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ON ADAPTIVE ESTIMATION
IN NONLINEAR REGRESSION

Silvelyn Zwanzig

To study adaptive estimators for the regression parameter we embed the usual non-
linear regression model in a semiparametric one. The parameter of interest is the finite
dimensional regression parameter and the unknown density of the error distribution is the
infinite dimensional nuisance parameter.

In this paper the LAN property for the semiparametric nonlinear regression model is
shown. Necessary conditions for the existence of an adaptive estimator are derived and a
minimax theorem is given.

The interpretation of the necessary conditions is the following: In the nonlinear model
we need a symmetric error density. In the linear model adaption is also possible with
asymmetric error density, if we have an asymptotic symmetric design.

1. THE SEMIPARAMETRIC MODEL

We regard the nonlinear regression model:

yi = g(xi, ϑ) + εi, i = 1, . . . , n (1)

The regression function g(·, ·) : X × Θ → < is known. The random errors εi, i =
1, . . . , n are i.i.d. with Eε1 = 0, Varε1 = σ2 and density p(·) of ε1 with respect to
a sigma-finite measure µ. Let L2 (µ) denote the usual L2-space of square integrable
functions and let ‖.‖µ denote the usual norm in L2 (µ) . Thus

∥∥√p
∥∥

µ
= 1. The

unknown “parameter” θ of the semiparametric model has a parametric component
ϑ and a nonparametric component p:

θ = (ϑ, p) (2)

ϑ ∈ Θ ⊆ <q parameter of interest
p ∈ Γ ⊆ L2(µ) nuisance parameter

The design points xi ∈ X ⊆ <m, i = 1, . . . , n, are fixed and known, such that
Y = (y1, . . . , yn) is a sample of random, independent, not identically distributed
values with probability Pn

θ .
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The main problem is to estimate the unknown regression parameter. If the density
p is known, we can use the maximum likelihood estimator, which is asymptotically
efficient. The general aim of adaptive estimating is to find an estimator, which has
the same asymptotical efficiency and does not depend on p. For that reason we
regard the density p as nuisance parameter.

2. THE LAN PROPERTY

In the usual nonlinear regression model the LAN property was proven under some
regularity conditions on the likelihood function and the regression function (compare
[2], Chapter 1). We will need such conditions and propose the following notations.
Let ΓLAN be the set of all densities, which fulfill (L1), (L2), (L3).

(L1) The likelihood function l(·) = ln p(·) is twice continuously differentiable. l(k)(·)
denotes the kth derivative.

(L2)

Epl
(1)(ε1) = 0 Ep

(
p(2)(ε1)
p(ε1)

)
< ∞,

0 < s2 = −Epl
(2)(ε1) = Varpl

(1)(ε1) < ∞.

(L3) There exist a function R, with EpR(ε1) < ∞, and a constant δ0 such that for
all δ < δ0 and for all d with d = d(ε1) and |d| < δ

∣∣∣p(2) (ε1 + d)− p(2) (ε1)
∣∣∣ < δ p (ε1)R (ε1) .

Let G the set of all regression functions, which fulfill (G1), (G2), (G3), (G4).

(G1) The regression function g(xi, ·) : Θ → < is twice differentiable uniformly re-
spect to i and the derivatives are equicontinuous. g(1)(xi, ·) denotes the q
dimensional vector of first partial derivatives. g(2)(xi, ·) denotes the q × q
dimensional matrix of second partial derivatives.

(G2) For all ϑ
1√
n

max
i=1,...,n

∥∥∥g(1)(xi, ϑ)
∥∥∥ = o (1).

(G3) It exists a constant c independent of i such that for all ϑ

∥∥∥g(2)(xi, ϑ)
∥∥∥ ≤ c.

(G4) It exists a positive definite matrix I(ϑ) such that

lim
n→∞

1
n

n∑

i=1

g(1)(xi, ϑ) g(1)(xi, ϑ)T = I (ϑ)
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Let us generalize the concept of local alternatives θn = (ϑn, pn) of the “true par-
ameter” θ on the semiparametric case. We define:

ϑn = ϑ +
1√
n

h, h ∈ <q, (3)

pn = p +
1√
n

β, β ∈ B0 ⊆ B ⊆ L2 (µ) . (4)

The set B in (4) respects the definition (2.2) of all possible deviations of
√

p in [1].
Also contaminated models

pn =
(

1− 1√
n

ε

)
p +

1√
n

ε p1, p1 ∈ ΓLAN, ε ∈ (0, 1)

can be given in the form of (4), if we set

B0 = {β : β = ε (p1 − p) , p1 ∈ ΓLAN, ε ∈ (0, 1)} .

We choose the set of deviations B in such a way, that also pn is in ΓLAN for sufficiently
large n. More exactly B denotes the set of all β, which fulfill (B1), (B2), (B3).

(B1) ∫
β dµ = 0.

(B2)

Ep

(
β (ε1)
p (ε1)

)2

< ∞.

(B3) β is continuously differentiable and there exist a function R with EpR(ε1) < ∞
and a constant δ0 such that for all δ < δ0 and for all d with d = d(ε1) and |d|
< δ

∣∣∣β(1) (ε1 + d)− β(1) (ε1)
∣∣∣ < δ p (ε1)R (ε1) , Ep

(
β(1) (ε1)
p (ε1)

)2

< ∞.

Now we can formulate the theorem on the asymptotic behaviour of the likelihood
quotient. Introduce the log likelihood ratio

Ln = ln
n∏

i=1

pn (yi − g (xi, ϑn))
p (yi − g (xi, ϑ))

, if
n∏

i=1

p (yi − g (xi, ϑ)) > 0

and
Ln = 0, if

n∏

i=1

p (yi − g (xi, ϑ)) =
n∏

i=1

pn (yi − g (xi, ϑn)) = 0

and

Ln = ∞, if
n∏

i=1

p (yi − g (xi, ϑ)) = 0 and
n∏

i=1

pn (yi − g (xi, ϑn)) > 0.



362 S. ZWANZIG

Theorem 1. (Local asymptotic normality) For g ∈ G and p ∈ ΓLAN and β ∈ B
and h ∈ <q it holds

Ln =
1√
n

n∑

i=1

∆i − 1
2n

n∑

i=1

(∆i)
2 + oθ (1)

with

∆i =
β (εi)
p (εi)

− p(1) (εi)
p (εi)

g(1) (xi, ϑ)T h. (5)

oθ(1) converges with probability Pn
θ to zero.

The ∆i are independent random variables with expected value zero and the av-
erage of their variances is bounded. Hence we have:

Corollary. For g ∈ G and p ∈ ΓLAN and β ∈ B and h ∈ <q, such that σ2 (β, h) > 0
with

σ2 (β, h) =
∥∥∥∥

p(1)

√
p

mTh− β√
p

∥∥∥∥
2

µ

+ s2hT
(
I (ϑ)−mmT

)

and

m = lim
n→∞

1
n

n∑

i=1

g(1)(xi, ϑ), s2 =
∥∥∥∥

p(1)

√
p

∥∥∥∥
2

µ

it holds

Ln → N

(
−1

2
σ2 (β, h) , σ2 (β, h)

)
.

and the probability measure Pn
θn

is contiguous to Pn
θ .

Remark. From the contiguity it follows, that the consistency of some estimator
under p implies the consistency under the contaminated model pn = (1−εn) p+εnp1

with εn = 1√
n
ε for any p1 ∈ ΓLAN.

P r o o f of Theorem 1. We give an outline. Especially we are interested in the
influence of the deviation β from the density p. Because of (4) we have Pn

θ a. s., that

Ln =
n∑

i=1

ln
(

p (yi − g (xi, ϑn))
p (εi)

+
1√
n

β (yi − g (xi, ϑn))
p (εi)

)
.

Under (G1) for all i Taylor expansions of first and second order hold, such that

∆gi = g (xi, ϑn)− g (xi, ϑ) =
1√
n

g(1)
(
xi, ϑ

(1)
)T

h,

∆gi =
1√
n

g(1) (xi, ϑ)T h +
1
2n

hTg(2)
(
xi, ϑ

(2)
)T

h,

with ϑ
(k)

such that
∥∥∥ϑ

(k) − ϑ
∥∥∥ ≤ 1√

n
‖h‖ for k = 1, 2.
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We have also expansions for the density and the deviation:

p (εi −∆gi) = p (εi)− p(1) (εi) ∆gi +
1
2
p(2)

(
εi + δ

(2)
i ∆gi

)
∆g2

i ,

β (εi −∆gi) = β (εi)− β(1)
(
εi + δ

(1)
i ∆gi

)
∆gi,

with δ
(k)
i = δ(k) (εi) such that

∣∣∣δ(k)
i

∣∣∣ < 1 for k = 1, 2.

Therefore

Ln =
n∑

i=1

ln
(

1 +
1√
n

∆i +
1
n

R
(1)
i

)
, (6)

where ∆i is defined in (5) and

2R
(1)
i =

p(2)
“

εi+d
(2)
i

”

p(εi)

(
g(1)

(
xi, ϑ

(1)
)T

h

)2

− p(1)(εi)
p(εi)

hTg(2)
(
xi, ϑ

(2)
)T

h

−β(1)
“

εi+d
(1)
i

”

p(εi)
g(1)

(
xi, ϑ

(1)
)T

h

with
∥∥∥d

(k)
i

∥∥∥ ≤ 1√
n

max
i=1,..,n

∥∥∥g(1)
(
xi, ϑ

(1)
)∥∥∥ < o(1) for k = 1, 2. (7)

(7) is a consequence of (G2).
It holds

1√
n

∆i +
1
n

R
(1)
i = oθ (1) ,

because under (G2) and (B2) uniformly in i

1
n

E |∆i|2 ≤ 1
n

s2
∥∥∥g(1) (xi, ϑ)

∥∥∥
2

‖h‖2 +
1
n

Ep

(
β (ε1)
p (ε1)

)2

−→ 0 (8)

and because of (G3) and (B3) uniformly in i

1
n

E
∣∣∣R(1)

i

∣∣∣ → 0.

Now we apply the expansion ln(1 + x) = x− 1
2x2 + ∆x3 with ∆ < 1 in (6):

Ln =
1√
n

n∑

i=1

∆i − 1
2n

n∑

i=1

∆2
i + R(2)

n ,

where

R(2)
n =

1
n

n∑

i=1

R
(1)
i − 1√

nn

n∑

i=1

R
(1)
i ∆i− 1

2n2

n∑

i=1

(
R

(1)
i

)2

+∆
n∑

i=1

(
1
n

R
(1)
i +

1√
n

∆i

)3

.

It remains to show, that R
(2)
n converges in probability to zero. The first term of the

rest we split again:

1
n

n∑

i=1

R
(1)
i =

1
n

n∑

i=1

R
(3)
i +

1
n

n∑

i=1

R
(4)
i (9)
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with

2R
(3)
i =

p(2) (εi)
p (εi)

g(1) (xi, ϑ)T h− p(1) (εi)
p (εi)

hTg(2) (xi, ϑ)h− β(1) (εi)
p (εi)

g(1) (xi, ϑ)T h.

(10)
The regularity conditions on p and β allow a change of integration and differentiation,
such that from (B1) and the normalizing property of densities it follows, that the
expected value of R

(3)
i is zero. Further we get from (G3), (G4) and (L2), (B2),

(B3), that the average of their variances is bounded. Then the law of large numbers
implies

1
n

n∑

i=1

R
(3)
i = oθ (1) . (11)

Using the continuity arguments of (G1), (L3) and (B3) we can also show

1
n

n∑

i=1

R
(4)
i = oθ (1) . (12)

Let us discuss it for one of the terms more detailed:

Fn =
1
n

n∑

i=1

β(1)
(
εi + d

(1)
i

)
− β(1) (εi)

p (εi)
g(1) (xi, ϑ)T h.

Using (7), (B3), (G2) and (G4) give us the following inequalities

E |Fn| ≤ max
i=1,...,n

E

∣∣∣∣∣∣
β(1)

(
εi + d

(1)
i

)
− β(1) (εi)

p (εi)

∣∣∣∣∣∣
1
n

n∑

i=1

∣∣∣g(1) (xi, ϑ)T h
∣∣∣

.
≤ o (1) EpR (εi)

√
hTI (ϑ)h + o (1)

The other terms of R
(2)
n we can estimate by arguments used above. For instance

it follows from (8) and (9) with (11) and (12)

P

(
1√
nn

n∑

i=1

R
(1)
i ∆i > ε

)

≤ P

(
1√
nn

n∑

i=1

R
(1)
i ∆i > ε _

1√
n

max
i=1,...,n

∆i ≤
√

ε

)

+ P

(
1√
nn

n∑

i=1

R
(1)
i ∆i > ε _

1√
n

max
i=1,...,n

∆i >
√

ε

)

≤ P

(
1
n

n∑

i=1

R
(1)
i >

√
ε

)
+ P

(
1√
n

max
i=1,...,n

∆i >
√

ε

)
≤ o (1) . 2
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Now we can search the “least favourable” direction β∗ to approach p for the
problem of estimating ϑ.

β∗ = arg min
β∈B0

σ2 (β, h) = arg min
β∈B0

∥∥∥∥
p(1)

√
p

mTh− β√
p

∥∥∥∥
2

µ

, (13)

β∗√
p

= P

(
p(1)

√
p

)
mTh; (14)

where P : L2 (µ) → B0 denotes the projection. If B0 = B, then β∗ = p(1)mTh. We
obtain

σ2 (β∗, h) = s2hTI∗ (ϑ)h

with

I∗ (ϑ) = I (ϑ)−mmT




∥∥∥P
(

p(1)
√

p

)∥∥∥
2

µ∥∥∥p(1)√
p

∥∥∥
2

µ


 . (15)

If B0 = B, then I∗ (ϑ) = I (ϑ) − mmT. Note I∗ (ϑ) ≤ I (ϑ) and I∗ (ϑ) = I (ϑ) if
P

(
p(1)
√

p

)
= 0.

3. NECESSARY CONDITIONS FOR ADAPTATION

First let us recall the definition for an adaptive estimator (compare [1]).

Definition. A sequence of estimators ϑn(Y ) is said to be Γ-adaptive if under θn

from (3) and (4) for all θn and all θ

L
(√

n (ϑn (Y )− ϑn)
) −→ Nq

(
0, s−2I (ϑ)−1

)

Remember, s−2I (ϑ)−1 is the covariance matrix of the asymptotic distribution of
the maximum likelihood estimator (compare for instance [2], Chapter 1).

Further we say, that an estimator ϑn (Y ) is regular at θ, if for every sequence
θn the distribution of

√
n (ϑn (Y )− ϑn) converges under θn to a law L(θ), which

depends on θ but not on h and β. From the LAN property we get the presentation
theorem for regular estimators.

Theorem 2. Let p ∈ ΓLAN , β ∈ B0 , g ∈ G. If ϑn(Y ) is a regular estimator with
limit distribution L, then it exists a distribution L1(θ) such that

L (θ) = Nq

(
0, s−2I∗ (ϑ)−1

)
∗ L1 (θ)

The p r o o f is omitted. It is analogously to that of Theorem 3.1. of [1].

If we want to find an adaptive estimator, then it is only possible if I(ϑ) = I∗(ϑ).
From this equality we derive the necessary conditions for the existence of adaptive
estimators.
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Theorem 3. Let p ∈ ΓLAN, β ∈ B0, g ∈ G. A necessary condition for the existence
of an adaptive estimator in the nonlinear regression model (1) is (N1) or (N2):

(N1)

lim
n→∞

1
n

n∑

i=1

g(1) (xi, ϑ) = 0 for all ϑ.

(N2) ∫
p(1)β

p
dµ = 0 for all β ∈ B0.

Remark. The condition (N1) is fulfilled in the linear regression model with an
asymptotic symmetric design:

lim
n→∞

1
n

n∑

i=1

xi = 0

In the location model g(xi, ϑ) = ϑ (N1) is not fulfilled. For B = B0 adaption is not
possible. We have I(ϑ) = 1 and I∗(ϑ) = 0 . It is necessary to choose :

B0 =
{

β :
∫

p(1)β

p
dµ = 0, β ∈ B

}
.

The condition (N2) is fulfilled if p is a symmetric density and the local alternatives
pn are also only symmetric.

P r o o f of Theorem 3. If an adaptive estimator exists, then by Theorem 2 it
must hold I(ϑ) = I∗(ϑ). The equality holds only for β∗ = 0. Remember β∗ is the
solution of the minimization problem (13). This implies

(
p(1)

p
mTh− β∗√

p

)
⊥ β√

p
for all β ∈ B0.

If β∗ = 0 , then
p(1)

p
mTh⊥ β√

p
for all β ∈ B0.

Hence for all h

mTh

∫
p(1)β

p
dµ = 0.

From this it follows (N1) or (N2). 2

4. THE MINIMAX BOUND

A further consequence of the LAN property is an asymptotic minimax theorem of
Hájek type. It may be useful also in cases, where adaption is not possible.

Denote W the class of functions w : <q → <+ such that w(0) = 0, w(x) = w(−x),
all sets {x : w(x) < c} are convex and ln w(x) ≤ o(‖x‖2).
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Theorem 4. Suppose w ∈ W , p ∈ ΓLAN, g ∈ G and I∗ (ϑ) Â 0 and

Un (c) =
{

θn = (ϑn, pn) : ‖ϑn − ϑ‖2 < c , ‖pn − p‖2µ < c
}

.

Then it holds for all c > 0 and all estimators ϑn(Y )

lim inf
n→∞

sup
θn∈U(c)

Eθnw
(√

n (ϑn (Y )− ϑn)
) ≥ Ew (z∗)

where z∗ is Nq

(
0,

(
s2I∗ (ϑ)

)−1
)

distributed.

P r o o f of Theorem 4. Choose the worst direction of deviation β∗ in (13) of p
and fix the sequence

θ∗n = (ϑn, p∗n) , with p∗n = p +
1√
n

β∗,

then

sup
θn∈U(c)

Eθn
w

(√
n (ϑn (Y )− ϑn)

) ≥ sup
‖ϑn−ϑ‖2<c

Eθ∗nw
(√

n (ϑn (Y )− ϑn)
)

The likelihood quotient

L∗n =
n∏

i=1

p∗n (yi − g (xi, ϑn))
pn (yi − g (xi, ϑ))

is LAN at θ with s2I∗ (ϑ). It is not possible to apply the Hájek Theorem (Theorem
12.1) in the book of Ibragimov, Hasminskii [3] directly, because L∗n has a different
structure as the likelihood quotient in their Definition 2.1. If we check the proof of
Theorem 12.1 step by step, we see that only the LAN property is used. We omit
this checking and apply this theorem on the last inequality and obtain the result. 2

(Received March 3, 1994.)
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