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GLOBAL ASYMPTOTIC STABILISATION
OF AN ACTIVE MASS DAMPER
FOR A FLEXIBLE BEAM1

Laura Menini, Antonio Tornambè and Luca Zaccarian

In this paper, a finite dimensional approximated model of a mechanical system consti-
tuted by a vertical heavy flexible beam with lumped masses placed along the beam and a
mobile mass located at the tip, is proposed; such a model is parametric in the approxima-
tion order, so that a prescribed accuracy in the representation of the actual system can be
easily obtained with the proposed model. The system itself can be understood as a simple
representation of a building subject to transverse vibrations, whose vibrating modes are
damped by a control action performed at the top by means of a mobile mass. A simple
PD control law, which requires only the measurement of the position and velocity of the
mobile mass with respect to the end-point of the beam, is shown to globally asymptotically
stabilise all the flexible modes considered in the approximated model, regardless of the
chosen approximation order, under a technical assumption that is satisfied in many cases
of practical interest. Simulation runs confirm the effectiveness of the proposed control law
in achieving both position regulation of the mobile mass and vibration control.

1. INTRODUCTION

In the last decade, great deal of attention has been paid to the problem of mod-
elling and controlling flexible structures [2] – [4], [7] – [12], [14]. The classic mod-
elling approach, which is used to represent mechanical systems, is usually based on
the rigidity assumption; however, such an assumption, in most cases, leads to heavy
limitations on the maximum speeds and accelerations supported by the systems
themselves. A solution to this problem may be to take into account the deforma-
tions of the structures in the modelling process, and to analyse the behaviour of the
deformed bodies, possibly under the action of certain control laws. In such a way,
the deformations may be inquired to verify, for instance, certain security bounds re-
lated to the structure elasticity, or, simply, to monitor such deformations occurring
in the flexible components of the system.

The planar mechanical structure analysed in this paper is constituted by a heavy
flexible beam clamped on an inertial base, at one of its extremities, and rigidly

1A version of this paper was presented at the 5th Mediterranean Conference on Control and
Systems held in Paphos (Cyprus) on June 21–23, 1997.
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connected, at the other extremity, to a platform where a mass is free to move per-
pendicularly to the direction assumed by the undeformed beam (see Figure 1). The
mass is assumed to be subject to a force (which constitutes the input of the system)
exerted by an actuator placed at the end-point of the beam. Moreover, it is assumed
that H lumped masses are located at fixed points along the beam, with H being an
arbitrary non-negative integer. The motivation for studying such a system arises in
civil engineering, when studying the transverse vibrations of a building of H storeys.
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Fig. 1. The mechanical system (in the case of H = 3 storeys).

In Section 2, an infinite dimensional model of the mechanical system, taking into
account the distributed properties of the beam, is derived, first. Hence, explicit
expressions are derived for the equations of an approximated dynamic model of
order N of the mechanical structure. Such a model is parametric with respect
to the approximation order N , i. e., the same equations can be used to obtain a
representation as accurate as necessary by choosing suitable values for N . The
dynamic equations of both models are derived by neglecting any kind of friction
or damping in the system; in real applications, the presence of damping in the
mechanical structures will possibly increase the robustness of the closed-loop system,
with respect to the stability requirement.

In Section 3, it is shown that, under certain assumptions, which are not too
restrictive, the same PD controller asymptotically stabilises the approximated equa-
tions of motion, for any number H of storeys and for any approximation order N
of the model. The feedback PD control law requires the measurements of the only
relative position and velocity of the mobile mass, with respect to the end-point of
the beam; whence, no deformation measurements are needed for the implementa-
tion of the control scheme on the real system. The result obtained is global, so that
the prescribed control law can be actually applied in the domain of validity of the
Bernoulli approximation of elastic deformations.

Finally, in Section 4, some simulation runs are presented, which test the per-
formance of the PD controller on a finite dimensional model, in the simplest case
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of absence of lumped masses along the beam. The results of the simulations con-
firm the effectiveness of the control law, reporting satisfactory behaviour of the time
responses, and asymptotic stability of the closed-loop system.

2. MOTION EQUATIONS

The mechanical system under consideration is constituted by a heavy flexible beam,
whose mass per unit length and elastic constant are denoted by ρ and k, respectively,
by a mass m, and by H ∈ IN masses M . The system under consideration is seen as
a model for an H-storey building, having an active mass damper actuator on its top
floor. Hence, the mass m (which is free to move on a platform perpendicular to the
direction assumed by the undeformed beam, under the action of an external force
u(t), exerted between the mass and the end point of the beam) is the representation
of the mobile mass, whereas the H masses (which are placed along the beam, at
equally spaced positions) are lumped representations of the H storeys. The beam
and the masses are located on a plane, where an inertial reference frame (x, y) is
defined (see Figure 1), whose origin O coincides with one of the extremities of the
beam, which is clamped to an inertial base. The beam, having length L, lies on the
x axis of the reference frame when undeformed.

Under the assumption of small deformations, the Cartesian coordinates of an
infinitesimal element of the beam at time t ∈ IR, t ≥ 0, expressed in the reference
frame (x, y), are (`, α(t, `)), with ` ∈ [0, L], whereas the Cartesian coordinates of
the mass m at time t, expressed in the same reference frame, are (L, θ(t)). The
Cartesian coordinates of the masses M at time t are given by (`i, α(t, `i)), with
`i := i L/H, i = 1, 2, . . . , H. Hence, variables α(t, `) and θ(t) can be taken as the
generalised coordinates, which uniquely describe the configuration of the mechanical
system.

In the following, in order to simplify the notation, the derivative with respect
to t will be denoted by ˙, and the derivative with respect to ` will be denoted by
superscript ′.

Due to the assumption of small deformations, the effects of the gravity force can
be neglected. In addition, any dissipative force, such as viscous friction or internal
damping due to deformation, will not be considered in this model, since its presence
will possibly increase the stability properties of the overall system.

The kinetic energy Tb of the beam and of the masses M , which constitute a single
body representing the overall building, can be expressed by the following functional
depending on α:

Tb :=
ρ

2

∫ L

0

α̇2(t, `) d` +
H∑

i=1

M

2
α̇2(t, `i). (1)

The potential energy Ub (due only to flexure, by assumption) of the single body can
be expressed by the following functional depending on α:

Ub :=
k

2

∫ L

0

(α′′(t, `))2 d`; (2)
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notice that the potential energy of the lumped masses M is constant and can be
taken to be equal to zero, whence no terms due to the masses M appear in Ub.

The kinetic energy Tm of the mass m is:

Tm :=
m

2
θ̇2(t); (3)

the potential energy of the mass m is constant, similarly to that of the masses M ,
and is taken to be equal to zero as well.

Now, assume that an external force u(t) acts on the mass m and on the end-point
of the beam, and that the associated generalised potential (see [5]) is given by

Uu = −u(t) (θ(t)− α(t, L)). (4)

Moreover, assume that, at each time t ≥ 0, the function α(t, `) can be expressed
by the following series expansion:

α(t, `) =
+∞∑

h=0

γh(t)σh(`), ` ∈ [0, L]. (5)

The functions σh(`), h ∈ ZZ, h ≥ 0, which constitute a complete set, are given
by

σh(`) :=ah

(
sinh(ωh `)−sin(ωh `)− sinh(ωh L)+sin(ωh L)

cosh(ωh L)+cos(ωh L)
(cosh(ωh `)−cos(ωh `))

)
,

(6)
with the reals ωh, h ∈ ZZ, h ≥ 0, being the countable solutions of the following

equation
(
i. e., ωh ≈ 2 h+1

2
π
L

)
:

1 + cos(ωh L) cosh(ωh L) = 0. (7)

The normalisation constants ah, h ∈ ZZ, h ≥ 0, are chosen so that the following
relation is fulfilled:

∫ L

0

σh(`) σk(`) d` =
{

1, h = k,
0, h 6= k,

(8)

which implies ∫ L

0

σ′′h(`)σ′′k (`) d` =
{

ω4
h, h = k,

0, h 6= k.
(9)

Remark 1. The functions σh(·) given in (6) are the eigenfunctions of the eigen-
value problem resulting from an infinite dimensional model of the considered system,
when the mass m and the masses M are absent. The boundary conditions at the ex-
tremities of the beam, in such a case, guarantee the possibility of satisfying equations
(8), so that the choice of the set of functions σi(·), given in equation (6), presents
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remarkable advantages in the subsequent computations, with respect to other com-
plete sets of functions which could be chosen in order to perform a series expansion
such as (5).

With these positions, the energies given in (1), (2) and (4), become:

Tb =
ρ

2

+∞∑

h=0

γ̇2
h(t) +

M

2

H∑

i=1

(
+∞∑

h=0

γ̇h(t)σh(`i)

)2

, (10a)

Ub =
k

2

+∞∑

h=0

γ2
h(t)ω4

h, (10b)

Uu = −u(t)

(
θ(t)−

+∞∑

h=0

γh(t)σh(L)

)
. (10c)

The variables θ(t) and γh(t), h ∈ ZZ, h ≥ 0, can be taken as the generalised coor-
dinates describing the configuration of the mechanical system under consideration,
and the related Euler–Lagrange equations are given by:

d
dt

∂ L
∂θ̇

− ∂ L
∂θ

= 0, (11a)

d
dt

∂ L
∂γ̇h

− ∂ L
∂γh

= 0, h ∈ ZZ, h ≥ 0, (11b)

where the Lagrangian function L is given by L := Tb + Tm − Ub − Uu. By (3) and
(10), the Euler–Lagrange equations (11) can be recast as follows:

mθ̈(t) = u(t), (12a)

ρ γ̈h(t)+M

H∑

i=1

σh(`i)
+∞∑

j=0

γ̈j(t)σj(`i)+ρΩ2
h γh(t) = −σh(L)u(t), h∈ZZ, h≥0, (12b)

where Ωh := ω2
h

√
k
ρ . The countable set of equations (12) constitutes the infinite

dimensional model of the mechanical system under consideration, which will be taken
here as an “exact” model.

In order to obtain a finite-dimensional approximated model of the system, the
sum in equation (5) is now truncated to the first N terms, with N being an arbitrary
positive integer. Therefore, the function α(t, `) will be represented by its N -order
approximation:

α(t, `) ≈ αN (t, `) :=
N−1∑

h=0

γh(t)σh(`) . (13)

In the following, only the approximated model obtained by (13) will be considered.
To this end, taking into account relations (8) and (9), the substitution of (13)

into (1), (2) and (4) allows the N -order approximation of the kinetic and potential
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energies to be obtained as follows:

Tb,N =
ρ

2

N−1∑

h=0

γ̇2
h(t) +

M

2

H∑

i=1

(
N−1∑

h=0

γ̇2
h(t)σh(`i)

)2

, (14a)

Ub,N =
k

2

N−1∑

h=0

γ2
h(t)ω4

h, (14b)

Uu,N = −u(t)

(
θ(t)−

N−1∑

h=0

γh(t)σh(L)

)
. (14c)

Since θ(t) and γh(t), h = 0, . . . , N−1, can be taken as the generalised coordinates
describing the configuration of the approximated mechanical system, the Euler–
Lagrange equations for such a N -order approximated system can be written as:

d
dt

∂ LN

∂θ̇
− ∂ LN

∂θ
= 0, (15a)

d
dt

∂ LN

∂γ̇h
− ∂ LN

∂γh
= 0, h = 0, . . . , N − 1, (15b)

where the Lagrangian function LN of the approximated system is given by LN :=
Tb,N + Tm − Ub,N − Uu,N .

By (14) and (3), equations (15) become:

mθ̈(t) = u(t), (16a)

ρ γ̈h(t)+M
H∑

i=1

σh(`i)
N−1∑
j=0

γ̈j(t)σj(`i)+ρ Ω2
h γh(t) = −σh(L) u(t), h=0, . . . , N−1.(16b)

Equations (16) are the N -order approximated equations of motion. Note that
the accuracy of such an approximated model can be chosen as high as necessary, by
a proper choice of the integer N .

3. STABILISATION OF THE MECHANICAL SYSTEM

The purpose of this section is to achieve global asymptotic stability of the mechanical
system under the action of a suitable control law; due to practical problems, only
the relative position and velocity of the mobile mass m with respect to the end-
point of the beam can be assumed to be measurable. Therefore, since only the
approximated model is considered, it is assumed that the following variables are
available for feedback:

y(t) = θ(t)−
N−1∑

h=0

γh(t)σh(L), (17a)

ẏ(t) = θ̇(t)−
N−1∑

h=0

γ̇h(t)σh(L). (17b)
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Under such an assumption, the regulation problem under consideration can be
stated as follows.

Problem 1. Find (if any) a static feedback control law

u(t) = f (y(t), ẏ(t)) , (18)

with f(·, ·) being a suitable function, from y(t) and ẏ(t) such that the closed-loop
system (16), (17), (18) has [θ γ0 . . . γN−1 θ̇ γ̇0 . . . γ̇N−1]T = [0 0 . . . 0 0 0 . . . 0]T as
globally asymptotically stable equilibrium point.

The control law considered as possible solution to Problem 1 is a classical PD
from y(t) and ẏ(t):

u(t) = −kp y(t)− kv ẏ(t), (19)

where kp, kv are two suitable real constants.
The closed-loop system obtained by applying the control law (19) to system

(16), (17) can be recast as follows:

m θ̈(t) + kp y(t) + kv ẏ(t) = 0, (20a)

B γ̈(t) +H γ(t)− kp σ y(t)− kv σ ẏ(t) = 0, (20b)

where γ(t) ∈ IRN is given by γ(t) := [γ0(t) γ1(t) . . . γN−1(t)]
T , the square N -

dimensional matrix B is given by:

B :=




ρ + M

H∑

i=1

(σ0(`i))
2

M

H∑

i=1

σ0(`i)σ1(`i) . . . M

H∑

i=1

σ0(`i)σN−1(`i)

M

H∑

i=1

σ0(`i)σ1(`i) ρ + M

H∑

i=1

(σ1(`i))
2

. . . M

H∑

i=1

σ1(`i)σN−1(`i)

...
...

...
...

M

H∑

i=1

σ0(`i)σN−1(`i) M

H∑

i=1

σ1(`i)σN−1(`i) . . . ρ + M

H∑

i=1

(σN−1(`i))
2




,

H is the N -dimensional, diagonal, square matrix given byH := diag
(
ρ Ω2

0, ρ Ω2
1, . . . ,

ρ Ω2
N−1

)
, and the vector σ ∈ IRN is given by σ := [σ0(L) σ1(L) . . . σN−1(L)]T .

Notice that the dependence of matrices B and H and vector σ on the physical pa-
rameters L, ρ, k, and M of the system has been omitted for the sake of simplicity.

The following assumption is needed in order to prove the main result of this sec-
tion; such an assumption is not too restrictive, as shown in the subsequent Lemma 1
and Remark 2.
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Assumption 1. Matrix B−1H has N distinct eigenvalues, and, in addition, for
each eigenvector v ∈ IRN of B−1H, one has σT v 6= 0.

Assumption 1 is “robust” with respect to small variations of the physical param-
eters L, ρ, k, and M , of the system, as stated in the following lemma (notice that
matrix B−1H is independent of mass m).

Lemma 1. If Assumption 1 is satisfied for L = L, ρ = ρ, k = k, and M = M , for
some L, ρ, k, M ∈ IR+, then there exists a neighbourhood U ⊂ IR4 of

[
L ρ k M

]T

such that such an assumption is satisfied for all [L ρ k M ]T ∈ U .

P r o o f . All the entries of matrices B and H are continuous functions of the pa-
rameters L, ρ, k, M , and matrix B is non-singular; hence, also the entries of matrix
B−1H are continuous functions of such parameters. By taking into account that the
eigenvalues of B−1H are all distinct for L = L, ρ = ρ, k = k, and M = M , and that
the eigenvalues of a square matrix are continuous functions of its entries, one has
that the N eigenvalues of B−1H are all distinct in a suitable neighbourhood Θ of[
L ρ k M

]T
, and this proves that the first statement of Assumption 1 holds in Θ.

Now, let λi(·, ·, ·, ·), i = 1, 2, . . . , N , be N scalar continuous functions such that,
for each [L ρ k M ]T ∈ Θ, {λ1(L, ρ, k, M) , λ2(L, ρ, k, M),. . . , λN (L, ρ, k, M)}
is the set of the distinct eigenvalues of B−1H. Due to the fact that the N eigenval-
ues of B−1H are distinct in Θ, it is possible to define N continuous vector functions
v1(·, ·, ·, ·), v2(·, ·, ·, ·), . . . , vn(·, ·, ·, ·) ∈ IRN , such that, in a suitable neighbour-
hood Θ of

[
L ρ k M

]T
, Θ ⊂ Θ, for each i = 1, 2, . . . , N , vi(L, ρ, k, M) is an

eigenvector of B−1H relative to the eigenvalue λi(L, ρ, k, M). Since the vector σ
is a continuous function of L, then, for each i = 1, 2, . . . , N , the product σT vi is a
continuous function of the parameters, which is non-null at

[
L ρ k M

]T
, whence

it is non null in a suitable neighbourhood Θi ⊂ Θ. The proof of the lemma is
completed, by letting U =

⋂N
i=1 Θi. 2

Remark 2. It is easy to see that, if M = 0, then Assumption 1 holds for any L,
ρ, k ∈ IR+: in this case one has B = ρ I, with I being the N -dimensional identity
matrix, and matrix H is diagonal by definition, with its diagonal elements being
all distinct; hence, the eigenvalues of B−1H are all distinct, and the eigenvectors
of B−1H are the N vectors of the canonical basis of IRN . The required property
σT v 6= 0 for M = 0 and arbitrary L, ρ, k ∈ IR+, easily follows from the consideration
that all the components of vector σ are different from zero; this can be proven by
direct computation, by taking into account equations (6) and (7).

Hence, by Lemma 1, Assumption 1 holds for a significant class of systems, namely
those representing buildings in which the mass M of the storeys is not too big as
compared with the mass of the whole structure.

In the following theorem, the global asymptotic stability of the closed-loop sys-
tem (20) is stated and proven.
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Theorem 1. For each N ∈ ZZ, N ≥ 1, under Assumption 1, if kp > 0 and kv > 0,
then system (20) has [θ γ0 . . . γN−1 θ̇ γ̇0 . . . γ̇N−1]T = [0 0 . . . 0 0 0 . . . 0]T as
globally asymptotically stable equilibrium point.

Remark 3. Theorem 1 proves the effectiveness of a simple PD control law in sta-
bilising the N -order approximated model (with N arbitrarily high) of the mechanical
system under consideration; it is stressed that the structure of the proposed control
algorithm is independent of the chosen approximation order.

P r o o f o f T h e o r e m 1 . In the following, the dependence on variable t is some-
times omitted for the sake of brevity. For any N ∈ ZZ, N ≥ 1, consider the following
positive definite and radially unbounded function of θ, θ̇, γh, γ̇h, h = 0, . . . , N − 1,

VN :=
m

2
θ̇2 +

1
2

γ̇T B γ̇ +
1
2

γT H γ +
kp

2
y2, (21)

to be used as a candidate Lyapunov function. It is easy to compute the total time
derivative of VN along the dynamics of system (20) (see also Theorem 12.28 of [13]):

V̇N = mθ̇ θ̈ + γ̇T B γ̈ + γT Hγ̇ + kp y ẏ

= mθ̇ θ̈ + γ̇T B (−B−1H γ + B−1 kp σ y + kv B−1 σ ẏ
)

+ γT Hγ̇ + kp y ẏ

= −kp θ̇ y − kv θ̇ ẏ + kp γ̇T σ y + kv γ̇T σ ẏ + kp y ẏ

= −kv ẏ2. (22)

Since the function VN defined in (21) is globally positive definite and its total
time derivative (22) is globally negative semi-definite, then Theorem 25.1 of [6] proves
that the equilibrium point [θ γ0 . . . γN−1 θ̇ γ̇0 . . . γ̇N−1]T = [0 0 . . . 0 0 0 . . . 0]T is
stable. Let E be the set of points [θ γ0 . . . γN−1 θ̇ γ̇0 . . . γ̇N−1]T such that V̇N = 0.
Since kv > 0, if θ(t), θ̇(t), γh(t), γ̇h(t), h = 0, . . . , N − 1, t ≥ 0, is an half trajectory
of (20) entirely contained in E , then it satisfies the following relations:

ẏ(t) = 0, ∀ t ≥ 0, (23a)

m θ̈(t) + kp y(t) = 0, ∀ t ≥ 0, (23b)

B γ̈(t) +H γ(t)− kp σ y(t) = 0, ∀ t ≥ 0. (23c)

Equation (23a) implies ÿ(t) = θ̈(t) − ∑N−1
h=0 γ̈h(t)σh(L) = 0 for all t ≥ 0 and

y(t) = y for all t ≥ 0, for some y ∈ IR; hence, one obtains:

θ̈(t) =
N−1∑

h=0

γ̈h(t) σh(L)

= σT γ̈(t), ∀ t ≥ 0. (24)

Equation (23c) can be rewritten as:

B γ̈(t) +H γ(t) = kp σ y, ∀ t ≥ 0,
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and its solutions are of the form

γ(t) =
N−1∑

i=1

(ζi sin(µi t) + ηi cos(µi t)) +H−1 kp σ y, (25)

where µi ∈ IR, µi > 0, are N real numbers such that µ2
i , i = 0, 1, . . . , N − 1, are

the (distinct) eigenvalues of B−1H (in addition, they are all real and positive, as it
is proven in Section 10 – 2 of [5]) and, for every i = 0, 1, . . . , N − 1, ζi = ci, ζvi,
ηi = ci, ηvi with vi being eigenvector of B−1H, relative to the eigenvalue µ2

i , and
ci, ζ , ci, η being suitable reals.

By substituting the expression of θ̈(t) given by (24) into (23b) and taking into
account (25), one has:

m

N−1∑

i=0

µ2
i

(
σT ζi sin(µi t) + σT ηi cos(µi t)

)
= kp y, ∀ t ≥ 0. (26)

Since the functions sin(µ0 t), cos(µ0 t), . . . , sin(µN−1 t), cos(µN−1 t), 1, are lin-
early independent over [0,+∞), by taking into account that µh 6= 0 for all h =
0, . . . , N − 1, that kp > 0 and m > 0, and Assumption 1, relation (26) implies
that ζh = 0, ηh = 0, h = 0, . . . , N − 1, and y = 0. Hence, from (25), γh(t) = 0,
h = 0, . . . , N − 1, for all t ≥ 0, and, by recalling equation (17a), it follows that
θ(t) = 0 for all t ≥ 0.

The above discussion shows that the largest invariant subset contained in E
is constituted by the only equilibrium point [θ γ0 . . . γN−1 θ̇ γ̇0 . . . γ̇N−1]T =
[0 0 . . . 0 0 0 . . . 0]T ; whence, Theorem 26.1 of [6] proves the attractivity of such an
equilibrium point. Since stability has already been proven, the global asymptotic
stability of the mentioned equilibrium point follows, by taking into account that VN

is globally positive definite and radially unbounded. 2

4. SIMULATIONS

In this section, the results of some significant simulations of the behaviour of the
closed-loop system (20), are reported. Two case studies have been considered, in
the case of M = 0, characterised by different choices of the feedback constants kp

and kv of the controller. In both cases, the order of the approximated model has
been chosen as N = 10. It has been verified that a higher order approximation does
not affect significantly the time responses obtained from the simulations; whence,
the accuracy of the model obtained by the chosen approximation order is sufficiently
high to guarantee a good fitness with the real case.

The physical parameters of the system have been chosen as:

L = 1 [m], m = 7.86 · 10−2 [kg], ρ = 7.86 · 10−1

[
kg
m

]
, k = 2.05 · 102

[
Nm2

]
,

which correspond to the parameters of a hardened steel beam having a square cross
section with edges 1 cm long, and to a mobile mass, whose mass m has a ratio
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1 : 10 with the total mass of the beam itself (see Figure 2). With these parameters,
the mass m is sufficiently heavy to perform a satisfactory control action on the
system, without being too heavy compared to the weight of the whole structure.
For such a choice of the system parameters and of the approximation order, the
reals ωh, ah, h = 0, 1, . . . , 9, have been calculated as reported in Table 1.

Table 1. Values of the real constants ωh, ah, h = 0, 1, . . . , 9.

h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9
ωh 1.88 4.69 7.85 11.00 14.14 17.28 20.42 23.56 26.70 29.85
ah 0.73 1.02 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.30.2

0.2

0.4

0.6

0.8

0.10

1

[m]

[m]
m = 7.86 10. -2

k = 2.05 10. 2

ρ = 7.86 10. -1

Fig. 2. Physical parameters and initial conditions of the system.

As for the initial conditions at the initial time t = 0, the velocities have been
assumed to be all equal to zero (i. e., [θ̇(0) γ̇0(0) . . . γ̇9(0)]T = [0 0 . . . 0]T ), and
the initial configuration of the beam has been chosen as a deformed configuration
characterised by the following coordinates:

[γ0(0) . . . γ9(0)]T = [0.05 0.01 0.01 0.005 0.005 0 0 0 0 0]T ,

θ(0) =
9∑

h=0

σh(L) γh(0),

namely, the higher order modes have been assumed to be zero at the initial time,
and the variable y(0) has been set to zero as well (see Figure 2).

As regards to the first choice of the control parameters, the time responses θ(t),
αN (t, L), y(t) and u(t), corresponding to the following values of kp and kv:

kp = 1 , kv = 0.5 ,
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are shown in Figure 3. In particular, the first plot represents the absolute position
θ(t) of the mobile mass, the second plot represents the position αN (t, L) of the end-
point of the beam, the third plot represents the relative position y(t) of the mobile
mass with respect to the end-point of the beam, and the fourth plot represents the
control action u(t).
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Fig. 3. Time responses of the closed loop system corresponding to the controller gains

kp = 1, kv = 0.5.

It can be observed, from all the time responses, that the dissipative action of
the derivative control efficiently reduces the intrinsic oscillations of the mechanism.
The power exerted by the controller (i. e., the modulus of the control signal) is high
because of the high potential energy of the system at the initial time; as a matter
of fact, the hardened steel bar is widely deformed at time t = 0 with respect to its
stiffness.

As regards to the second choice of the control parameters, the time responses
θ(t), αN (t, L), y(t) and u(t), respectively, corresponding to the following values of
kp and kv:

kp = 100 , kv = 3 ,

are shown in Figure 4.
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Fig. 4. Time responses of the closed loop system corresponding to the controller gains

kp = 100, kv = 3.

In this second case, the controller gains have been incremented to improve the
performance of the control action. As a consequence, the dynamics of the closed
loop system are faster (the time responses are damped to their steady-state values
in 0.5 s instead of 3 s) but the power needed by the control action is higher (the force
peaks are more than double in this case with respect to the previous one). It should
be noticed that a stronger control action highly improves the performance of the
controller in damping the intrinsic oscillations of the system.

5. CONCLUSIONS

A finite-dimensional approximated model, parametric in the order N of approxima-
tion, of a flexible beam, with a mobile mass located at its end-point and H lumped
masses placed along its length, has been obtained by considering the natural vibra-
tion modes of a clamped beam. Such a mechanical system is to be understood as a
simple representation of an H-storey building subject to intrinsic vibration and con-
trolled by means of an actuator exerting a relative force between the upper storey
and a mass located on the roof. This modelling approach allowed to prove that,
under an assumption, which is fulfilled in many cases of interest, the same feedback
PD control law from the relative position and velocity of the mobile mass with re-
spect to the position of the end-point of the beam (namely, a local measurement),
asymptotically stabilises the vibration modes considered in the approximated model,
for any choice of the order N of approximation. The proposed control law has been
tested by means of simulations, which confirmed the effectiveness in achieving posi-
tion regulation and stabilisation of the elastic modes of the beam, in the simplified
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case in which the mass of the storeys is negligible with respect to the total mass of
the building.

(Received April 8, 1998.)
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