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ON SOME ESTIMATION VARIANCES
IN SPATIAL STATISTICS

Joël Chadœuf and Viktor Beneš

Several estimators have been developed to estimate the length intensity of fibre processes
(see for example Ohser [5], Vedel-Jensen and Kieu [8]). Among them, estimators based on
sections of the sample with random planes are popular because of their easy use. Recently,
Beneš et al [1] studied an estimator based on projections of the fibre process on hyperplanes.
In the present paper the first and second order properties of these estimators will be recalled
in the first part. The second part will contain the convergence of the estimator based on
serial sections to the estimator based on projections. Two examples will be presented at
the end of the paper.

1. ESTIMATORS UNDER STUDY

Let (IR,B, ν)d be the d-dimensional Euclidean space with Borel σ-algebra and Lebes-
gue measure ν. The index d is often omitted in the text. Let (M,M) be the mea-
surable space of one-dimensional subspaces in Rd, which is interpreted here as a
hemisphere of axial orientations.

Let P be a probability measure on M. Its Buffon transform FP is the function
on M :

FP (l) =
∫

M

| cos <)(l, m)|P (dm)

where <)(l, m) denotes the angle between l and m.
For two probability measures P,Q on M, the Buffon constant is

FPQ =
∫

M

FP (l)Q(dl) = FQP

FP (l) can be interpreted as the mean projection length of a unit segment in IRd

of orientation l onto a random line with orientation distribution P .
Let Φ be a stationary random fibre process in IRd, see Stoyan et al [7] for a proper

definition. Recall that fibres are images of continuously differentiable curves. For
B ∈ Bd, the total fibre length in B, denoted Φ(B), is locally finite.

A weighted fibre process Ψ is derived from Φ by joining to each point x of Φ its
tangent orientation m(x). There exists L ∈ IR+ and a probability measure P on M
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such that the intensity measure Λ of Ψ can be written (cf. [7]):

Λ(B ×D) = E[Ψ(B ×D)] = Lν(B)P (D) B ∈ B, D ∈M

L is the length intensity of Φ and P its rose of directions. We assume in the following
that the density ρ of P exists.

Let B, C be measurable bounded sets of IRd, ν(B) > 0, then (cf. [7]):

E(Φ(B)) = Lν(B)

E(Φ(B)Φ(C)) =
∫ ∫

1B(x) 1C(x + h)K(dh)dx

var(Φ(B)) = L2

∫

IRd

gB(x) (p(x)− 1)dx

where gB(x) = ν(B∩B−x), B−x = {y−x; y ∈ B}, K is the reduced second moment
measure and p(x) is the pair correlation function of Φ. It holds K(dx) = p(x)dx,
throughout the paper it is assumed that the pair correlation functions studied exist
and are continuous in IR2 − {0} (excluding the origin of coordinates).

Then an unbiased estimator of L is

L1 =
Φ(B)
ν(B)

with variance

var(L1) =
L2

ν(B)2

∫

IRd

gB(x) (p(x)− 1)dx.

Let (Hi)1≤i≤n be n (d − 1)-dimensional hyperplanes with normal orientations
(li), Ai = νd−1(Hi ∩ B) where νd−1 is the Lebesgue measure in IRd−1, and denote
Ni = ν0(Φ ∩Hi ∩ B) the number of intersection points between Φ and Hi lying in
B. Then (Kanatani [2]) E(Ni) = AiFP (li)L and an unbiased estimator of L is:

L2 =
1
n

n∑

i=1

Ni

AiFP (li)

with variance:

var(L2) =
1
n2

n∑

i=1

n∑

j=1

cov(Ni, Nj)
AiAjFP (li)FP (lj)

.

Let l ∈ M be a fixed orientation. A random measure Φl can be defined where
Φl(C) is the sum of the orthogonal projection lengths of all fibres of Φ in C onto l
for every C ∈ B (cf. [1]) whose intensity is Ll = LFP (l). More generally, let Q be a
probability measure on M, a random measure ΦQ is defined as, for C ∈ B:

ΦQ(C) =
∫

M

Φl(C)Q(dl).
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Its intensity LQ is LFPQ and its pair correlation function pQ(x) can be expressed
in terms of characteristics of Φ (Beneš et al [1]):

pQ(x) =
IQ(x)
F2

PQ

p(x)

where IQ(x) =
∫

M

∫
M
FQ(m1)FQ(m2)Wx(d(m1,m2)), Wx is the two point distri-

bution function of Φ (Schwandtke [6]), i. e. the joint distribution of fibre tangent
orientations m1, m2 in points x1, x2 such that x = x1−x2 under the condition that
these points belong to fibres. Then one gets

cov(ΦQ(A),ΦQ(B)) = L2
Q

∫

Rd

gA,B(x) (pQ(x)− 1)dx, (1)

where gA,B(x) = ν(A ∩B−x) and an unbiased estimator of L is

L3 =
ΦQ(B)

ν(B)FPQ
,

whose variance is

var(L3) =
L2

ν(B)2

∫

IRd

gB(x) (pQ(x)− 1)dx.

Explicit formulae are given in Section 3 for two fibre processes, namely the Poisson
boolean segment process and the Poisson line process.

2. CONVERGENCE OF THE SERIAL SECTION ESTIMATOR TO THE
PROJECTION ESTIMATOR IN IR2

Let us denote u the vertical axis, x = (r, θ) the polar coordinates in IR2, −π ≤ θ < π,
θ being the colatitude with respect to u, Va,y = [0, Xy]× [y, y +a] the rectangle with
edge length a parallel to u. For fixed y ∈ IR, Xy is a real constant (see Figure 1).
Let Ψa(y) = 1

aΦu(Va,y) be the total projected fibre length in Va,y divided by a and
Ny = ν0(Φ∩V0,y) be the number of intersections of Φ with the basis of Va,y. In fact
due to stationarity assumptions, the distribution laws of these quantities depend of
y through Xy only.

Xy
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Fig. 1. Polar coordinates with respect to u and rectangle Va,y used is Ψa(y) definition.
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Lemma 1. Let f(r, θ) = c(θ)
r be a continuous function on IR2 − {0} with

• c(θ) ∼ K+(π/2− θ)α+ when θ → π/2 for some real constants K+, α+; α+ > 0

• c(θ) ∼ K−(θ+π/2)α− when θ → −π/2 for some real constants K−, α−; α− > 0

and let b → 0, a → 0 verifying 0 < a ≤ b2 then,

∫

x∈IR2
ν(Vb,y ∩ (Va,y)−x) f(x)dx = baXy

∫ π/2

−π/2

c(θ)
cos(θ)

dθ + bao(1) (2)

and
∫

x∈IR2
ν(Vb,y ∩ (Vb,y)−x) f(x)dx = b2Xy

∫ π/2

−π/2

c(θ)
cos(θ)

dθ + b2o(1).

If there exist m1 and m2 ∈ IR+ such that 0 < m1 ≤ Xy ≤ m2, these convergences
are uniform in y.

P r o o f . The first integral can be written as:

∫

x∈IR2
ν(Va,y ∩ (Vb,y)−x) f(x)dx = J1 + J2,

where

J1 =
∫ 0

−π

∫

r∈IR

ν(Va,y ∩ (Vb,y)−x)c(θ)drdθ,

J2 =
∫ π

0

∫

r∈IR

ν(Va,y ∩ (Vb,y)−x)c(θ)drdθ.

Let us denote

θl = arctan(Xy/b) = π/2− b/Xy + o(b)

θ′l = arctan(Xy/(b− a)) = π/2− (b− a)/Xy + o(b− a)

θ′′l = arctan(Xy/a) = π/2− a/Xy + o(a).

These limits hold uniformly in Yy if 0 < m1 ≤ Xy ≤ m2.
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Then e. g.

J2 =
∫ θ′l

0

∫ b−a
cos(θ)

0

a(Xy − r sin(θ))c(θ)drdθ

+
∫ π/2

θ′l

∫ Xy
sin(θ)

0

a(Xy − r sin(θ))c(θ)drdθ

+
∫ θl

0

∫ b
cos(θ)

b−a
cos(θ)

(b− r cos(θ))(Xy − r sin(θ))c(θ)drdθ

+
∫ θ′l

θl

∫ Xy
sin(θ)

b−a
cos(θ)

(b− r cos(θ))(Xy − r sin(θ))c(θ)drdθ

+
∫ π−θ′′l

π/2

∫ Xy
sin(θ)

0

r| cos(θ)|(Xy − r sin(θ))c(θ)drdθ

+
∫ π

π−θ′′l

∫ a
| cos(θ)|

0

r| cos(θ)|(Xy − r sin(θ))c(θ)drdθ.

Denote
I1(a, b) =

∫ b

a
c(θ)

cos(θ)dθ I2(a, b) =
∫ b

a
c(θ)

sin(θ)dθ

I3(a, b) =
∫ b

a
sin(θ)c(θ)
cos2(θ) dθ I4(a, b) =

∫ b

a
cos(θ)c(θ)

sin2(θ)
dθ,

then integrating we obtain

1
ab

J2 = XyI1(0, θ
′
l)−

a

2b
XyI1(θ

′′
l , θ

′
l) +

b

2a
XyI1(θl, θ

′
l) +

+
X2

y

2b
I2(θ

′
l , π/2) +

X2
y

2a
I2(θl, θ

′
l) +

a2 − 3b2

6b
I3(0, θ

′
l) +

+
b2

6a
I3(θl, θ

′
l)−

X3
y

6ab
I4(θl, θ

′
l) +

X3
y

6ab
I4(θ

′′
l ,

π

2
),

similarly for J1. Now evaluating the limits using the assumptions (2) follows. Uni-
form convergence is ensured by uniform convergence of θl, θ′l, θ′′l . 2

Lemma 2. Let h(r, θ) be a continuous function on IR2, and let b → 0 and a → 0
satisfying 0 < a ≤ b2 then,

∫

x∈IR2

(
1
b2

ν(Vb,y ∩ (Vb,y)−x)− 2
ba

ν(Vb,y ∩ (Va,y)−x) (3)

+
1
a2

ν(Va,y ∩ (Va,y)−x)
)

h(x)dx = o(1)

If there exist m1 and m2 ∈ IR+ such that 0 < m1 ≤ Xy ≤ m2 this convergence is
uniform in y.
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P r o o f . Let x = (x1, x2) ∈ IR× IR,

ν(Vb,y ∩ (Vb,y)−x) = sup(0, (Xy − |x1|)) sup(0, (b− |x2|))
and

ν(Vb,y ∩ (Va,y)−x) = sup(0, (Xy − |x1|))gb,a(x2)

with

gb,a(x2) =





0 if x2 ≤ −a

a− |x2| if −a ≤ x2 ≤ 0

a if 0 ≤ x2 ≤ b− a

b− x2 if b− a ≤ x2 ≤ b

0 if x2 ≥ b.

Let h1 be a continuous function on IR+, then

1
b2

∫

x∈IR2
ν(Vb,y ∩ (Vb,y)−x)h(x1)dx =

∫ Xy

x1=−Xy

(Xy − |x1|)h(x1)dx1

and

1
ba

∫

x∈IR2
ν(Vb,y ∩ (Va,y)−x) h(x1)dx

=
1
ba

∫ Xy

x1=−Xy

(Xy − |x1|)h(x1)dx1

∫

x2∈IR

gb,a(x2)dx2

=
1
ba

∫ Xy

x1=−Xy

(Xy − |x1|)h(x1)dx1

(∫ 0

−a

(a− |x2|)dx2 +
∫ b−a

0

adx2

+
∫ b

b−a

(a− |b− a− x2|)dx2

)

=
∫ Xy

x1=−Xy

(Xy − |x1|)h(x1)dx1,

so that
∫

x∈IR2

(
1
b2

ν(Vb,y ∩ (Vb,y)−x)− 2
ba

ν(Vb,y ∩ (Va,y)−x)

+
1
a2

ν(Va,y ∩ (Va,y)−x)
)

h(x1)dx = 0

and
∫

x∈IR2

∣∣∣∣
1
b2

ν(Vb,y ∩ (Vb,y)−x)− 2
ba

ν(Vb,y ∩ (Va,y)−x) +
1
a2

ν(Va,y ∩ (Va,y)−x)
∣∣∣∣ dx ≤ 4X2

y .

Let us consider IR2 with cartesian coordinates. As a function on IR2, h is a
continuous function on every compact of IR2. Then, it is uniformly continuous on
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D(0, Xy) (the disc of center 0 and radius Xy) so that h(x1, x2) = h(x1, 0) + o(1)
uniformly in x1 for every x1 ∈ [0, Xy] and |x2| ≤ b.

Finally
∣∣∣∣
∫

x∈IR2

(
1
b2

ν(Vb,y ∩ (Vb,y)−x)− 2
ba

ν(Vb,y ∩ (Va,y)−x)

+
1
a2

ν(Va,y ∩ (Va,y)−x)
)

h(x)dx

∣∣∣∣

≤
∣∣∣∣
∫

x∈IR2

(
1
b2

ν(Vb,y ∩ (Vb,y)−x)− 2
ba

ν(Vb,y ∩ (Va,y)−x)

+
1
a2

ν(Va,y ∩ (Va,y)−x)
)

h(x1, 0)dx

∣∣∣∣ +

+
∫

x∈IR2

∣∣∣∣
1
b2

ν(Vb,y ∩ (Vb,y)−x)− 2
ba

ν(Vb,y ∩ (Va,y)−x)

+
1
a2

ν(Va,y ∩ (Va,y)−x)
∣∣∣∣ dx o(1)

≤ 4X2
yo(1)

uniformly in Yy due to the uniform continuity of h. 2

Theorem 1. If the pair correlation function pu(x) on IR2 − {0} of the projection
measure Φu can be written as

pu(r, θ)− 1 =
c(θ)
r

+ h(θ, r) (4)

where functions c and h satisfy conditions of Lemma 1 and 2, respectively, then,

Ψa(y) → Ny in quadratic mean for a → 0. (5)

Under the last condition of Lemma 2, this convergence is uniform in y.

P r o o f . a) Let us suppose 0 < e ≤ b2, then from equation (1),

cov(Φu(Vb,y),Φu(Ve,y)) = L2F2
R(u)

∫

x∈IR2
ν(Ve,y ∩ ((Vb,y)−x)(pu(x)− 1)dx

= L2F2
R(u)

∫

x∈IR2
ν(Ve,y ∩ (Vb,y)−x)

c(θ)
r

dx

+ L2F2
R(u)

∫

x∈IR2
ν(Ve,y ∩ (Vb,y)−x) h(x)dx

c(θ) fulfills conditions of Lemma 1 and so

A(b, e) = L2F2
R(u)

∫

x∈IR2
ν(Ve,y ∩ (Vb,y)−x)

c(θ)
r

dx =

= L2F2
R(u)beXy

∫ π/2

−π/2

c(θ)
cos(θ)

dθ + be o(1)
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and

A(b, b) = L2F2
R(u)

∫

x∈IR2
ν(Vb,y ∩ (Vb,y)−x)

c(θ)
r

dx =

= L2F2
R(u)b2Xy

∫ π/2

−π/2

c(θ)
cos(θ)

dθ + b2o(1).

The function h(x) verifies conditions of Lemma 2, using the definition of Ψa(y),
one gets

var(Ψb(y)−Ψe(y)) =
1
b2

var(Φu(Vb,y))− 2
1
be

cov(Φu(Vb,y), Φu(Ve,y)) +
1
e2

var(Φu(Ve,y))

=
1
b2

A(b, b)− 2
1
be

A(b, e) +
1
e2

A(e, e)

+
∫

x∈IR2

(
1
b2

ν(Vb,y ∩ (Vb,y)−x)− 2
be

ν(Vb,y ∩ (Ve,y)−x) +
1
e2

ν(Ve,y ∩ (Ve,y)−x)
)

h(θ, r)dx

= o(1),

the convergence being uniform in Yy. Ψb(y) and Ψe(y) having equal means XyLFR(u),

‖Ψb(y)−Ψe(y)‖ = o(1)

uniformly in Yy, ‖U‖ = EU2 denoting the quadratic norm of a random variable U.

b) Let a, b be two positive reals such that 0 < a ≤ b

‖Ψb(y)−Ψa(y)‖ ≤ ‖Ψa(y)−Ψa2(y)‖+ ‖Ψb(y)−Ψa2(y)‖ ≤ 2o(1)

and the series (Ψa(y)) is Cauchy for all y.
Moreover, the fibres being smooth and locally finite, Ψa(y) → Ny almost surely,

and then (Neveu [4]) Ψa(y) → Ny in quadratic mean, and

‖Ψa(y)−Ny‖ = o(1) (6)

uniformly in Yy. 2

Lemma 3. Let f(x) = g(θ) be a continuous function on IR2 − {0} with

• limθ→π/2 g(θ) exists (denoted g(π/2) in the following)

• limθ→−π/2 g(θ) exists (denoted g(−π/2) in the following)

and let b → 0, a → 0 verifying 0 < a ≤ b2 then,

∫

x∈IR2
ν(Va,y ∩ (Vb,y)−x) f(x)dx =

ba

2
X2

y (g(π/2) + g(−π/2)) + ba o(1) (7)

and
∫

x∈IR2
ν(Vb,y ∩ (Vb,y)−x) f(x)dx =

b2

2
X2

y (g(π/2) + g(−π/2)) + b2o(1) (8)
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If there exist m1 and m2 ∈ IR+ such that 0 < m1 ≤ Xy ≤ m2, these convergences
are uniform in Yy.

P r o o f . It is similar to Lemma 1: Let f(x) = g(θ), the first integral can be
written as: ∫

x∈IR2
ν(Va,y ∩ (Vb,y)−x) f(x)dx = J1 + J2,

where

J1 =
∫ 0

−π

∫

r∈IR

ν(Va,y ∩ (Vb,y)−x)g(θ)rdrdθ,

J2 =
∫ π

0

∫

r∈IR

ν(Va,y ∩ (Vb,y)−x)g(θ)rdrdθ.

Let us denote θl = arctan(Xy/b), θ′l = arctan(Xy/(b − a)), θ′′l = arctan(Xy/a),
then e. g.

J2 =
∫ θ′l

0

∫ b−a
cos(θ)

0

a(Xy − r sin(θ))g(θ)rdrdθ

+
∫ π/2

θ′l

∫ Xy
sin(θ)

0

a(Xy − r sin(θ))g(θ)rdrdθ

+
∫ θl

0

∫ b
cos(θ)

b−a
cos(θ)

(b− r cos(θ))(Xy − r sin(θ))g(θ)rdrdθ

+
∫ θ′l

θl

∫ Xy
sin(θ)

b−a
cos(θ)

(b− r cos(θ))(Xy − r sin(θ))g(θ)rdrdθ

+
∫ π−θ′′l

π/2

∫ Xy
sin(θ)

0

r| cos(θ)|(Xy − r sin(θ))g(θ)rdrdθ

+
∫ π

π−θ′′l

∫ a
| cos(θ)|

0

r| cos(θ)|(Xy − r sin(θ))g(θ)rdrdθ.

Denote

I1(a, b) =
∫ b

a

g(θ)
cos2(θ)

dθ I2(a, b) =
∫ b

a

g(θ) sin(θ)
cos3(θ)

dθ

I3(a, b) =
∫ b

a

g(θ)
sin2(θ)

dθ I4(a, b) =
∫ b

a

g(θ) cos(θ)
sin3(θ)

dθ,

then we obtain
1
ab

J2 = −b2Xy

6a
I1(0, θl)− (b− a)3Xy

6ab
I1(0, θ′l) +

a2

3b
XyI1(π − θ′′l , π)

− b3

12a
I2(0, θl) +

(b− a)4

12ab
I2(0, θ′l) +

a3

4b
I2(π − θ′′l , π)

−X3
y

6b
I3(θ′l, π/2) +

X3
y

6a
I3(θl, θ

′
l)−

X4
y

12ab
I4(θl, θ

′
l) +

X4
y

12ab
I4(π/2, π − θ′′l )
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similarly for J1. Now evaluating the limits using the assumptions (7) follows and
(8) for a = b. Uniform convergence is ensured by uniform convergence of θl, θ′l, θ′′l .

2

Corollary 1. Under the assumptions of Theorem 1, suppose Xy = Xz = X,

cov(Ny, Nz) = L2F2
P (u)

∫ X

−X

(X − |t|)(pu(t, y − z)− 1)dt if y 6= z (9)

If moreover h(θ, r) = g(θ) verifies:
• limθ→π/2 g(θ) exists (denoted g(π/2) in the following)

• limθ→−π/2 g(θ) exists (denoted g(−π/2) in the following)

var(Ny) = L2F2
P (u)(Xy

∫ π/2

−π/2

c(θ)
cos(θ)

dθ +
X2

y

2
(g(π/2) + g(−π/2))) (10)

P r o o f . The first equality is:

cov(Ny, Nz)− cov(Ψa(y), Ψb(z)) = cov(Ny −Ψa(y), Nz) + cov(Ψa(y), Nz −Ψb(z))

Let ε > 0, A such that var(Ny − Ψa(y)) ≤ ε2

4var(Ny) for 0 < a < A then, for
0 < a < A, 0 < b < A,

|cov(Ny, Nz)− cov(Ψa(y),Ψb(y))| ≤ ε

and cov(Ny, Nz) = lima,b→0 cov(Ψa(y),Ψb(z)).
In particular,

cov(Ny, Nz) = lim
a→0

cov(Ψa(y), Ψa(z))

= L2F2
P (u) lim

a→0

∫

x∈IR2

1
a2

ν(Va,y ∩ (Va,z)−x))(pu(x)− 1)dx

= L2F2
P (u) lim

a→0

∫

(t,v)∈IR2

1
a2

1[−X,X](t)1[y−z−a,y−z+a](v)

(X − |t|)(a− |y − z − v|)(pu(t, y − z + v)− 1)dtdv

and the result follows from the continuity of pu(x) for x 6= 0.

The second equality is issued from var(Ny) = lim
b→0

1
b2

var(Φu(Vb,y)) by applying

Theorem 1 with h(x) = g(θ).
Moreover, as in Theorem 1, one obtains for b > 0, b → 0,

var(Φu(Vb,y)) = L2F2
P (u)

∫

x∈IR2
ν(Vb,y ∩ ((Vb,y)−x)(pu(x)− 1)dx

= L2F2
P (u)

∫

x∈IR2
ν(Vb,y ∩ (Vb,y)−x)

c(θ)
r

dx

+ L2F2
P (u)

∫

x∈IR2
ν(Vb,y ∩ (Vb,y)−x)g(θ)dx.
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Applying Lemma 1 and Lemma 3, one gets

L2F2
P (u)

∫

x∈IR2
ν(Vb,y ∩ (Vb,y)−x)(

c(θ)
r

+ g(θ))dx

= L2F2
P (u)b2Xy

∫ π/2

−π/2

c(θ)
cos(θ)

dθ + b2
X2

y

2
(g(π/2) + g(−π/2)) + b2o(1)

and

var(Ny) = lim
b→0

1
b2

var(Φu(Vb,y))

= L2F2
P (u)

(
Xy

∫ π/2

−π/2

c(θ)
cos(θ)

dθ +
X2

y

2
(g(π/2) + g(−π/2))

)
+ o(1).

2

Let H0 be a hyperplane with normal orientation u, (Hai)i∈ZZ = (H0 + iau)i∈ZZ a
series of parallel hyperplanes and denote

La(B) = a
∑

i∈ZZ

ν((H0 + iau) ∩B ∩ Φ) =
∑

i∈ZZ

aNia(B), (11)

where Nia(B) = ν((H0 + iau)∩B ∩Φ) is the number of intersection points between
Φ and Hai inside B.

Lemma 4. Under the assumptions of Theorem 1 suppose that B is a compact
convex set such that there exists a positive constant b for which either ν(B∩Hai) >
b > 0 or ν(B ∩Hai) = 0 for all a, i, then for a → 0,

La(B) → Φu(B) in quadratic mean.

6

u

ÃÃ»»¡
¡

¤
¤
¤
¤

£
££

A
A
A

HHH

¢
¢
¢
¢
````````

Fig. 2. B compact convex set (in thick lines), serial sections with distance a between

consecutive lines (horizontal lines) and Ba union of the rectangles built using the

intersection of each line with B as basis and common height a.
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P r o o f . a) Let Va,i be the rectangle of basis B ∩Hai and height a, Ba = ∪iVa,i,
and

Ξa(B) =
∑

i∈ZZ

Φu(Va,i) =
∑

i∈Ka

Φu(Va,i)

where Ka = [inf(i; Hia ∩B 6= ∅), sup(i;Hia ∩B 6= ∅)].

Then,
E(Ξa(B)) = E(Φu(

⋃

i∈Ka

Va,i)) → E(Φu(B)).

Moreover,

var(Ξa(B)− Φu(B)) = var(Φu(B\Ba) + Φu(Ba\B))

≤ var(Φu(B\Ba)) + var(Φu(Ba\B)) + 2
√

var(Φu(B\Ba))var(Φu(Ba\B)),

these variances being equal to

var(Φu(Ba\B)) = L2F2
R(u)

∫

x∈IR2
gBa\B(x)(pu(x)− 1)dx

and
var(Φu(B\Ba)) = L2F2

R(u)
∫

x∈IR2
gB\Ba

(x)(pu(x)− 1)dx.

The two functions gBa\B(x) and gB\Ba
(x)

• tend to 0 when a tends to 0,

• are dominated by gC(x) where C is the dilation of B by the disc D(0, 1) as
soon as a ≤ 1/2,

• and L2F2
R(u)

∫
x∈IR2 gC(x)(pu(x)− 1)dx = var(Φu(C)) is finite,

so that var(Φu(Ba\B)) and var(Φu(B\Ba)) tend to 0 as a tends to 0 by application
of the theorem of dominated convergence.

Finally

‖Ψa(B)− Ξa(B)‖ = (E(Ψa(B)− Ξa(B)))2 + var(Ξa(B)− Φu(B)) → 0 (12)
when a tends to 0.

b) Developing the expressions of Ξa(B) and La(B), one gets Ξa(B) − La(B) =
a

∑

i∈Ka

(Ψa(ia)−Nia). E(Ξa(B)− La(B)) = 0 leads to

‖Ξa(B)− La(B)‖ ≤ a2
∑

i,j∈Ka

cov(Nia −Ψa(ia), (Nja −Ψa(ja)))

≤ a2
∑

i,j∈Ka

√
var(Nia −Ψa(ia))var(Nja −Ψa(ja))

B satisfying the necessary conditions for Ψa(ia) to tend uniformly to Nia, then

‖Ξa(B)− La(B)‖ → 0 when a → 0 (13)

and finally ‖La(B) − Φu(B)‖ ≤ ‖La(B) − Ξa(B)‖ + ‖Ξa(B) − Φu(B)‖ tends to 0
when a tends to 0. 2



On Some Estimation Variances in Spatial Statistics 257

Theorem 2. Under the assumptions of Theorem 1, suppose that B is a compact
convex set then for a → 0,

La(B) → Φu(B) in quadratic mean.

P r o o f . Let B be a convex compact set of IR2.
There exists a series Dn of squares with a horizontal face such that

B =
⋃
n

Dn ∪D∞

with ν(D∞) = 0. Let us denote Bn = ∪i≤nDi.
Let n > 0, ‖La(Bn) − Φu(Bn)|| = ‖∑n

i=1 La(Di) − Φu(Di)|| ≤
∑n

i=1 ‖La(Di) −
Φu(Di)‖ → 0 when a → 0, each Di satisfying conditions of Theorem 2 and the sum
being finite.

Let B′
n be the dilation of B by the horizontal vector of length 1/n. B′

n fulfils
conditions of Lemma 4 and

Bn ⊂ B ⊂ B′
n

so that
La(Bn)− Φu(B) ≤ La(B)− Φu(B) ≤ La(B′

n)− Φu(B).

It is ‖La(Bn)−Φu(B)‖ ≤ ||La(Bn)−Φu(Bn)‖+ ||Φu(Bn)−Φu(B)‖; ν(B\Bn) → 0
so that Φu(Bn) → Φu(B) in quadratic mean and there exists N such that |Φu(BN )−
Φu(B)| ≤ ε.
La(BN ) → Φu(BN ) in quadratic mean so that there exists A > 0 such that, if
0 < a ≤ A,
||La(Bn)− Φu(Bn)|| ≤ ε and ‖La(Bn)− Φu(B)‖ ≤ 2ε.

The same reasoning applied to ‖La(B′
n)− Φu(B)|| leads to the result. 2

Lemma 5. Suppose that B = [0, X]× [0, Y ] is a rectangle in R2 with edge length
Y parallel to u. Suppose furthermore that pu(r, θ)− 1 = c(θ)

r + g(θ) where c satisfies
the conditions of Lemma 1 and g is continuous with

• g(θ) = D+(π/2− θ)β+ when θ → π/2

• g(θ) = D−(θ + π/2)β− when θ → −π/2

for some real constants D+, D−, β+, β− then,

• if α+ > 0, α− > 0, β+ > 0, β− > 0, cov(Ny, Ny+z) is continuous at z = 0 for
any y,

• if α+ > 1, α− > 1, β+ > 1, β− > 1, the derivative ∂cov(Ny,Ny+z)
∂z exists at

z = 0 for any y and is equal to

L2F2
R(u)

(
X

∫ π/2

−π/2

g(θ)
cos2(θ)

dθ −
∫ π/2

−π/2

| sin(θ)|c(θ)
cos2(θ)

dθ

)
.
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P r o o f . Denote θl = arctan X
b . It holds

cov(Ny, Ny+b) = L2F2
R(u)

∫ X

−X

(X − |x|)(pu(x, b)− 1)dx

= L2F2
R(u)

∫ θl

−θl

X − b| tan(θ)|
cos2(θ)

(
c(θ) cos(θ)

b
+ g(θ))bdθ

and let b → 0:
∫ θl

0

X − b| tan(θ)|
cos2(θ)

(
c(θ) cos(θ)

b
+ g(θ))bdθ =

= I1(b) + I2(b) + I3(b) + I4(b),

where

I1(b) = X

∫ θl

0

c(θ)
cos θ

dθ, I2(b) = −b

∫ θl

0

c(θ)| sin θ|
cos2 θ

dθ,

I3(b) = Xb

∫ θl

0

g(θ)
cos2 θ

dθ, I4(b) = −b2

∫ θl

0

g(θ)| sin θ|
cos3 θ

dθ.

Now using the assumptions of Lemma 1 we get that limb→0 I1(b) exists for
α+ > 0, α− > 0. Denoting I ′1(b) = dI1(b)

db it follows

limb→0 I ′1(b) = K+X limb→0
1
b (π

2 − arctan X
b )α = 0 for α > 1

= ∞ for α < 1.

For α = 1 it is limb→0+ I ′1(b) 6= limb→0− I ′1(b).
Similarily the other integrals are treated to get the result. 2

Theorem 3. Under the conditions of Lemma 5, if B is a rectangle with one hori-
zontal edge of length X, if Y is the length of the projection of B onto u, if α+ > 1,
α− > 1, β+ > 1, β− > 1 then the speed of convergence of La(B) to Φu(B) is given
by:

E
(
(La(B)− Φu(B))2

)
=

= −Y a2

6
L2F2

P (u)

(
X

∫ π/2

−π/2

g(θ)
cos2(θ)

dθ −
∫ π/2

−π/2

| sin(θ)|c(θ)
cos2(θ)

dθ

)
+ o(a2)

(14)

P r o o f . It is derived from a Matheron [3] result:
The estimation variance σ2

n = var
(

1
Y

∫
Y

Nydy − 1
Ka

∑
k∈Ka

Nka

)
is equivalent to

1
6γ′(0) a

Ka
as soon as the covariogram of Ny defined as γ(z) = var(N0)− cov(N0, Nz)

is derivable around 0.
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Then,

E
(
(La(B)− Φu(B))2

)
= Y 2σ2

n =
1
6
Y 2 a

Ka
γ′(0)

and use
Y = aKa(1 + o(1))

and

γ′(0) = −∂cov(N0, Nz)
∂z

= −L2F2
P (u)

(
X

∫ π/2

−π/2

g(θ)
cos2(θ)

dθ −
∫ π/2

−π/2

| sin(θ)|c(θ)
cos2(θ)

dθ

)

from Lemma 5 to obtain (14). 2

3. EXAMPLES

In the following two examples the variances of the estimators Li, i = 1, 2, 3 of
intensity L from Section 1 will be expressed. B ⊂ IR2 is a rectangle with edge
lengths X, Y , where X is parallel to x-axis and Y to fixed direction u ∈ M = 〈0, π).
Q is a projection measure on M . If necessary to integrate over M1 = 〈−π, π),
we extend functions pQ,FQ to this domain being even in IR2, e. g. pu(r, π − θ) =
pu(r,−θ), θ ∈ M.

3.1. The Poisson line process

The stationary isotropic Poisson line process in the plane is derived from the sta-
tionary Poisson point process on the cylinder surface when lines are parametrized by
their orientation and distance from the origin, see Stoyan et al [7]. For this special
fibre process it holds

pQ(r, θ) = 1 +
F2

Q(θ)π
4rL

,

specially

p(r, θ) = 1 +
1

πrL
and pu(r, θ) = 1 +

π cos2(θ)
4rL

.

For the estimators Li, i = 1, 2, 3, of L defined in Section 1 we obtain

varL1 =
L

πν(B)2

∫

(r,θ)

ν(B ∩B−(r,θ))drdθ (15)

and

varL3 =
Lπ

4ν(B)2

∫

(r,θ)

ν(B ∩B−(r,θ))F2
Q(θ)drdθ. (16)

Let us suppose that Hi ∩ B, i = 1, ..., n are parallel sections of B of length X
with common normal u, then for varL2 the covariances cov(Ni, Nj) are desired. In
the model (4) we have c(θ) = π cos2(θ)

4L and h(θ, r) = 0.
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Applying Corollary 1, one gets

cov(N0, Ny) =
2Ly2

π

∫ X

0

X − t

(t2 + y2)
3
2
dt =

2LX2

π
√

X2 + y2
,

var(N0) =
2
π

XL.

(17)

As α+ = α− = 2 the covariance is derivable at 0 and La(B) in (11) converges in
quadratic mean to Φu(B) with

E(La(B)− Φu(B))2 =
Y a2L

3π
+ o(a2),

see Theorem 3, where a is the distance between two consecutive planes.
For an anisotropic Poisson line process with probability density ρ of the rose of

directions P we have similarily

pu(r, θ) = 1 +
2ρ(θ) cos2 θ

rLF2
P (u)

, i. e. c(θ) =
2ρ(θ) cos2 θ

LF2
P (u)

.

3.2. The Boolean segment process

An anisotropic Boolean segment process in IR2 is a union of lines segments S the
centres of which form a stationary Poisson point process with intensity λ. Let
us suppose that the orientation distribution P of segments is independent of the
distribution H of segment lengths, and suppose that these two distributions admit
densities ρ and h. Let θ ∈ M and r ∈ IR+, then it holds (Beneš et al [1]):

• L = λH̄ where H̄ is the mean segment length,

• pQ(r, θ) = 1 + F2
Q(θ)ρ(θ)

rLF2
P Q

∂f(r)
∂r , specially

• p(r, θ) = 1 + ρ(θ)
Lr

∂f(r)
∂r ,

where f(r) = 1
H̄

(∫ r

0
x2dH(x) +

∫∞
r

(2xr − r2)dH(x)
)

is the mean length of S ∩
D(0, r) under the condition that a random segment S hits the origin 0. Using
∂f(r)

∂r = 2
H̄

∫∞
r

(x− r)dH(x) one gets:

p(r, θ) = 1 +
2ρ(θ)
λH̄2r

∫ ∞

r

(x− r)dH(x),

pQ(r, θ) = 1 +
2ρ(θ)F2

Q(θ)
λH̄2rF2

PQ

∫ ∞

r

(x− r)dH(x),

so that

var(L1(B)) =
2λ

ν(B)2

∫ ∞

0

∫

M

gB(r, θ)ρ(θ)
∫ ∞

r

(x− r)dH(x)drdθ,

var(L3(B)) =
2λ

F2
PQν(B)2

∫ ∞

0

∫

M

gB(r, θ)F2
Q(θ)ρ(θ)

∫ ∞

r

(x− r)dH(x)drdθ.
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Let Hi ∩B be parallel sections of B as above, then

pu(r, θ) = 1 +
2ρ(θ) cos2(θ)
λH̄2rF2

P (u)

∫ ∞

r

(x− r)dH(x).

For simplicity assume that the length of segments is fixed and equal to q = H̄ and
the process is isotropic (i. e. ρ(θ) = 1

2π , θ ∈ M1). Then
∫ ∞

r

(x− r)h(x)dx = 0 for r ≥ q

= q − r r < q.

We obtain pu(r, θ) = 1 +
π cos2 θ

4Lr
− π cos2 θ

4Lq
for r < q, pu(r, θ) = 1 for r ≥ q, i. e.

c(θ) =
π cos2 θ

4L
, g(θ) = −π cos2 θ

4Lq
for r < q

with α+ = α− = β+ = β− = 2 in the model of Theorem 1 and Lemma 5. For r ≥ q
it is c(θ) = g(θ) = 0. Then

varNy =
2LX

π
,

cov(N0, Ny) = 0 for y ≥ q,

cov(N0, Ny) =
2y2L

π

∫ min(X,
√

q2−y2)

0

(X − t)
(

1
(t2 + y2)3/2

− 1
q(t2 + y2)

)
dt

for y < q,

which enables us to evaluate varL2. Finally formula (14) yields

E(La(B)− Φu(B))2 =
Y a2L

6

(
X

q
+

2
π

)
+ o(a2),

when a → 0. Strictly speaking a modification of Lemma 3 and 5 is necessary for
these results, which considers function g of a more general type g(r, θ) = g1(θ)(1 +
o(1)), r → 0.

This modification covers also e. g. the anisotropic case with exponentially dis-
tributed segments (H(x) = 1− e−

x
q , x, q > 0), where

pu(r, θ) = 1 +
2ρ(θ) cos2(θ)e−

r
q

LrF2
P (u)

and put e−
r
q = 1− r

q + o(r).
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