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NONSMOOTH OPTIMAL DESIGN PROBLEMS
FOR THE KIRCHHOFF PLATE
WITH UNILATERAL CONDITIONS

Jan SokoÃlowski1

The form of directional derivative of the metric projection in the Sobolev space H2
0 (Ω)

onto the convex set K = {f ∈ H2
0 (Ω) | f ≥ ψ} is derived in [14].

In the present paper the result is used to obtain the first order optimality conditions for
a class of nonsmooth optimal design problems for the Kirchhoff plate with an obstacle.

1. INTRODUCTION

The paper is concerned with the optimal design problems for the fourth order vari-
ational inequalities. Namely, the first order necessary optimality conditions are
derived for the class of optimization problems under consideration.

The differential stability of metric projection in the Sobolev space H1
0 (Ω) onto the

cone of nonnegative elements is considered by Mignot [9]. Mignot derived the form
of the so–called conical differential of the metric projection. However, the technique
of proof used by Mignot is based on potential theory in Dirichlet spaces, therefore,
his argument cannot be directly applied in the Sobolev space H2

0 (Ω).
The differential stability of metric projection in the Sobolev space H2

0 (Ω) onto
the cone of nonnegative elements is investigated by Rao and SokoÃlowski [14]. In
particular, in [14] the sufficient conditions are obtained under which the set K is
polyhedric at a given point f ∈ K. The question of polyhedricity is adressed in
[14] since it implies directional differentiability of the metric projection onto K with
an explicit form of the differential [5, 9], i. e., the so–called conical differential of
the metric projection onto the cone of nonnegative elements. It follows, we refer
the reader to [19] for the details, that the conical differential is given as a metric
projection onto the intersection of a tangent cone with a supporting hyperplane.

The paper is organized as follows. In Section 2 the necessary optimality conditions
for an optimal design problem for the Kirchhoff plate with an obstacle are derived.
In Section 3 the optimal design of an obstacle is considered.
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The variational inequality for the Kirchhoff model of an elastic plate with an
obstacle is used in the present paper, however, it seems that similar results can be
derived as well as for the von Kármán plate model.

We refer the reader to [5, 9] for the related results on the differential stability of
metric projections in Hilbert space. Some applications of the differential stability
of metric projection onto convex sets in Sobolev spaces are presented in [1] – [3],
[6], [12] – [19]. In particular the sensitivity analysis of solutions of constrained opti-
mization problems is studied in [16, 17]. The applications to optimal design problems
are given in [1] – [3], [6], [7], [19]. We refer the reader to [4] for general results on vari-
ational inequalities.

2. OPTIMAL DESIGN PROBLEM

We derive the necessary optimality conditions for an optimal design problem for
the Kirchhoff plate with an obstacle. We refer the reader to [1], [8] where such a
problem is defined, and to [10], [19] for the related results on nonsmooth optimization
problems for the linear elliptic systems. Let

a(h; ·, ·) : H2
0 (Ω)×H2

0 (Ω) → IR

be the following bilinear form associated to the Kirchhoff plate [1], [10], Ω ⊂ IR2 is
a smooth domain with the boundary Γ,

a(h; y, ϕ) =
∫

Ω

h3(x) bijkl
∂2y

∂xi∂xj
(x)

∂2ϕ

∂xk∂xl
(x) dx, ∀ y, ϕ ∈ H2

0 (Ω) (2.1)

here we use the summation convention over the repeated indices i, j, k, l = 1, 2.
The bilinear form (2.1) is defined in standard way for the following fourth order

elliptic operator:
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where: h : Ω → IR is thickness of the plate, h ∈ L∞(Ω), ν is Poisson ratio which
characterizes plate material, ν ∈ (0, 0.5).

We assume that

h ∈ Uad = {h ∈ L∞(Ω) | 0 < hmin ≤ h(x) ≤ hmax, for a. e. x ∈ Ω} (2.2)

and we recall that the constants bijkl, i, j, k, l = 1, 2 satisfy the following conditions

bijkl = bjikl = bklij , i, j, k, l = 1, 2
bijkl ξij ξkl ≥ c ξij ξij , c > 0,
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for all symmetric matrices [ξij ]2×2.
We consider a boundary value problem with the homogenous boundary con-

ditions. However, there is no additional difficulty to derive the same results for
the problem with non–homogenous boudary conditions. It follows by our asump-
tions (2.2) – (2.4) that the bilinear form (2.1) is continuous, symmetric, and H2

0 (Ω)–
elliptic, i. e.,

a(h; y, y) ≥ α‖y‖2H2(Ω), α > 0, ∀ y ∈ H2
0 (Ω) .

Now let us denote
K = {ϕ ∈ H2

0 (Ω) | ϕ(x) ≥ ψ(x) in Ω} (2.5)

where ψ(·) ∈ H2(Ω) ⊂ C(Ω̄) is a given element such that the set (2.5) is non–empty,
in particular ψ(x) < 0 on Γ = ∂Ω. For a given element h ∈ Uad we denote by
w = w(h;x), x ∈ Ω, the unique solution of the following variational inequality

w ∈ K : a(h;w,ϕ− w) ≥
∫

Ω

f(ϕ− w) dx, ∀ϕ ∈ K

where f ∈ H−2(Ω), H−2(Ω) being the dual of H2
0 (Ω).

The solution to the above variational inequality is nothing else but the metric
projection of an element in the space H2

0 (Ω) onto the convex set K with respect
to the scalar product defined by the bilinear form (2.1), i. e. w = PK(g) for some
g ∈ H2

0 (Ω) which means that

w ∈ K : a(h;w − g, ϕ− w) ≥ 0 ∀ϕ ∈ K,
where g ∈ H2

0 (Ω) : a(h; g, ϕ) =
∫

Ω

fϕdx ∀ϕ ∈ H2
0 (Ω)

It is shown in [14], that under some assumptions on the support of a Radon measure
defined for solutions to the variational inequality under consideration, the conical
differential at a given h ∈ L∞(Ω) of the metric projection onto the set (2.5) exists
for any direction. It implies that the mapping

L∞(Ω) 3 h→ w(h; ·) ∈ H2
0 (Ω)

at the given point h ∈ Uad is directionally differentiable, furthermore, the explicit
form of differential is obtained. This is given in

Lemma 1. Let µ be the Radon measure defined by
∫
ϕ dµ = a(h;w,ϕ)−

∫

Ω

fϕ dx ∀ϕ ∈ H2
0 (Ω)

and assume that the support F = sptµ of the measure µ satisfies the following
condition:

For any ϕ ∈ H2
0 (Ω), ϕ = 0 on F = sptµ, it follows that ϕ ∈ H2

0 (Ω \ F ).
Then for ε > 0, ε small enough

∀ v ∈ L∞(Ω) : w(h+ εv) = w(h) + εq(v) + o(ε),
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where ‖o(ε)‖H2
0 (Ω)/ε → 0 with ε ↓ 0 and q = q(v) ∈ H2

0 (Ω), v ∈ L∞(Ω), is given as
the unique solution to the following variational inequality

q ∈ S : a(h; q, ϕ− q) + a′v(h;w(h), ϕ− q) ≥ 0 ∀ϕ ∈ S,
where

a′v(h; y, ϕ) =
∫

Ω

3h2(x)v(x)bijkl
∂2y

∂xi∂xj
(x)

∂2ϕ

∂xk∂xl
(x) dx, ∀ y, ϕ ∈ H2

0 (Ω)

S = {ϕ ∈ H2
0 (Ω) | ϕ = 0 on sptµ, ϕ ≥ 0 on Ξ \ sptµ}

Ξ = {x ∈ Ω | w(h;x) = ψ(x)} is compact.

Remark 1. The regularity condition required in Lemma 1 on the support F =
sptµ of the measure µ implies the conical differentiability of the metric projection
in H2

0 (Ω) onto the convex set K, i. e., if the condition is satisfied then the set K
is polyhedric [14] at w(h) = PK(g(h)), where g(h) ∈ H2

0 (Ω) is given as the unique
solution to the equation

a(h; g(h), ϕ) =
∫

Ω

fϕ dx ∀ϕ ∈ H2
0 (Ω).

The following notation is introduced

Uad = Uad ∩Hs(Ω)

for some s > 0. Let us consider the following optimal design problem for the Kirch-
hoff plate, β > 0 is a given constant.

Problem (P): Find an element h ∈ Uad which minimizes the functional

J(h) = max
x∈Ω

[w(h;x)] +
β

2
‖h‖2Hs(Ω)

over the set Uad.

It is clear that for any β > 0 there exists an optimal solution h? ∈ Uad to the above
problem. In the same way as in Lemma 1 we assume that the following condition is
satisfied: For any ϕ ∈ H2

0 (Ω), ϕ = 0 on F ? = sptµ, it follows that ϕ ∈ H2
0 (Ω \ F ?),

where F ? denotes the support of the Radon measure µ defined by
∫
ϕ dµ = a(h?;w?, ϕ)−

∫

Ω

fϕ dx ∀ϕ ∈ H2
0 (Ω)

and w? is a solution to (2.5) for h?.
We cannot assert in general the existence of an optimal solution h ∈ Uad for

β = 0. In such a case the notion of a generalized solution of problem (P) can
be introduced [10]. We derive the necessary optimality conditions for problem (P)
assuming that β > 0 and therefore there exists an optimal solution. The necessary
optimality conditions of the same type can be obtained for a generalized solution to
the problem (P) for β = 0.
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Theorem 1. An optimal solution h? ∈ Uad of the problem (P) satisfies the follow-
ing first order optimality conditions

max
x∈Ω?(h?)

sign {w(h?;x)}q(v − h?;x) + β(h?, v − h?)Hs(Ω) ≥ 0 ∀ v ∈ Uad ,

where

Ω?(h) =
{
x? ∈ Ω|max

x∈Ω
|w(h;x)| = w(h;x?)

}
∀h ∈ Uad.

The proof of Theorem 1, follows by an application of Lemma 1 and a standard
technique.

Remark 2. An optimal design problem for the Kirchhoff plate with a finite number
of pointwise obstacles is considered in [3]. The results derived in [3] are not com-
parable with our result presented here, since we assume that an obstacle is smooth
i. e., ψ(.) ∈ H2(Ω). We refer also to [7] for the related results on optimal design of
elastic plates.

3. SHAPE OPTIMIZATION OF OBSTACLES

In this section it is assumed that the thickness of the plate is fixed. Let there be given
a closed and convex set Ψad ⊂ H2(Ω) such that there exist elements a ∈ H

3
2 (Γ),

a(x) ≤ a0 < 0 for all x ∈ Γ, b ∈ H 1
2 (Γ),

ψ|Γ = a,
∂ψ

∂n|Γ = b ∀ψ ∈ Ψad.

The following notation is used

Kψ = {ϕ ∈ H2
0 (Ω)|ϕ ≥ ψ in Ω},

w = wψ, ψ ∈ Ψad, is a solution to the variational inequality

w ∈ Kψ : a(h;w,ϕ− w) ≥
∫

Ω

f(ϕ− w) dx ∀ϕ ∈ Kψ. (3.1)

Let us consider the following nonsmooth shape optimization problem [8]

Problem (P’): Find an element ψ? ∈ Ψad which minimizes the functional

J (ψ) = max
x∈Ω

|wψ(h;x)|

over the set Ψad.
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Theorem 2. There exists1 an optimal solution ψ? ∈ Ψad to the above problem.
Assume that the Radon measure ν defined by

∫
ϕdν = a(h;wψ? , ϕ)−

∫

Ω

fϕ dx ∀ϕ ∈ H2
0 (Ω)

satisfies the following condition:
For any ϕ ∈ H2

0 (Ω), ϕ = 0 on F = spt ν, it follows that ϕ ∈ H2
0 (Ω \ F ).

Then the optimal solution ψ? ∈ Ψad satisfies the first order optimality conditions

max
x∈Ω?(ψ?)

sign {wψ?(h;x)}pψ−ψ?(h;x) ≥ 0, ∀ψ ∈ Ψad (3.2)

where
Ω?(ψ) = {x ∈ Ω|J (ψ) = wψ(h;x)} ∀ψ ∈ Ψad

and p? = pψ−ψ? , ψ ∈ Ψad, is given as a unique solution to the following variational
inequality

p? ∈ Sψ−ψ? : a(h; p?, ϕ− p?) ≥ 0 ∀ϕ ∈ Sψ−ψ?

The convex cone Sψ−ψ? takes the following form

Sψ−ψ? = {ϕ ∈ H2
0 (Ω)|ϕ = ψ − ψ? on spt ν ϕ ≥ ψ − ψ? on Ξ \ spt ν}.

Here
Ξ = {x ∈ Ω]wψ?(h;x) = ψ?(x)}

The above theorem can be proved in the following way. Let χ ∈ H2(Ω) be an
element such that

χ|Γ = a,
∂χ

∂n |Γ
= b.

Then z = wψ + χ − ψ ∈ H2
0 (Ω) is given as a unique solution to the following

variational inequality

χ ≤ z ∈ H2
0 (Ω) : a(h; z, ϕ−z) ≥

∫

Ω

f(ϕ−z) dx−a(h;χ+ψ,ϕ−z) χ ≤ ϕ ∈ H2
0 (Ω).

Under our assumptions the affine mapping

H2(Ω) 3 ψ → z(ψ) ∈ H2
0 (Ω)

is conically differentiable [14], which leads to the first order optimality conditions
for the optimization problem under consideration. The optimality conditions for the
composite cost fuctional with max type function are derived in the same way as e. g.
in [10] for a linear plate model or in [19] in the case of multiple eigenvalues.

(Received May 7, 1992.)

1The existence of an optimal solution for a class of such problems is proved by A. M. Khludnev.
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