) = hi

(
x1, x2

)
; (i = 1, 2, 3) . (19)

If equations (19) satisfy the following conditions (20), then all selected output
functions hi (x) lead to components ri ≥ 2 of the vector relative degree (r1, r2, r3).

Lbj L
1
fhi (x)

!= 0; i, j = 1, 2, 3. (20)

The Lie derivatives in (20) are calculated as

Lbj L
1
fhi (x) =

∂L1
fhi

∂pj
· bjj ; i, j = 1, 2, 3. (21)

where

L1
fhi = ∇hi · f =

3∑

j=1

(
∂hi

∂x1j
· f2j +

∂hi

∂x2j
· f3j

)
; i = 1, 2, 3. (22)

For bjj 6= 0 the partial derivatives in (21) must be zero due to (20). This condition
ist satisfied if equations (21) are idependent of p, (j = 1, 2, 3). However, (22) are
functions of p due to f3j (compare (12)). Then the following partial derivatives hold

∂hi

∂x2j

!=0; i, j = 1, 2, 3, (23)

i. e., the output functions are independent of x2(j=1,2,3). As a consequence the
output functions are redefined in a third step as

yi = hi (x) = hi (x1) , (i = 1, 2, 3) . (24)

The simplest candidate for (24) is

yi = hi (x) = hi (x1) = x1i i = 1, 2, 3. (25)
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Then the following relation (26) is sufficient for the selected output functions hi(x)
(comp. (25)) to have components of the vector relative degree which are ri = 3.

Lbj
L2

fhi = ∇L2
fhi · bj

!

6=0; i, j = 1, 2, 3 (26)

where

Lbj
L2

fhi = ∇L2
fhi · bj =

∂f3i

∂pj
· bjj ; i, j = 1, 2, 3. (27)

If one of the partial derivatives in (27) is not zero, then (26) holds. The partial
derivatives in (27) provide the matrix

[
∂f3i

∂pj

]

i,j=1,2,3

= β̃ (x1) = M−1 (x1) · JT
x1

(x1) ·Ak. (28)

Equation (27) together with (15) implies:

E (x) =
[
∂f3i

∂pj
· bjj

]

i,j=1,2,3

= M−1 (x1) · JT
x1

(x1) ·Ak ·B1. (29)

From (3), (8) and (12) follows that matrices M (x), Ak and B1 have rank 3. Then
the regularity condition 3 of the preceding theorem is satisfied if

detJT
x1

(x1) 6= 0 (30)

holds. This regularity condition of the strongly nonlinear matrix (comp. (5)) can
be physically discussed as follows:

A calculation of Jx1 with respect to an operating point x1c where the actuators
are in parallel or orthogonal to the axes of the inertial frame R ( cf. 2 and cf. 4(a))
yield the relation:

Jx1 (x1c) = Td =




1, 0, zP1P

0, 1, −xP2P

0, 1, −xP3P


 . (31)

Fig. 4. Drawings of the test facility locations with singular matrix Jx1 .
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Matrix (31) is singular for e. g. collinear or parallel actuator configurations (cf.
4(b) to 4(d)). If these pathological actuator attachment configurations are excluded,
system (12) together with (25) has relative degree ( 3, 3, 3 ) and hence satisfies con-
dition (16). As a consequence the model equations of the planar test facility are
input state exact linearizable. The nonlinear state transformation of system (12)
into a normal form is defined as




z1

z2

z3




︸ ︷︷ ︸
:=z

=




Φ1

Φ2

Φ3




︸ ︷︷ ︸
:=Φ(x)

=




L0
fh

L1
fh

L2
fh


 =




x1

x2

α̃ (x1, x2) + β̃ (x1) · p


 , zi ∈ IR3, (i = 1, 2, 3) .

(32)
Due to (3), (8) and (30) the inverse vector function of (32) is

x =




p
x1

x2


 = Φ−1 (z) =




β̃−1 (z1) · {z3 + ·α̃ (z1, z2)}
z1

z2


 . (33)

Equations (32) and (33) are smooth vector fields and define a global diffeomor-
phism of the model equations (12) [4, 5] with respect to the actuator configurations
considered. Here z1, z2 and z3 are vectors of the positions (orientation), velocities
and accelerations of the planar test facility, respectively. These signals are available
in practical applications both, as command input signals and as measurement signals
[1].

3.2. Construction of the nonlinear control law

Equations (34) to (36) represent a canonical form of the model equations (12) cal-
culated by using nonlinear coordinate transformations (32) and (33)

ż1 = z2 , ż2 = z3 , ż3 = α (z1, z2) + β (z) · u (34)

where

α (z1, z2) :=
[
β̃ (x1) · f1 (x) +

∂Φ3

∂x1
· f2 (x) +

∂Φ3

∂x2
· f3 (x)

]

x=Φ−1(z)

(35)

and
β (z1) := M−1 (x1) · JT

x1
(x1) ·Ak ·B1 , x1 = z1 (36)

turn out to be extreme lengthy formal expressions.

The partial derivatives in (35) have been calculated by using the symbolic algebra
program MACSYMA. The nonlinear controller used has the form

u = β−1 (z1) · [ν − α (z1, z2)] (37)
where

ν := ż3d −K · e, e := ( e1, ė1, ë1 )T
, e1 := z1 − z1d, (38)



486 H. HAHN, X. ZHANG, K.-D. LEIMBACH, H.-J. SOMMER

z1d := xd =
(
xR

Pd, zR
Pd, θd

)T
(d: desired ) and (39)

K = [K1, K2, K3 ] , Ki = diag ( ki1, ki1, ki1 ) , (i = 1, 2, 3) . (40)

The control law (37) provides an input state linearization of (12) and a stable
tracking error e in case of disturbances using a suitable feedback K. Matrices (29)
and (36) are identical and are called decoupling matrices. Equation (37) is called
nonlinear decoupling law [4]. If ż3d (the desired jerk of the test table) in (37) is not
available, the input state linearization or the decoupling can still be achieved. This
yields a non ideal tracking behaviour.

4. COMPUTER SIMULATION RESULTS

The closed loop nonlinear control system shown in Fig. 5 has been simulated without
using the jerk input signals ż3d. Typical transient test signals for vibration testing of
space structures are shown in Fig. 6. Figure 7 and Fig. 8 show computer simulation
results using system (12) based on linear control concepts [2]. The simulation of
system (34) using the nonlinear control law (37) without ż3d is shown in Fig. 9. A
comparsion of the simulation results of the nonlinear control plant (12) controlled by
linear controllers (cf. 7 and 8) with the simulation results of the nonlinear plant using
the nonlinear control concept (37) (cf. 9) demonstrates the power of the nonlinear
control concept. The remaining nonideal tracking behaviour of the control system
with nonlinear decoupling controller is caused by the fact that the input jerk signal
has been omitted.

Fig. 5. Block diagram of the normal form planar multi-axis test facility model controlled

by nonlinear controllers.
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Fig. 6. Set point transient test signals (ẍd).

Fig. 7. Simulation results using linear position controllers.

Fig. 8. Simulation results using linear multi sensor controllers.
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Fig. 9. Simulation results using nonlinear decoupling controllers.

5. CONCLUSIONS

The nonlinear control algorthim for a planar multi-axis servohydraulic test facility
derived in this paper is based on exact state linearization techniques. The nonlinear
diffeomorphism which maps the state equations into nonlinear normal form is derived
by choosing suitable output functions. The simulation results show sophisticated
tracking and decoupling performance for given transient input signals. The control
laws are derived by extensively using symbolic computer algebra languages. The
extreme lengthy control algorithms are systematically condensed and reduced by
using recursive substitution steps. In subsequent investigations the robustness of
the closed loop system has to be considered. An interesting question with respect
to industrial applications is the robustness of the closed loop system in the presence
of structured and unstructured uncertainties (uncertain system parameters, as e. g.
test table mass or moment of inertia; uncertain system order, as e. g. unmodeled
servovalve dynamics and elastic modes of the payload).

(Received February 17, 1993.)
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