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BAYESIAN MCMC ESTIMATION OF
THE ROSE OF DIRECTIONS

Michaela Prokešová

The paper concerns estimation of the rose of directions of a stationary fibre process
in R3 from the intersection counts of the process with test planes. A new approach is
suggested based on Bayesian statistical techniques. The method is derived from the special
case of a Poisson line process however the estimator is shown to be consistent generally.
Markov chain Monte Carlo (MCMC) algorithms are used for the approximation of the
posterior distribution. Uniform ergodicity of the algorithms used is shown. Properties of
the estimation method are studied both theoretically and by simulation.

Keywords: rose of directions, planar section, fibre process, Bayesian statistics, MCMC
algorithm

AMS Subject Classification: 62M30, 62F15, 65B05

1. INTRODUCTION

The analysis of the anisotropy of random fibre systems is a frequent problem in many
applied sciences like biology and metallography. If we model these systems as sta-
tionary fibre processes in R3 then the anisotropy can be quantitatively characterized
by the directional distribution P. Throughout the paper the non-oriented directional
distribution, called also the rose of directions, is studied, while the oriented one is
typical for surface normal orientations of particle systems. The fibre systems are
usually examined using section probes of lower dimension. In R3 the data which are
used for the estimation procedure are the intersection counts (observed in finitely
many test windows) of the fibre process with test planes. Several methods have been
suggested for the estimation of P including parametric models, interpolation with
smooth functions or the use of the associated zonoid. See e.g. Cruz-Orive et al [3],
Hilliard [4], Mecke and Nagel [11], Campi, Haas, Weil [2], Kiderlen [7].

In this paper we present a new approach, based on Bayesian statistical techniques.
In Section 2 we recall definitions and notation that will be needed in the sequel. In
Section 3 we formulate our assumptions and review the two estimators of Kiderlen [7].
In Section 4 we present the new estimator of P. We consider a discretized parametric
version R of the directional distribution P. The support suppR of the measure R
is a finite set of vectors which depends only on the intersecting test planes, not
on the data. Using the relation between the rose of directions and the rose of
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intersections we determine the likelihood of the observed rose of intersections and
also the posterior distribution on possible values of R. The posterior mean is then
our estimator of P. Since we do not make any assumptions about the functional
form of the distribution P nor we use smooth functions for the approximation of P
the resulting estimator we get using the ‘discretization’ procedure is able to detect
also sharp anisotropies and multimodal directional distributions. Consistency of the
estimator is shown for general stationary fibre processes.

Since it is not possible to compute the estimator for concrete data analytically we
need to use one of the Markov Chain Monte Carlo methods to get a numerical solu-
tion. In Section 5 we describe the algorithm that we use, and discuss its properties
including the uniform ergodicity. Finally in Section 6 we show simulation results
– we apply the estimation procedure to several examples and compare empirically
the new estimator with the EM and LP estimators of Kiderlen [7] by measuring the
Prohorov distance between the original rose of directions and its estimate.

2. BACKGROUND

As a standard notation we use the scalar product |〈., .〉| in R3, S2 the unit sphere in
R3, Hk, k ∈ N, the k-dimensional Hausdorff measure, µk

Leb the Lebesgue measure in
Rk, B(A) the Borel σ-algebra on the set A. We shall call a measure on S2 even, if it
assigns the same mass to the set B ∈ B(S2) and to its reflection at the origin −B.

By a line process Φ in R3 we mean a random variable with values in the set
L of locally finite collections of lines in R3 equipped with the σ-algebra F = A|L
– the restriction of the hitting σ-algebra A to the set F where A = σ{FK ,K ⊆
R3,K is compact} is the smallest σ-algebra generated by the sets FK and FK =
{F ⊆ R3, F closed : F ∩K 6= ∅} for K a compact set (Matheron [9]). If the number
of lines hitting an arbitrary compact test set is Poisson distributed then Φ is a
Poisson process.

We consider a stationary line process Φ in R3. Its distribution is translation
invariant and can be characterized by the length intensity and the directional distri-
bution. For the definitions let A be a Borel set of unit volume. The length intensity
Λ is the mean length of the union of all line segments from the intersection of the
process with the set A, Λ = EH1(Φ ∩ A). We suppose throughout the following
that Λ > 0. The directional distribution P of the process is an even measure on S2

defined by P(B) = η(B)
Λ , where B ∈ B(S2) is a centrally symmetric set and η(B)

is the mean length of the union of all line segments from the intersection of A with
the lines of the process which have directions in the set B. Since η(S2) = Λ, we see
that P is really a probability measure. Both Λ and P are uniquelly determined and
do not depend on the set A.

Let h ∈ S2 be a unit normal vector of a plane h⊥. Then the intersection Φ∩h⊥ is
almost surely a point process. It is a stationary process in h⊥ and its intensity (the
mean number of points per unit area in h⊥) as a function of h is an even continuous
function on S2 called the rose of intersections. (Since the process Φ is stationary
the distribution of the intersection process does not depend on the location of the
plane h⊥ but only on its normal vector orientation).
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Let us denote by FP the cosine transform of the directional distribution P

FP(h) =
∫

S2
|〈h, u〉|P(du), h ∈ S2 . (1)

Then the function V (h) = ΛFP(h), h ∈ S2 is the cosine transform of the directional
measure η = ΛP of the line process Φ, hence it determines ΛP uniquely (Schnei-
der [14]). Moreover, V (h) is exactly the rose of intersections (Stoyan, Kendall, Mecke
[15], Chapter 9.4), which is the fact that makes the estimation of η possible.

3. MODEL

In this section, we shall present a new estimator for the directional distribution of a
stationary Poisson line process Φ. Let h⊥1 , . . . h

⊥
n be n test planes with corresponding

normal unit vectors h1, . . . , hn (due to the stationarity of Φ we restrict to planes
containing the origin). Set H = {h1, . . . , hn} ⊆ S2. Let Vi, i ∈ {1, . . . , n} be the
random number of points in the intersection Φ ∩ h⊥i which lie in a given Borel test
set Ai ⊆ h⊥i . Without loss of generality we may assume H2(Ai) = 1, i = 1, . . . , n.
According to the Poisson assumption and equation (1), the random variable Vi is
Poisson distributed with the mean value V (hi). A sample of the random vector
(V1, . . . , Vn) denoted by ~v = (v1, . . . , vn) presents the measured data.

We shall make three assumptions for the derivations as follows.

Assumptions. (i) Test planes do not contain a common line, lin{h1, . . . , hn} =
R3. Here lin D denotes the linear hull of a set D ⊆ R3.
(ii) Random variables V1, . . . , Vn are stochastically independent. (This can be achieved
using independent copies of the process Φ to obtain the intersections with the test
planes h⊥i .)
(iii) It holds ~v 6= 0. (Otherwise the zero measure would be a reasonable estimator
for η.)

During the estimation procedure we first define a suitable discrete approximation
R (a probability measure on S2 with finite support and depending on a finite num-
ber of parameters) which we use as a model for P. Then by the use of Bayesian
techniques we estimate the parameters of this model R from the measured data.
Substituting the estimated parameters into the formula for R we get the resulting
estimate R̂ of the rose of directions P.

Let δtj be an even probability measure with the support formed by the vectors
±tj ∈ S2. Then R can be written as a finite mixture of such measures:

R =
k∑

j=1

ajδtj , aj ≥ 0,
k∑

j=1

aj = 1, tj ∈ T. (2)

The choice of the set T ⊆ S2 is essential for the quality of the approximation.
We define

T = {hr × hl | hr 6= hl ∈ H} (3)
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as the set of all (different) vector products of the vectors from H. Optimality of this
choice is proved in Kiderlen [7]. Let us briefly review the problem and its solution
here.

Kiderlen [7] considered the problem of finding a measure-valued maximum likeli-
hood estimator of the directional measure η of a Poisson line process Φ in Rd, d ≥ 2.
We refer to the case d = 3. Let us denote by M the set of all centrally symmetric
measures on S2 and compute the log-likelihood function µ→ log P (H0(Φ∩A∩h⊥i ) =
vi), i = 1, . . . , n (where A is some unit volume test window). The following equality
holds up to an additive constant.

L(µ) =
n∑

i=1

(vi log(Fµ(hi))−Fµ(hi)). (4)

The original problem can now be reformulated as a convex optimization problem

minimize: −L(µ)
subject to: µ ∈M .

(5)

A solution of problem (5) always exists and any two different solutions µ∗, σ∗ are
tomographically equivalent, i.e. Fµ∗(hi) = Fσ∗(hi), i = 1, . . . , n (for proofs see
Mair [8]). However, (5) cannot, in general, be solved in a closed form and a numerical
optimization has to be used. Since M is infinite dimensional it has to be replaced
by a finite dimensional subset M(T ) = {σ ∈ M : supp σ ⊆ T} where T = {tj}k

j=1

is a finite subset of S2. So we get a modified problem

minimize: −L(µ)
subject to: µ ∈M(T ). (6)

Again according to Mair [8], this problem is solvable and a measure µ∗ ∈ M(T ) is
a solution of (6) if and only if

n∑

i=1,vi 6=0

vi

Fµ∗(hi)
|〈hi, tj〉| ≤

n∑

i=1

|〈hi, tj〉| (7)

for j = 1, . . . , k with equality for all tj in supp µ∗. We get only finitely many
inequalities here and the measure µ∗ solving the problem (7) can be computed
numerically using the iterative EM algorithm (the algorithm is described in detail
in McLachlan [10]).

We get the following proposition as a special case of Theorem 1 (Kiderlen [7])

Proposition 1. Let the Assumptions (i)–(iii) be fulfilled. Then (5) has a solution.
If T is chosen according to (3) then any solution of the discretized problem (6) is a
solution of the original problem (5).

Thus the directional measure and the rose of directions as its 1/Λ multiple can be
effectively approximated by finite-support measures with support in T . Kiderlen [7]
suggests two estimators.
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The first estimator of η is the solution of (7). It is found using the iterative EM
algorithm. The concrete iteration procedure for the problem (7) is the following.
We start with (~a)(0) = (1, 1, . . . , 1) ∈ Rk. Then, given (~a)(m) = (a(m)

1 , . . . a
(m)
k ), we

define (~a)(m+1) = (a(m+1)
1 , . . . , a

(m+1)
k ) by

a
(m+1)
j =

a
(m)
j

ρj




n∑

i=1,vi 6=0

vi

γ
(m)
i

|〈hi, tj〉|

 , j = 1, . . . , k,

where

γ
(m)
i =

k∑
s=1

|〈hi, ts〉| a(m)
s , i = 1, . . . , n,

and

ρj =
n∑

r=1

|〈hr, tj〉|, j = 1, . . . , k.

If we denote (~a)∗ = lim
n→∞

(~a)(m) then
∑k

j=1 a
∗
jδtj is the solution of (7) and setting

(~a)EM = (~a)(m)

|(~a)(m)| for an m ∈ N big enough the first estimator of P is
∑k

j=1 a
EM
j δtj

.
Denote it by EM.

The second estimator of η is defined by
∑k

j=1 a
∗∗
j δtj where (~a)∗∗ is the solution

of the linear program

minimize:
n∑

i=1

(
vi −

∑k
j=1 aj |〈tj , hi〉|

)
,

subject to:
∑k

j=1 aj |〈tj , hi〉| ≤ vi, i = 1, . . . , n,
aj ≥ 0, j = 1, . . . , k.

(8)

The solution of (8) is found using the simplex algorithm. Thus defining again
(~a)LP = (~a)∗∗

|(~a)∗∗| we get the second estimator (denoted by LP)
∑k

j=1 a
LP
j δtj of P.

4. METHOD

Our estimation procedure is different from those of Kiderlen [7] but since it makes
use of the likelihood we have chosen the set T in (3) as the support of the discrete
approximation R of P again. Note the important fact that T is completely deter-
mined by the set H and depends neither on the sample ~v nor on the distribution
P.

Now we proceed with the Bayesian estimation of the parameters (a1, . . . , ak) = ~a,
and Λ. Under our model the rose of intersections satisfies

V (hi) = ΛFR(hi) = Λ
k∑

j=1

aj |〈hi, tj〉|, i = 1, . . . , n, Λ ∈ R+ .



708 M. PROKEŠOVÁ

Under the assumption (ii) the components of the random vector (V1, . . . , Vn)
are independently Poisson distributed with mean values (ΛFR(h1), . . . ,ΛFR(hn)),
hence the likelihood under our model is

L(Λ, a1, . . . , ak|~v) ∝ Λ
nP

i=1
vi

exp{−Λ
n∑

i=1

FR(hi)}
n∏

i=1

(FR(hi))vi . (9)

We assume that there exists an upper bound Λmax of possible values of the length
intensity Λ (which is not a restrictive assumption in practical applications). We use
independent noninformative priors for Λ and the vector ~a. Let the distribution L(Λ)
be uniform on [0,Λmax] and let L(~a) be uniform on the simplex

N = {(a1, . . . , ak) ∈ Rk :
k∑

j=1

aj = 1, aj ≥ 0, j ∈ {1, . . . , k}}.

Then the posterior distribution Π of (Λ, a1, . . . , ak) given ~v has the density

π(Λ, a1, . . . , ak |~v) ∝ Λ
nP

i=1
vi

exp{−Λ
n∑

i=1

k∑

j=1

aj |〈hi, tj〉|}.
n∏

i=1




k∑

j=1

aj |〈hi, tj〉|



vi

(10)

on [0,Λmax] ×N ≡ M , with respect to µ × µ̃, where µ is the Lebesgue measure on
[0,Λmax] and µ̃ is the uniform measure onN , µ̃(N) = 1. It holds π(Λ, a1, . . . , ak |~v) =
0 outside M .

We define the estimators for the parameters Λ, a1, . . . , ak as the marginal posterior
means and denote them by Λ̂, â1, . . . , âk. By substituting these values in the general
formula (2) for R we get the desired estimator R̂ for the directional distribution P
of the line process Φ

R̂ =
k∑

j=1

âjδtj . (11)

Because of the complicated form of the density π, the mean posterior values are
not accessible directly and have to be computed numerically. In the next section we
give the detailed description of this procedure.

Even though the presented estimator was derived from the Poisson assumption it
is applicable to the general stationary spatial processes. In this case consistency of
the ML estimator was proved under mild assumptions in Kiderlen [7], Theorem 3. It
is easy to see that for a compact parametric space (as is our M) from the consistency
of the ML estimator the consistency of the Bayes estimator based on the posterior
mean follows.

For the comparison of the different estimators we used the empirical mean Pro-
horov distance of the precise directional distribution and the estimator. Since the
Prohorov distance corresponds to the weak convergence on the set of measures M
(Matheron [9]) it is a convenient metric for comparing the precision of the estimators.
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Another quantitative property is the variability of the estimators which is evaluated
in various ways from the empirical covariance matrix of the estimated ~a.

5. ALGORITHM

For the approximation of the posterior means of the parameters Λ, a1, . . . , ak, we
use the method of Markov chain Monte Carlo (MCMC), specifically the random
walk Metropolis algorithm (Metropolis et al [12]). This method is generally used
for the approximation of such mean values of various functions of a probability
distribution Π on a state space S that cannot be computed analytically. The method
proceeds as follows. A homogeneous Markov chain X = {X(t)}T

t=1, T ∈ N on S
with limiting distribution Π(x) is constructed and the desired mean values EΠ f =∫
f(x) Π(dx) are then approximated by the ergodic averages f̄ = 1

T

∑T
t=1 f(X(t))

of one realization of the chain. The transition probability kernel P of the chain X
is constructed from an arbitrary transition probability kernel Q on S. We suppose
that Q has a density q(x, y) with respect to some reference measure ν on the state
space S. Defining the acceptance probability

α(x, y) =

{
min

{
π(y)
π(x)

q(y,x)
q(x,y) , 1

}
, π(x)q(x, y) > 0, x, y ∈ S,

1, π(x)q(x, y) = 0, x, y ∈ S,

where π(x) is the density of the limiting distribution Π with respect to ν, and

p(x, y) = α(x, y)q(x, y) for x 6= y, x, y ∈ S,
p(x, x) = 0,

r(x) =
∫

S
(1− α(x, y))q(x, y)ν(dy),

and putting,

P (x, dy) = p(x, y)ν(dy) + r(x)δx(dy) x, y ∈ S,
where δx is the unit mass at x; the resulting probability transition kernel P has the
stationary distribution Π.

If the proposal density q(x, y) depends only on the difference (x − y), then the
MCMC algorithm is called random walk Metropolis. For a general introduction into
MCMC algorithms the reader is referred to Geyer [5].

The limiting distribution is the posterior distribution Π(Λ, a1, . . . , ak |~v) and the
state space S = R×{~x ∈ Rk :

∑k
i=1 xi = 1} in our case. For simplicity of notation,

we write π(Λ,~a) instead of π(Λ, a1, . . . , ak |~v) in (10).
Let E be the canonical base of Rk−1, B an orthonormal base of the hyperplane

L = {~x ∈ Rk :
∑k

i=1 xi = 1} and β : Rk−1 → L a linear mapping satisfying β(E) =
B. Define the reference measure ν by the k-dimensional Lebesgue measure on R×L.
Let L1 be the one-dimensional centred normal distribution with the variance σ2

Λ > 0,
and L2 the (k − 1)-dimensional centred normal distribution with the covariance
matrix σ2

~a I, σ
2
~a > 0 and denote by f(z), z ∈ S the density with respect to ν of the
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probability distribution L1×L2 β
−1 on R×L. The proposal density is defined by

q(x, y) = f(x− y), x, y ∈ S.
With the notation

C = {Ci,j = |〈hi, tj〉| }n,k
i=1,j=1 , w = C~a,

the acceptance probability is

α((Λ,~a), (Λ′,~a′)) = 1, (Λ,~a) /∈M,

= 0, (Λ,~a) ∈M, (Λ′,~a′) /∈M,

= min
{

1,
(

Λ′
Λ

)P vi

exp{Λ
n∑

i=1

wi − Λ′
n∑

i=1

w′i}
Qn

i=1(w
′
i)

viQn
i=1 w

vi
i

}
,

(Λ,~a), (Λ′,~a′) ∈M.

(12)

Since the set M is absorbing, it is sufficient for the simulation to consider the
resulting Markov kernel P restricted only to the set M × B(M) (B(M) denotes the
Borel σ-algebra); let us denote it by P̃ = P |M×B(M).

Note that if we had restricted to the set M already the proposal distribution
Q then we would need to normalize the density q(x, y) = f(x−y)R

M
f(x−z)dz

which could
be done again only numerically and, moreover, the density q(x, y) would not be
symmetric and we would get into further problems when computing the acceptance
probability α. None of these problems occur with our choice, the algorithm is easy
to implement and it has good properties as will be shown in the sequel.

Lemma 1. Let the Assumptions (i) and (iii) be fulfilled. Then the Markov kernel
P̃ is aperiodic and irreducible.

P r o o f . The matrix C has no row with all zeros according to the assumption (i).
It follows that p(x, y) = q(x, y).α(x, y) > 0 for all x, y ∈ relint M (here relint M
means the interior of M in the space S). If we denote by ψ the k-dimensional
Hausdorff measure on M , P̃ (x,A) > 0 will hold for all A ∈ B(M), ψ(A) > 0, x ∈M ,
hence the kernel P̃ is ψ-irreducible and aperiodic. 2

Theorem 1. Under the Assumptions (i) and (iii) the Markov kernel P̃ is uniformly
ergodic.

P r o o f . According to the Theorem 16.2.2 in Meyn and Tweedie [13], it is enough
to show that the whole set M is small. We need to find a probability measure ρ on
B(M) and δ > 0 such that

P̃ (x,A) ≥ δρ(A), ∀ x ∈M, ∀A ∈ B(M).

Trivially a sufficient condition for this is the existence of l > 0, M1 ⊆M, ν(M1) > 0
such that p(x, y) ≥ l, ∀ y ∈M1, x ∈M .
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Let us define

M1 = [Λ1,Λmax] × {a ∈ Rk :
k∑

j=1

aj = 1, aj ≥ dm1 ∀j},

with some fixed 0 < Λ1 < Λmax, dm1 > 0 such that ν(M1) > 0. Then M1 and
M are compact sets and the proposal densities {q(x, y), x ∈ M} are positive and
continuous on M1 which implies the existence of a lower bound qm > 0 such that
q(x, y) ≥ qm, ∀ x ∈M, y ∈M1.
The last step now is to bound from below the acceptance probability α(x, y). This
can be done easily, as the following inequalities show

π(x) ≤ (Λmax)
nP

i=1
vi
. 1 .

n∏

i=1




k∑

j=1

Ci,j



vi

= K, ∀ x ∈M,

π(y) ≥ (Λ1)
nP

i=1
vi
. exp



−Λmax

n∑

i=1

k∑

j=1

Ci,j



 .

n∏

i=1

dm1




k∑

j=1

Ci,j



vi

= κ > 0,

∀ y ∈M1.

The choice of l = κ qm

K completes the proof. 2

From the uniform ergodicity of P̃, the central limit theorem holds for ergodic av-
erages of any square integrable function of the limiting distribution Π and any initial
condition (any starting value of the realization of the chain X) (see Tierney [16]).
Thus the ergodic averages converge to the estimated posterior means as O(1/

√
n).

6. SIMULATIONS

We present some simulation results in this section. The aim is to compare our
estimator (11) denoted by MH with two estimators of Kiderlen [7]. First, let us
present one particular example before a more detailed comparison will be made.

Let us recall here the definition of the Fisher distribution on S2. This distri-
bution is determined by two parameters – the axis of symmetry u ∈ S2 and the
concentration parameter κ ∈ R+. The density of the distribution is then defined as

f(x) =
eκ|〈x,u〉|

∫
S2 eκ|〈x,u〉| ω2(dx)

, x ∈ S2,

where ω2 is the spherical Lebesgue measure on S2. We denote by P1 the Fisher distri-
bution with concentration parameter κ = 10 and the axis u0 = [0.572, 0.572, 0.588].

In the example, we considered a stationary Poisson line process with length in-
tensity Λ = 100 and the directional distribution P1. The set H were normals to the
faces of a regular icosahedron in the standard orientation (the intersection with the
x⊥ plane being the regular hexagon with one vertice on the z axis). Thus n = 10 and
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10 independent realizations of intersection processes were evaluated in order to get
the input data vector ~v. The set T chosen according to (3) consists of k = 45 (pairs
of) vectors. We determined the parameters Λ̂, â1, . . . , âk according to the MCMC
algorithm described in the previous section. For the algorithm we set the starting
iteration

a
(0)
i =

1
k
, for all i ∈ {1, . . . , k}, (13)

Λ(0) = 2
∑
vi

n
. (14)

Λ(0) is an unbiased estimator of the length intensity in the isotropic case due to the
assumption
H2(Ai) = 1, i = 1, . . . , n, and (~a)(0) corresponds to the uniform distribution on
T . The variances of the proposal distributions were σ2

Λ = 1 and σ2
~a = 0.001.

The rate of the convergence of the algorithm depends on the variances of the
proposal distributions radically. It is necessary to balance the mixing of the chain
(the proposal steps must not be too small) and the average acceptance rate ᾱ (the
proportion of the proposed steps in the chain which were accepted according to (12)
– bigger steps are more likely to be rejected). However, the problem of optimal
tuning of the parameters exceeds the scope of this paper and the parameters were
chosen as fairly reasonable even if not optimal (for references on optimal tuning see
for example Tierney [16]) as shows also the value of ᾱ = 0.322 of our simulation.

We took 5000 iterations from the simulated Markov chain as the burn-in and then
took 10 000 values with the step of 100 iterations

âi =
1

10000

10000∑
t=1

a
(100t+5000)
i , i = 1, . . . , k. (15)

Figure 1 shows the resulting MH estimator. In each point ± tj , tj ∈ T ⊆ S2, a
sphere is drawn with radius proportional to âj . The axis of the estimated directional
distribution is denoted by the triangle. We can see that the estimator detects the
anisotropy of P1 well and it also reflects its symmetry.

We proceed with the comparison of the Kiderlen’s estimators. We applied the
estimators to two stationary Poisson line processes with the same length intensity
Λ = 100 but different directional distributions. The first distribution was the dis-
tribution P1 already defined above and the second distribution P2 was a mixture
of three Fisher distributions with the same concentration parameter κ = 10 and
different axes

u1 = [0.572, 0.572, 0.588],

u2 = [−0.572,−0.572, 0.588],
u3 = [−0.588, 0, 0.801].

We considered three different types of input data corresponding to three differ-
ent sets of H: normals to the faces of a cube, a regular octahedron and a regular
dodecahedron.
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Fig. 1. The MH estimate of the rose of directions for the original directional distribution

P1 being the Fisher distribution. The intersection planes were parallel to the faces of the

regular icosahedron. The direction of the axis of the Fisher distribution is marked by the

triangle.

The parameters â1, . . . âk of the MH estimate (11) were computed in the same
way as in the previous example using the formula (16) with the starting iteration
given by (14) and (15). The values of the proposal variances σ2

Λ, σ2
~a used for the

different sets H (the same for both P1 and P2) are given in Table 1 as well as the
average acceptance rates ᾱ. The explanation concerning the choice of the parameters
from the preceding example applies here as well.

For the comparison of the estimators we used the empirical mean Prohorov dis-
tances of the precise directional distribution and the estimators.

The Prohorov distance PD of two measures µ, ν on B(S2) is defined by

PD(µ, ν) ≡ inf{ε > 0 | µ(A) ≤ ν(Aε) + ε, ν(A) ≤ µ(Aε) + ε,
for all closed subsets A ofS2},

where Aε is the set of all unit vectors whose spherical distance d from A is strictly
less then ε.

For the evaluation of PD we modified the algorithm of Beneš and Gokhale [1].
The original algorithm was defined for measures on the set Z = [0, π). However we
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Table 1. Parameter values for the MH estimator for different types of input data. The

input data are the intersection counts with planes determined by the set H of their

normal vector orientations. Here H are unit normal vectors to the faces of a cube, a

regular octahedron and a regular dodecahedron, respectively. The parameters are: n

– the number of different intersection planes (equivalently the number of elements in

H), k – number of different vectors in T (in the support of the MH estimator), σ2
Λ, σ2

~a

– variances of the proposal distributions, ᾱ(P1), ᾱ(P2) – the average acceptance rates

when estimating the directional distribution P1, P2, respectively.

σ2
Λ σ2

~a n k ᾱ(P1) ᾱ(P2)
cube 1 0.05 3 3 0.50 0.52

octahedron 1 0.02 4 6 0.50 0.63
dodecahedron 1 0.01 6 15 0.20 0.34

can reformulate their Lemma 2 also for measures on S2, the proof being the same.
Thus we have

Proposition 2. LetRn be a discrete measure on S2 with a finite support suppRn =
{z1, . . . , zn} and P a measure on S2. Then it holds

PD(Rn,P) = inf{ε > 0 | Rn(A) ≤ P(Aε) + ε for all A ∈ suppRn}. (16)

Thus we get a reduction to finitely many conditions, however to test if PD < ε
for some ε > 0 is still a problem of exponential complexity and efficient heuristics
have to be applied to avoid testing (and computing

∫
Aε P(dx)) for all the (2n − 1)

subsets of suppRn.

Table 2. The mean empirical Prohorov distances (computed from 200 samples) of

the exact distributions P1 (a Fisher distribution) and P2 (a mixture of three Fisher

distributions) and its MH, EM and LP estimators. The values are computed for three

different sets of intersection planes (that means three different types of input data) –

planes parallel with the faces of a cube, a regular octahedron and a regular dodecahedron.

P1 P2

cube octahedron dodecahedron cube octahedron dodecahedron
MH 0.5475 0.3977 0.3032 0.4975 0.4010 0.2992
EM 0.5475 0.3975 0.2850 0.4975 0.3997 0.3027
LP 0.5475 0.3975 0.2897 0.4975 0.3995 0.3030

Two hundred samples of the input data ~v were generated in our simulation for the
roses of intersections FP1 and FP2 for all three choices of H and three estimators
were computed. The empirical Prohorov mean distances are given in Table 2. The
variability of the estimators was quantified by means of traces, determinants and
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maximal eigenvalues of the empirical covariance matrices of the vector ~a, se e Tables
3, 4 and 5 respectively.

Table 3. The traces of the empirical covariance matrix (computed from 200 samples) of

the vector ~a of the estimated parameters of the directional distribution. The values are

computed for all three examined estimators, three different sets of intersection planes

H (faces of a cube a regular octahedron and a regular dodecahedron) and two different

original roses of directions P1 (the Fisher distribution) and P2 (mixture of three different

Fisher distributions).

P1 P2

cube octahedron dodecahedron cube octahedron dodecahedron
MH 0.0094 0.0363 0.0745 0.0115 0.0404 0.0663
EM 0.0102 0.0271 0.0952 0.0121 0.0372 0.1203
LP 0.0102 0.0225 0.1034 0.0121 0.0345 0.1119

Table 4. Decadic logarithms of determinants of the empirical covariance matrix (com-

puted from 200 samples) of the vector ~a of the estimated parameters of the directional

distribution. The values are computed for all three examined estimators, three different

sets of intersection planes H (faces of a cube a regular octahedron and a regular dodec-

ahedron) and two different original roses of directions P1 (the Fisher distribution) and

P2 (mixture of three different Fisher distributions).

P1 P2

cube octahedron dodecahedron cube octahedron dodecahedron
MH –25 –22 –58 –10 –17 –48
EM –10 –19 –43 –9 –17 –43
LP –10 –17 –40 –9 –33 –41

Many plots of the type shown in Figure 1 and the corresponding Prohorov dis-
tances are presented in Hlawiczkova et al [6], where fibre processes of tessellation
edges in R3 are investigated for Voronoi tessellations generated by various point
processes. Only the EM estimator is used for the rose of directions estimation in
this paper.

7. CONCLUSIONS

It makes sense to compare estimators EM, LP and MH. Theoretically, maximum
likelihood and Bayesian estimators are asymptotically equivalent but their small
sample properties may differ. Bayesian estimators are always admissible (Wald [17])
which need not hold for the maximum likelihood estimators. The consistency of all
estimators valid for the general stationary fibre processes is an important property
for practical applications.
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Table 5. Maximal eigenvalues of the empirical covariance matrix (computed from 200

samples) of the vector ~a of the estimated parameters of the directional distribution. The

values are computed for all three examined estimators, three different sets of intersection

planes H (faces of a cube a regular octahedron and a regular dodecahedron) and two

different original roses of directions P1 (the Fisher distribution) and P2 (mixture of

three different Fisher distributions).

P1 P2

cube octahedron dodecahedron cube octahedron dodecahedron
MH 0.0021 0.0173 0.0371 0.0062 0.0180 0.0181
EM 0.0060 0.0115 0.0304 0.0066 0.0163 0.0327
LP 0.0060 0.0830 0.0238 0.0066 0.0160 0.0293

Only minor differences between the estimators EM, LP and MH were revealed by
our simulations. According to the Prohorov distances the estimators perform almost
equally. However, the variability is smaller for MH estimator in the most interesting
dodecahedral case. This effect corresponds to the general knowledge that Bayesian
estimators may yield smaller variances.
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Mgr. Michaela Prokešová, Department of Probability and Mathematical Statistics, Fac-

ulty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8.
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