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A ROBUSTNESS RESULT FOR

A VON KÁRMÁN PLATE1

Mary E. Bradley and Irena Lasiecka

This paper considers the problem of the robustness of boundary feedback
controls for a von Kármán plate with respect to a small parameter γ. This
parameter enters the problem through a term representing rotational inertia
for the plate and is assumed to be quite small (i. e. proportional to the plate’s
thickness). This paper proves that the exponential decay rates produced for
the energy of the total system (with γ 6= 0) are preserved as we pass with a
limit on γ → 0+.

1. INTRODUCTION

1.1. Statement of the Problem

Let Ω be a bounded open domain in R2 with smooth boundary Γ = Γ0∪Γ1,
where Γi are relatively open, Γ0 ∩ Γ1 = ∅. We consider the von Kármán
system in the variables w(t, x) and χ(w(t, x)):

wtt − γ2∆wtt + ∆2w + b(x)wt = [w,χ(w)] in Q

w(0, ·) = w0 ; wt(0, ·) = w1 in Ω

w = ∂
∂νw = 0 on Σ0

∆w + (1− µ)B1w = − ∂
∂νwt on Σ1

∂
∂ν ∆w + (1− µ)B2w − γ2 ∂

∂νwtt = wt − ∂2

∂τ2wt + w on Σ1





(1)

where Q ≡ Ω × (0, T ) and Σi ≡ Γi × (0, T ), for i = 0, 1. Here, b(x) ∈ L∞(Ω)
satisfies b(x) > 0 a.e. in Ω, 0 < µ < 1

2 is Poisson’s ratio and the operators
B1 and B2 are given by

B1w = 2n1n2wxy − n2
1wyy − n2

2wxx

B2w = ∂
∂τ [(n2

1 − n2
2)wxy + n1n2(wyy − wxx)].

}
(1.1)(b)

1Presented at the 2nd IFAC Workshop on System Structure and Control held in Prague during
September 3–5, 1992.
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Also, χ(w) satisfies the system of equations

∆2χ = −[w,w]
χ = ∂

∂νχ = 0 on Σ = Γ× (0,∞)

}
(2)

where

[φ, ψ] =
∂2φ

∂x2

∂2ψ

∂y2
+
∂2φ

∂y2

∂2ψ

∂x2
− 2

∂2φ

∂x∂y

∂2ψ

∂x∂y
.

Define the bilinear form

a(w, v) =
∫

Ω

(∆w∆v + (1− µ)(2wxyvxy − wxxvyy − wyyvxx)) dΩ (3)

and the energy functional is given by

E(t) =
1
2

∫

Ω

{|wt|2 + γ2|∇wt|+ |∆χ|2} dΩ +
1
2
a(w,w) +

1
2

∫

Γ1

w2dΓ1

≡ E1(t) + E2(t), (4)

where E2(t) is defined by

E2(t) =
1
2

∫

Ω

|∆χ|2dΩ.

In [2] it was proven that by implementing stabilizing controls acting
through forces wt and bending moments ∂

∂νwt and ∂2

∂τ2wt along a por-
tion of the plate’s edge, we achieve an exponential decay for the energy
(4). Our goal in this paper is to prove that this exponential decay of
energy is “robust” with respect to the parameter γ (i. e. when γ → 0+

the energy for the resulting system also decays exponentially in an ap-
propriate topology). This problem is of interest, since the parameter γ
is assumed to be small (proportional to the thickness of the plate). Also,
by taking γ = 0, the resulting limit equation (with zero right hand side)
is precisely the Euler–Bernoulli plate model, which is a well-known and
frequently studied plate equation from classical mechanics.

1.2. Literature and Orientation

The problem of stabilization and controllability for the von Kármán plate
described above (so named for the nonlinear right hand side which was
developed by von Kármán) has attracted much attention in recent years.
Indeed, the results on local controllability and stabilization can be found
in [4, 5, 3, 2]. As for the question of global decay rates (such as we con-
sider here) we refer to [4]. There, it was proved that for the von Kármán
model without rotational inertia or viscous damping (i. e. setting γ = 0
and b = 0) the energy of the resulting system is exponentially stable, pro-
vided that Ω is star-shaped. This stability was achieved by means of the
boundary feedback acting on the whole boundary (i. e. Γ0 = ∅), where
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results were achieved by means of a Lyapunov function argument. This
contrasts with our approach (see [2]) which is based on proving certain
functional relations directly for the energy function. This allows us to
“build in” an appropriately developed nonlinear compactness-uniqueness
argument to “absorb” nonlinear boundary traces and undesirable lower
order terms arising from energy estimates. In order to dispense with geo-
metric conditions, we shall use “sharp” regularity results for the traces of
the linear problem, which were proved in [6] by using microlocal analysis.

Our main contribution in this paper is that we produce a cohesive
theory tying together the results of [4] and those of [2] by proving that
the same type of feedbacks will provide similar stability results for both
Euler-Bernoulli model of dynamics (i. e. γ = 0 as in [4]) as well as the
Kirchhoff model (i. e. γ > 0 as in [2]) in their respective appropriate
topologies. In producing this result, it is critical that we carefully track
the appearance of γ in the estimates which we use to bound the energy
(4). We must then prove that by passing with a limit as γ → 0+ we do
not destroy the exponential decay of the energy.

1.3. Statement of Results

We begin by defining the space of finite energy for (1), Hγ ≡ H2
Γ0

(Ω) ×
H1

Γ0
(Ω) where

H2
Γ0

(Ω) =
{
w ∈ H2(Ω) : w = ∂

∂νw = 0 on Γ0

}

with norm
‖w‖2

H2
Γ0

(Ω) = a(w,w)

and
H1

Γ0
(Ω) = {w ∈ H1(Ω) : w = 0 on Γ0}

with norm
‖w‖2

H1
Γ0

(Ω) =
∫

Ω

(w2 + γ2|∇w|2) dΩ.

We note that well-posedness and regularity results for system (1) with
respect to the topology Hγ was proven in [1].

We now state our main result.

Theorem 1.1. Assume that the domain Ω ⊂ R2 has a sufficiently smooth
boundary Γ = Γ0 ∪ Γ1 and that there exists x0 ∈ R2 such that

h · ν ≡ (x− x0) · ν ≤ 0 for x ∈ Γ0. (5)

Then for any initial data, (w0, w1) ∈ Hγ there exist constants C and α
which are independent of γ such that, for t > T sufficiently large, the
energy for (1) (corresponding to γ 6= 0) satisfies

Eγ>0(t) ≤ Ce−αtEγ>0(0). (6)
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Remark 1. Note that the statement of Theorem 1.1 affirms a “robust”
property of the stabilizing boundary feedback. Indeed, the effectiveness
of this feedback, as measured by the constants C and α in (6), does not
deteriorate when the parameter γ → 0+.

Theorem 1.1 allows us to obtain decay rates for the limit problem when
γ → 0+. We will show that the solution wγ to (1) with γ > 0 converges
in L2([0, T ] × Ω) to a function w which is a solution to the following limit
problem:

wtt + ∆2w + b(x)wt = [w,χ(w)] in Q

w(0, ·) = w0 ∈ H2
Γ0

(Ω) ; wt(0, ·) = w1 ∈ H1
Γ0

(Ω) in Ω

w = ∂
∂νw = 0 on Σ0

∆w + (1− µ)B1w = − ∂
∂νwt on Σ1

∂
∂ν ∆w + (1− µ)B2w = wt − ∂2

∂τ2wt + w on Σ1,





(7)

with the energy Eγ=0(t) given by

Eγ=0(t) =
1
2

∫

Ω

{|wt|2 + |∆χ|2} dΩ +
1
2
a(w,w) +

1
2

∫

Γ1

w2dΓ1 (8)

Moreover, the exponential decay rates (6) hold for a solution w of (7) as
well. A precise statement of this result is given in the following corollary.

Corollary 1.1. Let w ≡ limγ→0+ wγ. Then w ∈ C([0, T ];H2(Ω)) with wt ∈
C([0, T ];L2(Ω)) is a solution of (7). Moreover, there exist constants C > 0
and α > 0 such that

Eγ=0(t) ≤ Ce−αtEγ=0(0) (9)

where the constant C depends on the size of the initial data in a bounded
way.

Remark 2. Exponential decay rates for the limit problem (7) with bound-
ary feedbacks acting on the whole boundary are proven in [4]. However,
the results there are established to hold for “regular” solutions only (i. e.
w ∈ L∞([0, T ];H4(Ω)) and wt ∈ L∞([0, T ];L2(Ω))). Moreover, geometric con-
ditions that Ω be a “star-shaped” domain were assumed in [4].

The remainder of this paper is organized as follows. We first set out
the preliminary energy estimates which will be used in proving that the
energy for system (1) (γ > 0) decays exponentially. These estimates will
possess lower order terms which will then be absorbed by a compactness-
uniqueness argument. We then use an argument from nonlinear semi-
group theory, which provides us with an energy decay rate for system (1)
that is independent of γ. Finally, we use a limiting argument to prove
that (6) holds for the limiting equation (7).
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2. PROOF OF THEOREM 1.1

Our beginning strategy in proving Theorem 1.1 is to use the method of
multipliers to produce preliminary energy estimates for (1) (with γ > 0)
which may then be used in conjunction with “sharp” trace regularity
results to obtain the desired energy estimate, modulo traces of the non-
linear function χ(w) and lower order terms. These energy estimates will
follow closely those that are found in [2], however, here we will carefully
follow all dependence of constants on the parameter γ. We summarize
the results of these energy estimates below.

Note. In this section, w and E(T ) denote, respectively, the solution and
energy to (1) with γ > 0. We will only distinguish wγ and Eγ from w
and Eγ=0 in the limiting argument, where such a distinction becomes
necessary.

2.1. Energy Estimates

The first preliminary energy estimate we will prove is

Proposition 2.1. Let (w0, w1) ∈ Hγ ≡ H2
Γ0

(Ω)×H1
Γ0

(Ω), then the energy of
system (1) as given by (4) satisfies the following estimate

∫ T

0

E(t)dt− C(1 + γ2)E(T )

≤ CT

{
(1 + γ2)

∫

Σ1

(w2
t + |∇wt|2)dΣ1 + l.o.(w)

+(1 + γ2)
∫

Q

b(x)w2
t dQ+

∫

Σ

|∆χ|dΣ

+
∫

Σ1

(∣∣∣∣
∂2w

∂τ2

∣∣∣∣
2

+
∣∣∣∣
∂2w

∂ν2

∣∣∣∣
2

+
∣∣∣∣
∂2w

∂ν∂τ

∣∣∣∣
2
)

dΣ1

}
(10)

for all T sufficiently large where CT depends on E(0) in an increasing
manner but does not depend on γ. Here, l.o.(w) represents terms in w
having order lower than the energy:

l.o.(w) = ‖w‖2
L2([0,T ];H3/2+ε(Ω))

+ ‖wt‖2L2(Q) (11)

where 0 < ε < 1
2 .

In the following computations, we will assume the necessary regularity
of solutions for (1) as guaranteed by [1] for sufficiently smooth initial
data. Then the final result will follow by a standard density argument.

P r o o f . Recalling (4) and by using the multiplier wt, it is straightfor-
ward to calculate the identity

E(t) + 2
(∫ t

0

∫

Γ1

{
w2

t + |∇wt|2
}

dΓ1 dt+
∫ t

0

∫

Ω

b(x)w2
t dΩ dt

)
= E(0). (12)
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This proves that energy is nonincreasing for the controlled system.

If we now multiply the state equation in (1) by w and integrate by
parts, we see that

∫

Q

{
w2

t + γ2|∇wt|2
}

dQ−
∫ T

0

a(w,w)dt−
∫

Q

(∆χ)2dQ

= (wt, w)Ω|T0 + γ2(∇wt,∇w)Ω|T0 + 1
2 (b(x)w,w)Ω|T0

+
∫

Σ1

w2dΣ1 + (w,w)Γ1 |T0 + (∇w,∇w)Γ1 |T0 . (13)

Subsequently, we multiply (1) by h · ∇w and again integrate by parts,
we obtain

∫

Q

[w,χ](h · ∇w)dQ

= (wt,h · ∇w)Ω|T0 + γ2(∇wt,h · ∇w)Ω|T0 +
∫

Q

w2
t dQ

+
∫ T

0

a(w,w) dt+
∫

Q

b(x)wt(h · ∇w) dQ

−1
2

∫

Σ1

(w2
t + γ2|∇wt|2)(h · ν)dΣ1 − 1

2

∫

Σ0

(h · ν)(∆w)2dΣ0

+
1
2

∫

Σ1

(h · ν) {
(∆w)2 + 2(1− µ)(w2

xy − wxxwyy)
}

dΣ1

+
∫

Σ1

{(
wt − ∂2wt

∂τ2
+ w

)
(h · ∇w) + ∂

∂ν (h · ∇w) ∂
∂νwt

}
dΣ1. (14)

From [4] (see page 115) we have

∫

Q

[w,χ](h · ∇w) dQ = −1
2

∫

Q

(∆χ)2dQ− 1
2

∫

Σ

h · ν(∆χ)2dΣ.

Putting these together, keeping track of the dependence on γ, and bound-
ing the traces in the last term of (14) and using (5) to eliminate the
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boundary integral on Σ0 we obtain
∫

Q

w2
t dQ+

∫ T

0

a(w,w) dt+
1
2

∫

Q

(∆χ)2dQ

≤ C1

∫

Q

bw2
t dQ+ C2

∫

Σ

(∆χ)2dΣ

+
∣∣(wt,h · ∇w)Ω|T0

∣∣ + γ2
∣∣(∇wt,h · ∇w)Ω|T0

∣∣

+C3(1 + γ2)
∫

Σ1

{
w2

t + |∇wt|2
}

dΣ1 + l.o.(w)

+C4

∫

Σ1

(∣∣∣∣
∂2w

∂τ2

∣∣∣∣
2

+
∣∣∣∣
∂2w

∂ν2

∣∣∣∣
2

+
∣∣∣∣
∂2w

∂ν∂τ

∣∣∣∣
2
)

dΣ1. (15)

Here, we have also used the estimate

−
∫

Q

bwt(h · ∇w) dQ ≤ C1

∫

Q

bw2
t dQ+ C2

∫

Q

|∇w|2dQ

≤ C1

∫

Q

bw2
t dQ+ l.o.(w). (16)

From (13) and (15), we obtain
∫ T

0

E(t)dt ≤ C
( ∣∣(wt, w)Ω|T0

] |+ γ2
∣∣(∇wt,∇w)Ω|T0

∣∣ +
∣∣(bw,w)Ω|T0

∣∣

+
∣∣(wt,h · ∇w)Ω|T0

∣∣ + γ2
∣∣(∇wt,h · ∇w)Ω|T0

∣∣ +
∣∣(w,w)Γ1 |T0

∣∣

+
∣∣(∇w,∇w)Γ1 |T0

∣∣
)

+ C1

∫

Σ

(∆χ)2dΣ + l.o.(w)

+C2(1 + γ2)
∫

Σ1

(w2
t + |∇wt|2) dΣ1 + C3

∫

Q

bw2
t dQ

+C4

∫

Σ1

(∣∣∣∣
∂2w

∂τ2

∣∣∣∣
2

+
∣∣∣∣
∂2w

∂ν2

∣∣∣∣
2

+
∣∣∣∣
∂2w

∂ν∂τ

∣∣∣∣
2
)

dΣ1. (17)

By the Sobolev imbeddings and trace theory, we see that

C1(1 + γ2)E(T ) + C2(1 + γ2)E(0)
≥

∣∣(wt, w)Ω|T0
∣∣ + γ2

∣∣(∇wt,∇w)Ω|T0
∣∣ +

∣∣(wt,h · ∇w)Ω|T0
∣∣

+ γ2
∣∣(∇wt,h · ∇w)Ω|T0

∣∣ +
∣∣(w,w)Γ1 |T0

∣∣ +
∣∣(∇w,∇w)Γ1 |T0

∣∣ . (18)

We now estimate
∣∣(bw,w)Ω|T0

∣∣ ≤ C

∫

Ω

(w2(T ) + w2(0)) dΩ (19)

≤ C{E(T ) + E(0)},
since b ∈ L∞(Ω).
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Using the results in [2], we obtain the bound

∫

Σ

|∆χ(w)|2dΣ ≤ εC · E2(0)
∫ T

0

E(t) dt+
1
4ε

∫

Σ

|∆χ(w)|dΣ. (20)

By appropriately selecting ε = C̃
E2(0) and using (18) – (20) in (17) along

with the estimate (12), we obtain the estimate

∫ T

0

E(t) dt− C(1 + γ2)E(T )

≤ C1

{
(1 + γ2)

∫

Σ1

(w2
t + |∇wt|2) dΣ1

+(1 + γ2)
∫

Q

bw2
t dQ+ l.o.(w) + ĈE2(0)

∫

Σ

|∆χ| dΣ

+
∫

Σ1

(∣∣∣∣
∂2w

∂τ2

∣∣∣∣
2

+
∣∣∣∣
∂2w

∂ν2

∣∣∣∣
2

+
∣∣∣∣
∂2w

∂ν∂τ

∣∣∣∣
2
)

dΣ1

}
, (21)

where the constants C, C1, and Ĉ do not depend on γ. This proves
Proposition 2.1.

2

Our next step is to develop appropriate estimates for the traces of the
solution, w, on the portion of the boundary, Γ1. To accomplish this, we
shall use the following result proved in [2].

Proposition 2.2. Let w satisfy (1). Then for any α > 0 and ε > 0 we have

∫ T−α

α

∫

Γ1

(∣∣∣∣
∂2w

∂τ2

∣∣∣∣
2

+
∣∣∣∣
∂2w

∂ν2

∣∣∣∣
2

+
∣∣∣∣
∂2w

∂ν∂τ

∣∣∣∣
2
)

dΓ1 dt

≤ CT,α,ε

{
‖wt‖2L2(Σ1) + ‖∇wt‖2L2(Σ1)

+E2(0) ‖χ(w)‖L1([0,T ];H3−ε(Ω)) + l.o.(w)
}
. (22)

Here, CT,α,ε does not depend on γ for 0 ≤ γ ≤M <∞.

We are now in a position to prove our main energy estimate.

Lemma 2.1. Let w satisfy the system (1) and let 0 < α < T and let ε > 0
be arbitrary. Then

E(T ) ≤ CT,α,ε(E(0))
{

(1 + γ2)
∫

Σ1

(w2
t + |∇wt|2) dΣ1 + l.o.(w)

+(1 + γ2)
∫

Q

bw2
t dQ+

∫

Σ

|∆χ(w)|dΣ +
∫ T

0

‖χ(w)‖H3−ε(Ω)dt

}
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where CT,α,ε(E(0)) is an increasing function of E(0) but does not depend
on γ.

P r o o f . Applying the result of Proposition 2.1 on the interval [α, T−α]
yields

∫ T−α

α

E(t) dt− (1 + γ2)E(T − α)

≤ CT (E(α))
{

(1 + γ2)
∫

Σ1α

(w2
t + |∇wt|2) dΣ1α +

∫

Σ

|∆χ(w)|dΣ

+(1 + γ2)
∫

Q

bw2
t dQ+ l.o.(w)

+
∫

Σ1α

(∣∣∣∣
∂2w

∂τ2

∣∣∣∣
2

+
∣∣∣∣
∂2w

∂ν2

∣∣∣∣
2

+
∣∣∣∣
∂2w

∂τ∂ν

∣∣∣∣
2
)

dΣ1α

}
(23)

where Σ1α ≡ Γ1 × [α, T − α]. By the dissipation of energy given in (12),
we have E(T ) ≤ E(T −α). Also, since CT (E(t)) is an increasing function of
E(t), we have

CT (E(α)) ≤ CT (E(0)). (24)

Applying Proposition 2.2 to the last term on the right hand side of (23)
and recalling (12) and (24) leads to the desired right hand side of the
inequality in Lemma 2.1. Again using (12), we see that

TE(T ) ≤ TE(T − α) ≤
∫ t−α

α

E(t) dt.

Then since, γ < 1, selecting T > T0 = 2C, we have the lemma. 2

2.2. Compactness–Uniqueness Argument

Making the observation that

∫

Σ

‖∆χ‖dΣ ≤ mes(Γ)1/2

∫ T

0

‖∆χ‖L2(Γ)dt

≤ C

∫ T

0

‖∆χ‖H1/2+ε(Ω)dt ≤ C

∫ T

0

‖χ‖H3−ε(Ω)dt (25)

and using the results of Lemma 2.1, we now have a bound on our energy
in terms of the controls and some undesirable terms (i. e. lower order
and nonlinear terms) and in which the dependence on γ is explicit. We
now use the following result proven in [2] which proves that the energy
of (1) is bounded in terms of the controls alone.
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Lemma 2.2. Let (w,wt) be a solution pair for (1). Then for any ε > 0,
∫ T

0

‖χ(w)‖H3−ε(Ω)dt+ l.o.(w)

≤ Cγ (E(0))
{∫

Σ1

{w2
t + |∇wt|2}dΣ1 +

∫

Q

b(x)w2
t dQ

}
(26)

where Cγ (E(0)) is an increasing function of the initial energy, E(0), and
may depend on γ. We note that l.o.(w) are as in (11).

We now must prove that the estimate (26) holds where C(E(0)) is
increasing in E(0) but does not depend on γ.

Lemma 2.3. Let (w,wt) be a solution pair for (1). Then for any ε > 0,
∫ T

0

‖χ(w)‖H3−ε(Ω)dt+ l.o.(w)

≤ C (E(0))
{∫

Σ1

{w2
t + |∇wt|2}dΣ1 +

∫

Q

b(x)w2
t dQ

}
(27)

where C (E(0)) is an increasing function of the initial energy, E(0), and
does not depend on γ.

P r o o f . The proof is by contradiction. Suppose (27) does not hold
for C(E(0)) independent of γ. Then there exists a sequence of functions
{wγ(t)} in Hγ which satisfies the system

w′′γ − γ2∆w′′γ + ∆2wγ + bw′γ = [wγ , χ(wγ)] in Q

wγ(0, ·) = wγ0 ; w′γ(0, ·) = wγ1 in Ω

wγ = ∂
∂νwγ = 0 on Σ0

∆wγ + (1− µ)B1wγ = − ∂
∂νw

′
γ on Σ1

∂
∂ν ∆wγ + (1− µ)B2wγ − γ2 ∂

∂νw
′′
γ = w′γ − ∂2

∂τ2w
′
γ + wγ on Σ1





(28)

and such that

lim
γ→0+

l.o.(wγ) +
∫ T

0

‖χ(wγ)‖H3−ε(Ω)dt
∫

Σ1

(
(w′γ)2 + |∇w′γ |2

)
dΣ1 +

∫

Q

b(w′γ)2dQ
= ∞ (29)

where the initial energy (as prescribed by initial data (wγ0, wγ1)) are uni-
formly bounded in γ. (Note: for convenience, we denote the time deriva-
tives by ′.)

Denoting the sequence

cγ ≡
{
l.o.(wγ) +

∫ T

0

‖χ(wγ)‖H3−ε(Ω)dt

}1/2

(30)
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we introduce the new variable

vγ ≡ wγ

cγ
. (31)

We observe that vγ satisfies the system

v′′γ − γ2∆v′′γ + ∆2vγ + bv′γ = [vγ , χ(wγ)] in Q

vγ(0, ·) = vγ0 ; v′γ(0, ·) = vγ1 in Ω

vγ = ∂
∂ν vγ = 0 on Σ0

∆vγ + (1− µ)B1vγ = − ∂
∂ν v

′
γ on Σ1

∂
∂ν ∆vγ + (1− µ)B2vγ − γ2 ∂

∂ν v
′′
γ = v′γ − ∂2

∂τ2 v
′
γ + vγ on Σ1.





(32)

By using (29), we see that vγ satisfies (by the quadratic dependence of
χ on wγ)

l.o.(vγ) +
∫ T

0

‖χ(vγ)‖H3−ε(Ω)dt

=
l.o.(wγ) +

∫ T

0

‖χ(wγ)‖H3−ε(Ω)dt

l.o.(wγ) +
∫ T

0

‖χ(wγ)‖H3−ε(Ω)dt
≡ 1 (33)

so that
lim

γ→0+

∫

Σ1

((v′γ)2 + |∇v′γ |2)dΣ1 +
∫

Q

b(v′γ)2dQ = 0 (34)

By (34), we have the following convergence properties:

(i) v′γ → 0 in L2(Q)

(ii) v′γ → 0 in H1(Σ1). (35)

In order to pass with a limit on (32), we need first to determine the
convergence properties for vγ and for our nonlinear terms.

To determine the convergence properties of vγ, we will use the energy
estimates which were derived in the previous section. Using an argument
similar to that found in [2], we apply the results of our well-posedness
theorem (see [1]) to (32) to obtain that

‖vγ‖C([0,T ];H2(Ω)) + ‖v′γ‖C([0,T ];L2(Ω)) + γ2‖∇v′γ‖C([0,T ];L2(Ω)) ≤ C (36)

which implies, in particular, that {vγ} are uniformly bounded in H1([0, T ]×
Ω). Hence, by the compact Sobolev imbeddings and trace theory, we see
that

vγ
w→ v in L2([0, T ];H2(Ω)) and v′γ

w→ v′ in L2([0, T ];L2(Ω))

=⇒ vγ
w→ v in H1([0, T ]× Ω)

=⇒ vγ → v in L2(Σ). (37)
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Also, since Eγ(0) ≤ M , the well-posedness for (1) yields similar conver-
gence properties for wγ. 2

We now state some convergence properties of the von Kármán nonlin-
earity, [vγ , χ(wγ)], which were proven (or are similar to results proven) in
[2].

Proposition 2.3. Let wγ
w→ w in H2(Ω). Then χ(wγ) w→ χ(w) in H2

0 (Ω).

We now seek to obtain the convergence of χ(wγ) in the space-time
cylinder, Q.

Proposition 2.4. Assume that

‖wγ‖C([0,T ];H2(Ω)) + ‖w′γ‖C([0,T ];L2(Ω)) + γ2‖∇w′γ‖C([0,T ];L2(Ω)) ≤ C

and

wγ
w→ w in L2([0, T ];H2(Ω))

w′γ
w→ w′ in L2([0, T ];L2(Ω)).

Then for every 0 < ε < 1
2 ,

χ(wγ) → χ(w) in C([0, T ];H3−ε(Ω)).

Proposition 2.5. Suppose that vγ
w→ v in H2(Ω) and wγ satisfies the as-

sumptions of Proposition 2.4. Then [vγ , χ(wγ)] → [v, χ(w)] in the sense of
distributions.

In passing with a limit on (32), we will consider two cases.

Case 1. c0 = {l.o.(w)+
∫ T

0
‖χ(w)‖H3−ε(Ω)dt}1/2 6= 0. By the result of Proposi-

tion 2.4, (30), the convergence properties of wγ and by the compactness
properties of l.o.(w), we have cγ → c0, hence v = w/c0. Using (35), Propo-
sition 2.5 and passing with a limit on (32), we obtain the limit system

∆2v = [v, χ(w)] = 1
c0

[w,χ(w)] in Q

v = ∂
∂ν v = 0 on Σ0

∆v + (1− µ)B1v = 0 on Σ1

∂
∂ν ∆v + (1− µ)B2v = 0 on Σ1.





(38)

Multiplying (38) by v and integrating by parts, it is easy to show that

0 = a(v, v) +
1
c20

∫

Ω

(∆χ(w))2dΩ,
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and conclude, by the positivity of a(v, v) that

v ≡ 0 in Q. (39)

By Proposition 2.4, (36), (37) and (39) we obtain
(
l.o.(vγ) +

∫ T

0

‖χ(vγ)‖H3−ε(Ω)dt

)
−→ 0.

and hence the proof of Lemma 2.3 for Case 1.

Case 2. c0 = 0, (i. e. χ(w) ≡ 0 and l.o.(w) = 0.) In this case, we will again
use the result of Proposition 2.4. Here we use the fact that χ(wγ) → 0 in
C([0, T ];H3−ε(Ω)) in combination with (36) and Proposition 2.5 in order
to obtain that [vγ(t), χ(wγ)(t)] → 0 in the sense of distributions. By using
(35) and passing with a limit on system (38), we obtain

∆2v = 0 in Q

v = ∂
∂ν v = 0 on Σ0

∆v + (1− µ)B1v = 0 on Σ1

∂
∂ν ∆v + (1− µ)B2v = 0 on Σ1.





(40)

The same argument as in Case 1 yields a contradiction and the proof. 2

2.3. Completion of Proof of Theorem 1.1

By using (12), (25) and Lemmas 2.1 and 2.2, we have shown that, for T
sufficiently large, the energy for system (1) satisfies

E(T ) ≤ C(E(0))(1 + γ2)
(∫

Σ1

(w2
t + |∇wt|2) dΣ1 +

∫

Q

bw2
t dQ

)
, (41)

where C(E(0)) is increasing in E(0) but does not depend on γ. Now using
an argument from nonlinear semigroup theory (as in [2]), we see that the
energy of (1) satisfies

Eγ>0(T ) ≤ Ce−αtEγ>0(0) (42)

where the constants C and α depend on the initial energy, Eγ>0(0), but
not on γ. This proves Theorem 1.1. 2

3. PROOF OF COROLLARY 1.1

We now show that the estimate (6) also holds for the energy of the lim-
iting system (7). We first note that by the well-posedness and regularity
of solutions to system (1), we have

‖wγ‖C([0,T ];H2
Γ0

(Ω)) + ‖w′γ‖C([0,T ];L2(Ω)) + γ2‖∇w′γ‖C([0,T ];L2(Ω)) ≤ C (43)
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so that wγ enjoys the following convergence properties:

wγ
w∗→ w in L∞([0, T ];H2

Γ0
(Ω))

w′γ
w∗→ w′ in L∞([0, T ];L2(Ω))

wγ
w→ w in H1([0, T ]× Ω)

wγ→w in L2(Σ1). (44)

In particular, this implies by the compact Sobolev imbeddings that wγ →
w strongly in L2([0, T ]× Ω).

We also know that [wγ , χ(wγ)] → [w,χ(w)] in the sense of distributions
(see Propositions 2.3 – 2.5). However, this is not sufficient to pass with a
limit on system (1) as γ → 0+. We must also have the following result,
which was proven in [3].

Lemma 3.1. Let (wγ , w
′
γ) be a solution pair to system (1). Then

‖w′γ‖2L2(Σ1) + ‖∇w′γ‖2L2(Σ1)

≤ C(‖w1‖2L2(Ω) + γ2‖∇w1‖2L2(Ω) + ‖w0‖H2
Γ0

(Ω))

where (w0, w1) ∈ Hγ are the initial data for system (1) and the constant C
does not depend on γ.

A consequence of Lemma 2.4 is that the traces w′γ |(Σ1) and ∇w′γ |(Σ1) are
uniformly bounded in γ in L2(Σ1). (This follows because the initial data
are not changing with γ and the fact that γ is bounded above.)

By the result of Lemma 2.4 and a standard limiting argument, we
obtain that

∇w′γ |Σ1

w→ ∇w′|Σ1 in L2(Σ1)

w′γ |Σ1

w→ w′|Σ1 in L2(Σ1). (45)

We note that this result does not follow from general trace theory and
interior regularity of solutions. In fact, w′γ ∈ H1

Γ0
(Ω) alone is not enough

to imply that the trace ∇w′γ |Σ1 is even well-defined!

Now combining (43) – (45), we may pass with a limit on (1) as γ → 0+

to obtain that w satisfies (7) (in the sense of distributions). We also



A Robustness Result for a von Kármán Plate 305

observe that for t > T sufficiently large we have

Eγ=0(t)

= 1
2

(
‖w′(t)‖L2(Ω) + a(w(t), w(t)) +

∫
Ω
|∆χ(w(t))|2dΩ +

∫
Γ1
w2(t) dΓ1

)

≤ lim infγ
1
2

(
‖w′γ(t)‖2

L2(Ω)
+ γ2‖∇w′γ(t)‖2

L2(Ω)
+ a(wγ(t), wγ(t))

+
∫
Ω
|∆χ(wγ(t))|2dΩ +

∫
Γ1
w2

γ(t)dΓ1

)

≤ lim infγ Ce−αt
{
‖w1‖2L2(Ω)

+ γ2‖∇w1‖2L2(Ω)
+ a(w0, w0)

+
∫

Ω
|∆χ(w0)|2dΩ +

∫
Γ1

(w0|Γ)2 dΓ1

}

= Ce−αtEγ=0(0),

where we have used (42). This gives us the proof of Corollary 1.1. 2

(Received March 16, 1993.)
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