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Olga Štěpánková, Igor Vajda, Pavel Źıtek,
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CENTRAL LIMIT THEOREM FOR RANDOM
MEASURES GENERATED BY STATIONARY
PROCESSES OF COMPACT SETS

Zbyněk Pawlas

Random measures derived from a stationary process of compact subsets of the Euclidean
space are introduced and the corresponding central limit theorem is formulated. The result
does not require the Poisson assumption on the process. Approximate confidence intervals
for the intensity of the corresponding random measure are constructed in the case of fibre
processes.

Keywords: central limit theorem, fibre process, point process, random measure, space of
compact sets

AMS Subject Classification: 60D05, 60F05, 60G57

1. INTRODUCTION

Stochastic geometry is a part of mathematics which deals with random geometrical
structures. Point processes play a fundamental role in stochastic geometry. Replac-
ing ordinary points by compact sets, we obtain processes of compact sets. Random
patterns of more complicated geometrical objects can be studied in this way. It is
possible to associate a measure with compact sets. The sum of contributions of this
measure of all observable sets defines a random measure.

Only stationary processes are considered in this paper. A process is stationary
if its characteristics are invariant under translations. The simplest parameter of the
random measure derived from the stationary point process is its intensity. We men-
tion two unbiased estimators of the intensity and study their asymptotic properties
as the observation window expands to the whole space.

A central limit theorem was established in the case of the stationary Poisson
process of compact sets in [8]. The aim of this work is to formulate a similar
theorem, which does not require the Poisson assumption. It is shown that the central
limit theorem for a stationary process of compact sets follows from the asymptotic
normality of the underlying point process of reference points.

A suitable tool for establishing the central limit theorem for the number of points
of a point process is provided by verifying mixing conditions and using a central
limit theorem for stationary mixing random fields (see [5], [6], [7]).
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Statistical applications of the main theorem are discussed at the end of the paper.
In the special case of a stationary fibre process, asymptotic approximate confidence
intervals are constructed.

2. STATIONARY INDEPENDENTLY MARKED POINT PROCESSES

In this section we summarize basic definitions from the theory of point processes
and random measures, for more details see [1] and [10].

By (Rd,Bd) denote the d-dimensional Euclidean space with Borel σ-algebra. We
write Bd

0 for a family of bounded Borel sets in Rd. Let M be the space of locally
finite Borel measures µ on Rd (i.e. µ(B) < ∞ for every B ∈ Bd

0) and let M be the
smallest σ-algebra onM making the mappings µ 7→ µ(B) measurable for all B ∈ Bd.
A random measure on Rd is a random element in (M,M), i.e. a measurable mapping
Ψ : (Ω,A, P ) → (M, M), where (Ω,A, P ) is an abstract probability space. Note that
Ψ(B) is a random variable for each fixed B ∈ Bd. The distribution Q = PΨ−1 of
the random measure Ψ is the induced probability measure on (M,M) such that
Q(U) = P (Ψ ∈ U). The intensity measure of Ψ is a Borel measure on Rd defined as
Λ(B) = EΨ(B).

Further, let
N = {µ ∈M : µ(B) ∈ N ∪ {0,∞}, B ∈ Bd}

be the space of locally finite counting measures equipped with σ-algebra N which is
defined as the trace of M, i.e. N = {M ∩N : M ∈ M}. A random element Φ in the
space (N , N) is called a point process. Obviously, the point process is a special case
of the random measure. A point process is called simple if P (Φ ∈ N ∗) = 1, where

N ∗ = {ν ∈ N : ν({x}) ≤ 1 ∀x ∈ Rd}.
The moment measures of higher orders for point processes can be introduced as

follows. The kth-order factorial moment measure of the point process Φ is defined
by

M (k)(B) = EΦk({(x1, . . . , xk) ∈ B : xi 6= xj for i 6= j}), B ∈ (Bd)k.

Further, the kth-order factorial cumulant measures are given by (see (5.5.15) in [1])

γ(k)(A1× · · · ×Ak) =
k∑

j=1

(−1)j−1(j− 1)!
∑

T ∈Pjk

j∏

i=1

M (|Si(T )|)(Ai,1× · · · ×Ai,|Si(T )|),

where T ∈ Pjk is the partition of the set {1, . . . , k} into j sets S1(T ), . . . , Sj(T ). The
first-order factorial moment measure and the first-order factorial cumulant measure
coincide with the intensity measure. The second-order factorial cumulant measure
is called the factorial covariance measure.

For x ∈ Rd let tx be the shift operator on M:

txµ(B) = µ(B − x), B ∈ Bd.

A random measure is stationary if its distribution Q is translation invariant, i.e.
Qt−1

x = Q for all x ∈ Rd. If the intensity measure of a stationary random measure is
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locally finite then it is a multiple of d-dimensional Lebesgue measure. This multiple
is called the intensity of the random measure.

For a stationary point process Φ with intensity λ, the kth-order reduced factorial
cumulant measure γ

(k)
red is defined by the desintegration (see [1], Lemma 10.4.III)

∫

(Rd)k

f(x1, . . . , xk)γ(k)(dx1, . . . , dxk) =

= λ

∫

Rd

∫

(Rd)k−1
f(x, x + y1, . . . , x + yk−1)γ

(k)
red(dy1, . . . , dyk−1) dx,

where f is an arbitrary bounded measurable function with bounded support. The
total variation of the signed measure γ

(k)
red is denoted by |γ(k)

red|.
Let (K′, dH) be the space of non-empty compact subsets of Rd endowed with the

Hausdorff metric

dH(K,L) = max
{

sup
x∈K

d(x, L), sup
y∈L

d(y, K)
}

, K, L ∈ K′,

where d(x, L) = infz∈L ‖x−z‖ is the distance from the point x to the set L. Further,
let K′0 be the space of sets from K′ which have the lexicographic minimum point at
the origin, K′0 is the closed subset of K′. Throughout the paper, by a stationary
process of compact sets we will mean the marked point process (see Chapter 4.2 in
[10])

Φm =
∑

i:i≥1

δ(xi,Ki),

such that the corresponding process of unmarked points Φ =
∑

i:i≥1 δxi is a simple
stationary point process with a finite intensity λΦ > 0 and the marks {Ki, i ≥ 1}
are independent identically distributed copies of a random compact set K0 (random
element in the space K′0), independent of the process Φ. The distribution of K0 will
be denoted by Λ0 (called a distribution of the typical mark). For notational simplic-
ity, we write EΛ0f(K0) =

∫
K′0 f(K0) Λ0(dK0), where f is an arbitrary measurable

function.
Let ζ be an arbitrary translation invariant Borel measure on Rd such that K 7→

ζ(K) is a measurable mapping from K′.
Put

Ψ(B) =
∑

i:i≥1

ζ((xi + Ki) ∩B), B ∈ Bd
0 . (1)

Assume that EΛ0ζ(K0) < ∞. Then Ψ is a stationary random measure on Rd

with the intensity

λΨ = λΦ

∫
ζ(K0) Λ0(dK0) = λΦEΛ0ζ(K0). (2)

This formula can be easily deduced from Campbell’s theorem for marked point pro-
cesses (see (4.2.4) in [10]) together with the translation invariance of ζ and Fubini’s
theorem.
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3. CENTRAL LIMIT THEOREMS FOR RANDOM SUMS

Let ξ1, ξ2, . . . be independent identically distributed random variables with the mean
µ and the finite variance σ2. Denote Sn =

∑n
i=1 ξi, n ∈ N.

The well-known Lévy–Lindeberg central limit theorem states that

Sn − nµ√
n

n→∞−→ N(0, σ2) in distribution.

When the number Nn of summands is random such that Nn
n→∞−→ ∞ in proba-

bility, the convergence to a Gaussian limit was first considered in the classical work
of H. Robbins [9]. More general versions of limit theorems for normalized random
variables SNn can be found in [3]. We will use the central limit theorem for random
sums in the following form:

Theorem 1. Let Nn be integer positive random variables independent of the se-
quence ξi for every n ∈ N. Let an be a sequence of real numbers such that an

n→∞−→ ∞
and

Nn

an

n→∞−→ θ in probability, and
Nn − ENn√

an

n→∞−→ N(0, σ2
N ) in distribution,

where θ > 0 is a real constant. Then

SNn − µENn√
an

n→∞−→ N(0, θσ2 + µ2σ2
N ) in distribution.

4. THE CENTRAL LIMIT THEOREM

We are now in the position to formulate and to prove the main result of this work.
Let Ψ be a random measure generated by a stationary process of compact sets
Φm. The unbiased estimator of the intensity λΨ is Ψ(W )

|W | , where |W | denotes the d-
dimensional Lebesgue measure of W . The asymptotic normality of this estimator is
guaranteed by the central limit theorem for the unmarked point process Φ together
with conditions on second-order properties of the marked process Φm, which ensure
the existence of the variance of the estimator.

We consider that the window W expands to the whole space in a regular way.
The sequence of bounded sampling windows Wn ∈ Bd

0 is a convex averaging sequence
if it satisfies the following three conditions (see Definition 10.2.I in [1]):

1. Wn are convex,

2. Wn ⊆ Wn+1,

3. sup{r : Wn contains a ball of radius r} n→∞−→ ∞.
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Theorem 2. Let Wn ⊆ Rd be the convex averaging sequence. Assume that

EΛ0ζ(K0)2 =
∫

K′0
ζ(K0)2 Λ0(dK0) < ∞ (3)

and the reduced factorial covariance measure γ
(2)
red has bounded total variation, i.e.

|γ(2)
red|(Rd) < ∞. (4)

If √
|Wn|

(
Φ(Wn)
|Wn| − λΦ

)
n→∞−→ N(0, σ2

Φ) in distribution, (5)

where σ2
Φ = λΦ(1 + γ

(2)
red(Rd)), then we have

√
|Wn|

(
Ψ(Wn)
|Wn| − λΨ

)
n→∞−→ N(0, σ2

Ψ) in distribution,

where σ2
Ψ = λΦ

(
EΛ0ζ(K0)2 + (EΛ0ζ(K0))2γ

(2)
red(Rd)

)
.

P r o o f . From the definition of moment measures we get

varΦ(Wn) = λΦ|Wn|+ γ(2)(Wn ×Wn) = λΦ|Wn|+ λΦ

∫

Wn

γ
(2)
red(Wn − x) dx

≤ λΦ|Wn|(1 + |γ(2)
red|(Rd)).

Applying Chebyshev’s inequality it is easily shown that Φ(Wn)
|Wn|

n→∞−→ λΦ, in proba-
bility. Thus, using Theorem 1 we obtain

1√
|Wn|




Φ(Wn)∑

i=1

ζ(Ki)− λΨ|Wn|

 n→∞−→ N(0, σ2

Ψ), in distribution,

where σ2
Ψ = λΦ var ζ(K0) + (Eζ(K0))2σ2

Φ = λΦ(Eζ(K0)2 + (Eζ(K0))2γ
(2)
red(Rd).

By Slutzky’s theorem it remains to show that

1√
|Wn|

∑

i≥1

(
ζ((xi + Ki) ∩Wn)− 1Wn(xi)ζ(Ki)

)
n→∞−→ 0, in probability.

The left-hand side can be rewritten as

1√
|Wn|

∑

i≥1

1W c
n
(xi)ζ((xi+Ki)∩Wn)− 1√

|Wn|
∑

i≥1

1Wn(xi)ζ((xi+Ki)∩W c
n) = Xn−Yn.

The expectation of the difference Xn − Yn is equal to zero. In order to accomplish
the proof, it suffices to verify that varXn + varYn

n→∞−→ 0. Campbell’s theorem and
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the definition of reduced factorial cumulant measures yields

varXn =
1√
|Wn|

∑

xi∈W c
n

ζ((xi + Ki) ∩Wn)

=
1

|Wn|

(
E

∑

xi∈W c
n

ζ((xi + Ki) ∩Wn)2

+E
∑

xi 6=xj∈W c
n

ζ((xi + Ki) ∩Wn)ζ((xj + Kj) ∩Wn)

−
(

E
∑

xi∈W c
n

ζ((xi + Ki) ∩Wn)
)2

)

=
λΦ

|Wn|

(
EΛ0

∫

W c
n

ζ((x + K0) ∩Wn)2 dx

+EΛ0

∫
W c

n

∫
W c

n−x
ζ((x + K0) ∩Wn)EΛ0ζ((x + y + K1) ∩Wn) γ

(2)
red(dy) dx

)

≤ λΦEΛ0

∫ ∫
1K0(y1)1K0(y2)

|W c
n∩(Wn−y1)∩(Wn−y2)|

|Wn| ζ(dy1) ζ(dy2)

+λΦEΛ0EΛ0

∫ ∫ ∫
1K0(y1)1K1(y2)

|W c
n∩(Wn−y1)∩(Wn−y−y2)|

|Wn| γ
(2)
red(dy) ζ(dy1) ζ(dy2)

Making use of the assumptions (3) and (4) and the fact that (see [2])

|Wn ∩ (Wn − x)|
|Wn|

n→∞−→ 1 for any fixed x ∈ Rd,

an immediate consequence of the Lebesgue dominated convergence theorem is that
varXn

n→∞−→ 0. Quite similar arguments lead to varYn
n→∞−→ 0. This completes the

proof. 2

The assumption (5) is fulfilled for the stationary Poisson point process Φ (random
variables Φ(Wn) have the Poisson distribution). For general stationary point process
Φ, the validity of the central limit theorem (5) is ensured if Φ satisfies strong mixing
conditions (e.g. β-mixing [5], [6] or Brillinger-mixing [7]). Under mild additional as-
sumptions it is known that this is the case for quite a few classes of point processes
– processes derived from Poisson point process, Gibbs point processes under Do-
brushin’s uniqueness condition, point processes generated by a Voronoi tesselation
(e.g. vertices or midpoints of edges).

We will consider a doubly stochastic Poisson process (Cox process). Let Λ be
a random measure on Rd with a distribution Q on (M,M) and Pµ be a distribution
of the Poisson process with the intensity measure µ. Then the Cox process Φ with
driving random measure Λ has distribution (see Chapter 5.2 in [10])

QΦ(U) =
∫

Pµ(U)Q(dµ), U ∈ N .
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The intensity measure of Cox process and the intensity measure of Λ are equal. If
Λ is stationary, Φ is stationary as well.

The following theorem shows that the condition (5) follows from the central limit
theorem for a driving measure Λ, see [3] and [4] for a one-dimensional version.

Theorem 3. Let Φ be a stationary Cox process controlled by a random measure
Λ with intensity λΛ. Assume that

Λ(Wn)− λΛ|Wn|√
|Wn|

n→∞−→ N(0, σ2
Λ), in distribution. (6)

Then
Φ(Wn)− λΛ|Wn|√

|Wn|
n→∞−→ N(0, σ2

Φ), in distribution,

where σ2
Φ = σ2

Λ + λΛ.

P r o o f . The proof is based on the formula for the characteristic function of
Poisson process (see (6.4.6) and (7.4.10) in [1])

∫
eitν(W ) Pµ(dν) = exp{µ(W )(eit − 1)}, W ∈ Bd.

Then, for the Cox process we have

EeitΦ(Wn) =
∫

eitν(Wn) QΦ(dν) =
∫ ∫

eitν(Wn) Pµ(dν) Q(dµ)

= E exp{Λ(Wn)(eit − 1)} = ϕn

(
eit − 1

i

)
,

where ϕn is the characteristic function of Λ(Wn). From (6) it follows that

e−itλΛ

√
|Wn|ϕn

(
t√
|Wn|

)
n→∞−→ e−

t2σ2
Λ

2 .

Consequently,

exp{−λΛ|Wn|
(

e
it√
|Wn| − 1

)
}ϕn


e

it√
|Wn| − 1

i


 n→∞−→ e−

t2σ2
Λ

2 .

Next, we use a Taylor expansion of exp
{

it√
|Wn|

}
and get

e−itλΛ

√
|Wn|ϕn


e

it√
|Wn| − 1

i


 n→∞−→ exp{−1

2
t2

(
σ2

Λ + λΛ

)}.

This completes the proof because the term on left-hand side is equal to

E exp{itΦ(Wn)−λΛ|Wn|√
|Wn|

}. 2
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5. FIBRE PROCESS

If Φm =
∑

i:i≥1 δ(xi,Ki) is a marked point process with a mark space K′0, the corre-
sponding set-theoretic union

Ξ =
⋃

i:i≥1

(xi + Ki)

is called a germ-grain model (see Chapter 6.4 in [10]). The points xi are called germs
and the compact sets Ki are called grains. If the point process of germs is Poisson,
the germ-grain model is the well-known Boolean model. A central limit theorem for
the random measure associated with the Boolean model is derived in [8].

For this statistical analysis, only an observation of the germ-grain model in a sam-
pling window is available. Typically, grains overlap and it is not possible to evaluate
the associated random measure Ψ defined by (1). Therefore, we restrict our consid-
erations to lower-dimensional grains. The most usual examples are fibre and surface
processes (see [10], Chapter 9).

In what follows we consider fibre processes. The measure ζ is taken to be the
one-dimensional Hausdorff measure H1. By a fibre K we mean a compact connected
set K such that H1(K) < ∞. Suppose that Φm is a stationary fibre process and
Ψ is the associated random measure. Then Ψ is the total sum of lengths of fibres
observable in the sampling window. The intersection of any two different shifted
grains (fibres) has ζ-measure zero. Thus, Ψ can be evaluated. From Theorem 2 we
know that Ψ(B) is asymptotically normal distributed.

W

Fig. 1. An example of a realization of a stationary fibre process

in a planar window W with denoted reference points.

The intensity λΨ of Ψ is called the length intensity of a stationary fibre process.
Recall that by (2) λΨ = λΦEΛ0H

1(K0) is the product of the intensity of the process
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and the mean length of fibre. The usual unbiased estimator of the length intensity
is

λ̂
(1)
Ψ,n =

Ψ(Wn)
|Wn| .

Under the assumptions of Theorem 2 it follows
√
|Wn|

(
λ̂

(1)
Ψ,n − λΨ

)
n→∞−→ N(0, σ2

1), in distribution, (7)

where σ2
1 = λΦ varH1(K0) + (EΛ0H

1(K0))2σ2
Φ.

If EΛ0H
1(K0) is known, it suffices to estimate λΦ. Then we can define another

unbiased estimator of λΨ which is based on the number of germs (reference points)
lying in the sampling window

λ̂
(2)
Ψ,n =

Φ(Wn)
|Wn| EΛ0H

1(K0).

Since we assume (5), we have
√
|Wn|

(
λ̂

(2)
Ψ,n − λΨ

)
n→∞−→ N(0, σ2

2), in distribution, (8)

where σ2
2 = σ2

Φ(EΛ0H
1(K0))2.

6. STATISTICAL APPLICATIONS

Central limit theorems enable the construction of the asymptotic confidence intervals
or the testing of hypotheses. These require the asymptotic variances to be known. In
(7) and (8), asymptotic variances of the estimators λ̂

(i)
Ψ,n(i = 1, 2) are unknown. Our

aim is to construct asymptotically unbiased and consistent estimators for σ2
i , i = 1, 2.

We assume in this section that sampling windows have the form Wn = [−n, n]d.
Let G : Rd → R1 be a symmetric non-negative bounded function with the support
in W1 and lim‖x‖→0 G(x) = G(0) = 1. Assume that bn is a sequence of positive
numbers (bandwidths) such that b1 = 1, bn ↘ 0, nbn →∞ and nd−1bd

n → 0. Put

Gn = (nbn)d

∫

Rd

G(x) dx =
∫

Rd

G

(
x

nbn

)
dx.

In addition to (4), assume that the reduced factorial cumulant measures γ
(3)
red and

γ
(4)
red are also of bounded variation.

The sequence of estimators of the variance σ2
Φ was introduced in [5], namely

σ̂2
Φ,n =

∑

x,y∈supp Φ∩Wn

G(x−y
nbn

)
|(Wn − x) ∩ (Wn − y)| − (nbn)d

∫

Rd

G(x) dx ·
(

Φ(Wn)
|Wn|

)2

.

It was shown that under the above assumptions these estimators are asymptotically
unbiased and

E
(
σ̂2

Φ,n − σ2
Φ

)2 n→∞−→ 0.
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Using the same idea, we can construct the sequence of estimators of the asymp-
totic variance σ2

1

σ̂2
1,n =

∑

xi,xj∈supp Φ

G(xi−xj

nbn
)1Wn(xi)1Wn(xj)

|(Wn − xi) ∩ (Wn − xj)| H1(Ki∩Wn)H1(Kj∩Wn)−Gn·
(

Ψ(Wn)
|Wn|

)2

.

A lengthy calculation yields that σ̂1,n are again asymptotically unbiased and

E
(
σ̂2

1,n − σ2
1

)2 n→∞−→ 0.

Since σ̂2
1,n and σ̂2

2,n = σ̂2
Φ,n(EΛ0H

1(K0))2 are consistent estimators for σ2
1 and σ2

2 ,
respectively, we obtain from (7) and (8)

√
|Wn|
σ̂2

i,n

(
λ̂

(i)
Ψ,n − λΨ

)
n→∞−→ N(0, 1), in distribution, i = 1, 2.

This yields the approximate 100(1 − α)% confidence intervals for the unknown in-
tensity λΨ

(
λ̂

(i)
Ψ,n − uα/2

σ̂i,n√
|Wn|

, λ̂
(i)
Ψ,n + uα/2

σ̂i,n√
|Wn|

)
, i = 1, 2,

where the quantile uα/2 is determined such that P (|X| ≤ uα/2) = 1− α and X has
standard Gaussian distribution N(0, 1).
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[8] Z. Pawlas and V. Beneš: On the central limit theorem for the stationary Poisson
process of compact sets. Math. Nachr. (2003), to appear.

[9] H. Robbins: The asymptotic distribution of the sum of a random number of random
variables. Bull. Amer. Math. Soc. 54 (1948), 1151–1161.

[10] D. Stoyan, W. S. Kendall, and J. Mecke: Stochastic Geometry and Its Applications.
Second edition. Wiley, New York, 1995.
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