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SPECTRUM OF RANDOMLY SAMPLED
MULTIVARIATE ARMA MODELS

Amina Kadi

The paper is devoted to the spectrum of multivariate randomly sampled autoregressive
moving-average (ARMA) models. We determine precisely the spectrum numerator coeffi-
cients of the randomly sampled ARMA models. We give results when the non-zero poles
of the initial ARMA model are simple. We first prove the results when the probability
generating function of the random sampling law is injective, then we precise the results
when it is not injective.

1. INTRODUCTION

Let X = (Xt)t∈ZZ be a discrete-time second order stationary process with zero-mean
and values in IRk, satisfying an autoregressive moving-average model. Suppose that
the process is sampled by a random walk T = (Tn)n∈ZZ with values in ZZ, independent
of X. Denote the randomly sampled process by X̃ = (XTn)n∈ZZ. Let us consider the
situation where the available data are only from the process X̃. The problem is to
recover the covariance properties of the original processX. According to Shapiro and
Silverman [17], we know that the univalence of the sampling probability generating
function is sufficient to allow unique recovering of the covariance function of X.
Hence the study of the model structure of the process X̃ arises. Robinson [15]
proves that when X is an ARMA model, X̃ is also an ARMA.

In a previous paper [12], we obtain the rational spectrum of the process X̃, when
X is a univariate ARMA model. We give matrix representations for the spectrum
numerator coefficients of X̃. The AR part is given in Robinson [15] in the univariate
case, and in Kadi et al [11] in the multivariate case. A functional relation between
the poles of X (the roots of the AR part) and those of X̃ is derived. The problem
of the zeros of X̃ (the roots of the MA part) still arises in the multivariate case.

In the present paper, we examine the rational spectrum of X̃ when X is a mul-
tivariate ARMA model. The spectrum numerator coefficients of X̃ are expressed
through block-matrices. The non-zero poles of the initial model are assumed to be
simple.

Another interesting problem in random sampling situation is the estimation of
the second order characteristics of the process X using directly the observations from



318 A. KADI

the process X̃. An extensive literature already exists for this statistical problem in
the univariate case; see for instance Bloomfield [1], Brillinger [2], Dunsmuir [3, 4, 5],
Dunsmuir and Robinson [6, 7, 8], Marshall [13], Parzen [14], Robinson [17], Toloi and
Morettin [18].

The organization of the paper is as follows: In Section 2, we introduce some defi-
nitions and recall some results about randomly sampled multivariate ARMA models.
In Section 3, we derive the spectrum of X̃ for initial ARMA process with simple non-
zero poles. We examine cases when the sampling probability generating function is
injective and when it is non-injective. The numerator spectrum coefficients are given
in terms of the initial ARMA model parameters and of the sampling distribution
convolution law.

2. PRELIMINARIES

Let ε = (εt)t∈ZZ be a zero-mean white noise, with values in IRk and Σε its covariance
matrix.

Let X = (Xt)t∈ZZ be a zero-mean second-order stationary process with values in
IRk satisfying the ARMA(p, q) equation:

p∑

j=0

ΦjXt−j =
q∑

j=0

Θjεt−j , ∀ t ∈ ZZ, (1)

where Φj (0 ≤ j ≤ p) and Θj = (0 ≤ j ≤ q) are the matrix coefficients with
Φ0 = Θ0 = Ik.

Denote the AR matrix polynomial by Φ(z) =
∑p

j=0 Φjz
p−j , the MA matrix

polynomial by Θ(z) =
∑q

j=0 Θjz
q−j , and, for any square matrix A, we write |A| for

the determinant of A and comA for the matrix of cofactors of A. We will refer to
the roots of |Φ(z)| as the poles of the model and to the roots of |Θ(z)| as the zeros
of the model. Denote the spectrum of the process X by ĈX(z) =

∑
h∈ZZ CX(h)z−h,

where CX(h) = E(X0
tXh), tX is the transpose of X.

Let ‖ ·‖ denotes any of the norms on the k×k matrices with complex coefficients.
The sequence

(
CX(h)

)
is square summable, i. e.,

∑

h∈ZZ

‖CX(h)‖2 <∞.

Consider now a sampling process T = (Tn)n∈ZZ where the random variables
(Tn+1 − Tn)n∈ZZ are mutually independent and identically distributed. Denote by L
the distribution of (Tn+1−Tn) and by Lj = P (Tn+1−Tn = j). Let L̂(z) =

∑∞
j=` Ljz

j

be the probability generating function of L which is assumed to be defined in a do-
main including the unit disk; ` is the smallest integer such that L` 6= 0. Denote by
L∗h the convolution of the distribution function L with itself, h times.

The sampled process X̃ = (Xn)n∈ZZ is defined by:

X̃n = XTn , n ∈ ZZ. (2)
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We assume the following assumptions:

A1) the poles of X are inside the unit circle;
A2) the zeros of X are inside or on the unit circle;
A3) Φ and Θ have no common left divisors;
A4) the matrix Φp is of full rank;
A5) T0 = 0;
A6) the support of L is IN∗;
A7) the sampling process T is independent of X.

Let us now recall some results on randomly sampled multivariate ARMA models
(see Kadi et al [11]):

i) The process X̃ is an ARMA.

ii) Since X has a rational spectrum, there exists a in ]0, 1[ such that ĈX exists in
the ring ]a, a−1[. Then, the spectrum of X̃ exists for all z in the ring ]a, a−1[

Ĉ
X̃

(z) =

[
1

2iπ

∫

Cγ

(
tĈX(x)

1− zL̂(x)
+

ĈX(x)

1− z−1L̂(x)

)
dx
x

]
− CX(0), (3)

Cγ is the circle of radius γ with a < γ < min(|z|, |z|−1).

iii) There exists a representation of X̃ whose poles are the non-zero images by L̂ of
the non-zero poles of X, with fewer or the same multiplicity orders.

Before stating the next section, we need two technical lemmas which will be useful
in the proofs. Denote by J the Jordan partitioned square matrice of finite dimension

J =




0k 0k 0k . . . 0k

Ik 0k 0k . . . 0k

0k Ik 0k . . . 0k
...

. . . . . . . . .
...

0k 0k 0k Ik 0k




where Ok and Ik have size k× k. The dimension of J will be specified in every case.
Note that the matrix J is nilpotent of order equal to its dimension.

We admit to set as notation

Jj = J−j , if j < 0.

Lemma 1. Let P andQ be two matrix polynomials of degreem, P (z)=
∑m

j=0Ajz
j

and Q(z)=
∑m

j=0Bjz
j , where the size of matrices (Aj) and (Bj) is k × k.

Then the matrix coefficients Cj of the expression P (z)tQ(z−1) are as

Cj = tAJjB, if j ≥ 0
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and
Cj = tAtJjB, if j < 0

with A = t(A0, A1, . . . , Am) and B = t(B0, B1, . . . , Bm).

Lemma 2. Let P andQ be two matrix polynomials of degreem, P (z) =
∑m

j=0Ajz
j

and Q(z) =
∑m

j=0Bjz
j , where the size of matrices (Aj) and (Bj) is k × k.

Then the matrix coefficients Cj of the expression tP (z−1)Q(z) are as

Cj = tAtJjB, if j ≥ 0

and
Cj = tAJjB, if j < 0

with A = t(tA0,
tA1, . . . ,

tAm) and B = t(tB0,
tB1, . . . ,

tBm).

3. SPECTRUM OF RANDOMLY SAMPLED ARMA MODELS

Let us introduce the following notations.

(rj) are the simple non-zero poles of X, |Φ(x)| = ∏kp
j=1(x− rj). Φ1(x) = xpΦ(x−1),

Θ1(x) = xqΘ(x−1), and M(x) = t
(
com Φ(x)

)
Θ(x)Σε

tΘ1(x)
(
com Φ1(x)

)
. The ele-

ments of M(x) are polynomials in the variable x.
Set M = t(tMq−p,

tMq−p−1, . . . ,
tM0) when q − p ≥ 0. Mj is the coefficient of xj in

the matrix polynomial M(x).

Rj =
M(rj)

rq−p+1
j

∏kp
`=1(1− rjr`)

∏
6̀=j(rj − r`)

and R = t(tR1,
tR2, . . . ,

tRkp).

Set Ψ = t(ψ0Ik, ψ1Ik, . . . , ψq−pIk); ψj are the first coefficients of the series[
xkp|Φ(x)| |Φ(x−1)|]−1.
|Φ̃(z)| = ∏kp

j=1(z−L̂(rj)) =
∑kp

i=0 φ̃iz
kp−i is the determinant of the AR characteristic

polynomial of X̃ and set φ̃ = t(φ̃0Ik, φ̃1Ik, . . . , φ̃kpIk).
|Φ̃(z)|(j) =

∏
h6=j(z− L̂(rh)) =

∑kp−1
i=0 φ̃

(j)
i zkp−1−i with φ̃(j)

0 = 1, ∀j ∈ {1, 2, . . . , kp}.
In fact, the polynomial |Φ̃(z)|(j) coincides with the determinant of the character-

istic polynomial of the randomly sampled process X̃ without the root L̂(rj).

Let

A =




φ̃
(1)
0 Ik φ̃

(2)
0 Ik . . . φ̃

(kp)
0 Ik

φ̃
(1)
1 Ik φ̃

(2)
1 Ik . . . φ̃

(kp)
1 Ik

...
...

...
...

φ̃
(1)
kp−1Ik φ̃

(2)
kp−1Ik . . . φ̃

(kp)
kp−1Ik

0k 0k . . . 0k



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A is of dimension
(
k(kp + 1), k(kp)

)
. ϕ̃i (−kp ≤ i ≤ kp) is the coefficient of zi in

the product |Φ̃(z)| |Φ̃(z−1)| and ϕ̃i = ϕ̃−i, ∀i ∈ {1, 2, . . . , kp}.

Define ∆L =
q−p∑

j=`

LjJ
j . Our main result is as follows

Theorem. Assume that the poles of X are simple and that (q− p) ≥ 0. Then the
spectrum of the process X̃ is

Ĉ
X̃

(z) =

∑kp+n
j=−(kp+n) Ṽj(Φ,Θ, L)zj

∏kp
j=1(1− zL̂(rj))(1− z−1L̂(rj))

,

n is the highest integer such that n` ≤ q − p, and

Ṽj(Φ,Θ, L) =




Ṽ

(AR)
j (Φ,Θ, L) + Γ̃j+n+kp(Φ,Θ, L), ∀ j ∈ {0, 1, . . . , kp}

Γ̃j+n+kp(Φ,Θ, L), ∀ j ∈ {kp+ 1, . . . , kp+ n}
where

Ṽ
(AR)
j = tRtAJj φ̃+tφ̃ tJjA×R− 1

2

[
kp∑

h=1

(tRh+Rh)

]
tφ̃Jj φ̃, ∀ j∈{0, 1, . . . , kp},

and

Γ̃j(Φ,Θ, L) =
j∑

h=0

(
tM∆h−n

L Ψ
)
ϕ̃kp−(i−h), ∀j ∈ {0, 1, . . . , kp+ n}.

The numerator spectrum coefficients satisfy

tṼ−j = Ṽj , ∀ j ∈ {1, 2, . . . , n+ kp}.

P r o o f . We proceed to the calculation of Ĉ
X̃

(see formula (3)) by residues.

As X is an ARMA process,

ĈX(x) = Φ−1(x)Θ(x)Σε
tΘ

(
1
x

)
tΦ−1

(
1
x

)

=
M(x)

xq−p
∏kp

j=1(x− rj) (1− rjx)
.

We have then

Ĉ
X̃

(z) =

{
1

2iπ

∫

Cγ


xq−p+1

kp∏

j=1

(x− rj)(1− rjx)



−1

(4)

·
(

M(x)

1− z−1L̂(x)
+

tM(x)

1− zL̂(x)

)
dx

}
− CX(0).
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For |x| ≤ γ,we have |L̂(x)| ≤ γ < min(|z|, |z|−1); therefore 1 − zL̂(x) 6= 0 and
1− z−1L̂(x) 6= 0. So the expression under the integral sign has as poles the roots rj
of |Φ(x)| and zero.

We have to compute the three terms in the right-hand side (RHS) of formula (4):

a)
– The residue at the simple pole rj is the constant term in the expansion of

M(x)


xq−p+1

kp∏

`=1

(1− r`x)
∏

` 6=j

(x− r`)

(
1− L̂(x)

z

)

−1

in powers of (x− rj); thus it is

M(rj)

rq−p+1
j

∏kp
`=1(1− rjr`)

∏
6̀=j(rj − r`)

× 1

1− L̂(rj)
z

.

– The residue at the pole zero (this occurs when q − p+ 1 > 0) is the coefficient of
xq−p in the expansion of

M(x)

[
kp∏

j=1

(1− xrj)(x− rj)
(
1− L̂(x)

z

)
]−1

(5)

in powers of x.
Since (1− z−1L̂(x))−1 may be expanded into:

∞∑

h=0

(z−1L̂(x))h,

and as
(
L̂(x)

)h = L̂∗h(x) =
∑∞

j=h` L
∗h
j xj , the regular part of the expansion of(

1− z−1L̂(x)
)−1 in powers of x at order (q − p) is

n∑

h=0

z−h




q−p∑

j=h`

L∗hj xj


 ,

where n is the highest integer such that n` ≤ (q − p). Now, to obtain the regular
part in the expansion of (5), we need only to express




q−p∑

j=0

ψjx
j







n∑

h=0

z−h




q−p∑

j=h`

L∗hj xj+q−p










q−p∑

j=0

M−j+(q−p)x
−j


 .

We find that the residue at the pole zero is a matrix polynomial in z−1 of degree n,
and using Lemma 1, the coefficient of z−h is

q−p∑

j=h`

L∗h tΨ tJj M
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but
q−p∑

j=h`

L∗hj
tJj =




q−p∑

j=`

Lj
tJj




h

= t∆h
L.

Let us denote by
(
Ṽ

(0)
j (Φ,Θ, L)

)
−n≤j<0

the coefficients in z−1 of the residue at
zero.

b) In order to compute the second term in the RHS of formula (4), we need to
replace 1/z by z and M(x) by tM(x).

To derive
(
Ṽ

(0)
j (Φ,Θ, L)

)
for 0 < j ≤ n, we apply Lemma 2. We obtain

Ṽ
(0)
j (Φ,Θ, L) = tM∆j

LΨ.

These coefficients satisfy
tṼ

(0)
−j (Φ,Θ, L) = Ṽ

(0)
j (Φ,Θ, L), ∀ j ∈ {1, 2, . . . , n}

and
Ṽ

(0)
0 (Φ,Θ, L) = tMΨ + tΨM.

c) The last term CX(0) in the RHS of formula (4) is equal to

1
4iπ

∫

Cγ

(
tĈX(x) + ĈX(x)

) dx
x

and the residue of this integral is 1
2

∑kp
j=1 (Rj + tRj).

It follows from a), b) and c) that the spectrum of the process X̃ is
kp∑

j=1

Rj

1− z−1L̂(rj)
+

kp∑

j=1

tRj

1− zL̂(rj)
− 1

2

kp∑

j=1

(
Rj + tRj

)
+

n∑

j=−n

Ṽ
(0)
j (Φ,Θ, L)zj .

Now, we express the difference
Ĉ

X̃
(z)−

n∑

j=−n

Ṽ
(0)
j (Φ,Θ, L)zj


 . (6)

After reduction to the same denominator, we obtain as numerator in the matrix
expression (6)




kp∑

j=1

tRj

∏

h 6=j

(1− zL̂(rh))


∏

h

(1− z−1L̂(rh)) (7)

+




kp∑

j=1

Rj

∏

h 6=j

(1− z−1L̂(rh))


∏

h

(1− zL̂(rh))

−1
2




kp∑

j=1

(
Rj + tRj

)

 ∏

h

(1− zL̂(rh))(1− z−1L̂(rh)).
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The matrix polynomial
∑kp

j=1
tRj

∏
h 6=j(1− zL̂(rh)) is equal to

kp∑

j=1

tRj

∏

h6=j

(1− zL̂(rh)) =
kp∑

j=1

tRj

[
zkp−1|Φ̃(z−1)|(j)

]
=

kp−1∑

i=0




kp∑

j=1

tRj φ̃
(j)
i


 zi.

Set:

R̃i =
kp∑

j=1

Rj φ̃
(j)
i , ∀ i ∈ {0, 1, . . . , kp− 1},

the partitioned matrix t(tR̃0,
tR̃1, . . . ,

tR̃kp−1, 0k) may be written in a matrix form:
A×R (The matrices A and R are introduced in the notations).

Now we have
(

kp−1∑

i=0

tR̃iz
i

) ∏

h

(
1− z−1L̂(rh))

)
=

(
kp−1∑

i=0

R̃iz
i

) [
z−kp|Φ̃(z)|

]

=

(
kp−1∑

i=0

R̃iz
i

)(
kp∑

i=0

φ̃iz
−i

)
=

kp∑

h=−kp

βhz
h

where by Lemma 1

βh =





tRtAJhφ̃, if h ≥ 0

tRtA tJhφ̃, if h < 0

In the same way



kp∑

j=1

Rj

∏

h 6=j

(1− z−1L̂(rh))


 ∏

h

(1− zL̂(rh))

=

(
kp−1∑

i=0

R̃iz
−i

) (
kp∑

i=0

φ̃iz
i

)
=

kp∑

h=−kp

β′hz
h,

where

β′h =





tφ̃JhA×R, if h ≥ 0

tφ̃ tJhA×R, if h < 0.

and

kp∑

j=1

tRj

∏

h

(1− zL̂(rh))(1− z−1L̂(rh)) =




kp∑

j=1

tRjz
kp|Φ̃(z−1)|




(
kp∑

i=0

φ̃iz
−i

)

=




kp∑

i=0




kp∑

j=1

tRj


 φ̃iz

i




(
kp∑

i=0

φ̃iz
−i

)
=

kp∑

h=−kp

β
′′
hz

h



Spectrum of Randomly Sampled Multivariate ARMA Models 325

it follows from Lemma 1 that the coefficients β
′′
h of this product are

β
′′
h =





∑kp
j=1

tRj
tφ̃Jhφ̃, if h ≥ 0

∑kp
j=1

tRj
tφ̃ tJhφ̃, if h < 0.

Then it comes that

Ĉ
X̃

(z)−
n∑

j=−n

Ṽ
(0)
j (Φ,Θ, L)zj =

∑kp
j=−kp Ṽ

(AR)
j (Φ,Θ, L)zj

∏kp
j=1(1− zL̂(rj))(1− z−1L̂(rj))

,

with

Ṽ
(AR)
j (Φ,Θ, L) = tRtAJj φ̃+ tφ̃ tJjA×R− 1

2

[
kp∑

h=1

(tRh +Rh)

]
tφ̃Jj φ̃,

j ∈ {0, 1, . . . , kp}.

The coefficients Ṽ (AR)
j (Φ,Θ, L) satisfy

tṼ
(AR)
−j (Φ,Θ, L) = Ṽ

(AR)
j (Φ,Θ, L), ∀ j ∈ {1, . . . , kp}.

This leads to

Ĉ
X̃

(z) =

kp∑
j=−kp

Ṽ
(AR)
j (Φ,Θ, L)zj +

(
n∑

j=−n

Ṽ
(0)
j zj

)
kp∏

j=1

(1−zL̂(rj))(1−z−1L̂(rj))

p∏
j=1

(1− zL̂(rj))(1− z−1L̂(rj))

and



n∑

j=−n

Ṽ
(0)
j zj




kp∏

j=1

(1− zL̂(rj))(1− z−1L̂(rj))

=
1

zn+kp

(
2n∑

i=0

Ṽ
(0)
n−iz

2n−i

)(
2kp∑

i=0

ϕ̃kp−iz
2kp−i

)

=
1

zn+kp

2(n+kp)∑

i=0

Γ̃iz
i =

n+kp∑

i=−(n+kp)

Γ̃i+n+kpz
i

with Γ̃i =
∑i

h=0 Ṽ
(0)
h−nϕ̃kp−(i−h).

Finally, it comes that

Ĉ
X̃

(z) =

∑kp+n
j=−(kp+n) Ṽj(Φ,Θ, L)zj

∏kp
j=1(1− zL̂(rj))(1− z−1L̂(rj))



326 A. KADI

with

Ṽj(Φ,Θ, L) =




Ṽ

(AR)
j (Φ,Θ, L) + Γ̃j+n+kp(Φ,Θ, L), if j ∈ {0, 1, . . . , kp}

Γ̃j+n+kp(Φ,Θ, L), if j ∈ {kp+ 1, . . . , kp+ n}.

This concludes the proof of the theorem. 2

Remark 1. The matrix J which we use to define ∆L is of dimension k(q−p+1)×
k(q−p+1) while it is of dimension k(kp+1)×k(kp+1) elsewhere in this theorem.
We keep the notation J for the same type of matrices.

Remark 2. The initial model X has no zero pole owing to assumption A4. There
is no further difficulty to replace this assumption by weaker one: the matrix (Φp,Θq)
is of full rank. In this case, we have to consider zero as a possible pole of X with
multiplicity s0.

Remark 3. When (q − p) < 0, there is no pole at 0 and the spectrum of X̃ is
simply given by:

Ĉ
X̃

(z) =
kp∑

j=1

Rj

1− z−1L̂(rj)
+

kp∑

j=1

tRj

1− zL̂(rj)
− 1

2

kp∑

j=1

(
Rj + tRj

)

=

∑kp
j=−kp Ṽj(Φ, 0, L)zj

∏kp
j=1(1− zL̂(rj))(1− z−1L̂(rj))

where

Ṽj(Φ, 0, L) = tRtAJj φ̃+ tφ̃ tJjA×R− 1
2

[
kp∑

h=1

(tRh +Rh)

]
tφ̃Jj φ̃,

j ∈ {0, 1, . . . , kp}.

Now, let us consider the situation where the probability generating function L̂ is
not injective. In this case, the randomly sampled model may be reduced. Denote
by L̂1, L̂2, . . ., L̂b the distinct values in the sequence

(
L̂(r1), L̂(r2), . . . , L̂(rp)

)
. Let

us divide the set {1, 2, . . . , p} into b distinct and non-empty classes E1, E2, . . ., Eb

such that Ej = {h/L̂(rh) = L̂j}. Then clearly
∑kp

j=1
Rj

1−z−1L̂(rj)
=

∑b
j=1

R′j
1−z−1L̂(rj)

where R
′
j =

∑
h∈Ej

Rh.
This leads to Corollary 1 where the matrix A is of dimension (b + 1) × b and

R′ = t(tR′1,
tR′2, . . . ,

tR′b).
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Corollary 1. Assume that the poles of X are simple and that (q − p) ≥ 0. If b
denotes the number of distinct and non zero values of L̂, then the spectrum of the
process X̃ is

Ĉ
X̃

(z) =

∑b+n
j=−(b+n) Ṽj(Φ,Θ, L)zj

∏b
j=1(1− zL̂j)(1− z−1L̂j)

,

n is the highest integer such that n` ≤ q − p, and

Ṽj(Φ,Θ, L) =





Ṽ
(AR)
j (Φ,Θ, L) + Γ̃j+n+b(Φ,Θ, L), ∀ j ∈ {0, 1, . . . , b}

Γ̃j+n+b(Φ,Θ, L), ∀ j ∈ {b+ 1, . . . , b+ n}
where:

Ṽ
(AR)
j = tRtAJj φ̃+ tφ̃tJjA×R− 1

2

[
kp∑

h=1

(tRh +Rh)

]
tφ̃Jj φ̃, ∀ j ∈ {0, 1, . . . , b},

and

Γ̃j(Φ,Θ, L) =
j∑

h=0

(
tM∆h−n

L Ψ
)
ϕ̃b−(i−h), ∀ j ∈ {0, 1, . . . , b+ n}.

The numerator spectrum coefficients satisfy

tṼ−j = Ṽj , ∀ j ∈ {1, 2, . . . , n+ b}.

Let us consider the AR(p) models.

Corollary 2. Assume that q = 0 and that the poles of X are simple. Then the
spectrum of the process X̃ is

Ĉ
X̃

(z) =

∑kp
j=−kp Ṽj(Φ, 0, L)zj

∏kp
j=1(1− zL̂(rj))(1− z−1L̂(rj))

,

where

Ṽj(Φ, 0, L) = tRtAJj φ̃+ tφ̃ tJjA×R− 1
2

[
kp∑

h=1

(tRh +Rh)

]
tφ̃Jj φ̃,

∀ j ∈ {0, 1, . . . , kp}.

The numerator spectrum coefficients satisfy

tṼ−j = Ṽj , ∀ j ∈ {1, 2, . . . , kp}.

P r o o f . In this case, we have no pole at 0 and the spectrum of X̃ is as in Remark 3.
2

Let us now consider the MA(q) models. Denote Ω = t
(
Σ

1
2
ε ,Θ1Σ

1
2
ε , . . . ,ΘqΣ

1
2
ε

)
.
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Corollary 3. Assume that p = 0. Then the spectrum of the process X̃ is

Ĉ
X̃

(z) =
n∑

j=−n

Ṽj(0,Θ, L)zj

where n is the highest integer such that n` ≤ q and the coefficients Ṽj are quadratic
in the parameter matrices Θj ,

Ṽj(0,Θ, L) = tΩ∆j
LΩ, ∀ j ∈ {0, 1, 2, . . . , n}.

These coefficients satisfy

tṼ−j(0,Θ, L) = Ṽj(0,Θ, L), ∀ j ∈ {1, 2, . . . , n}.

P r o o f . For p = 0, we obtain

Ṽj(0,Θ, L) = Γ̃j+n(0,Θ, L), ∀ j ∈ {1, . . . , n}

=
j+n∑

h=0

Ṽ
(0)
h−nϕ̃−(j+n−h).

All the terms ϕ̃−(j+n−h) vanish except when h = j + n. So

Ṽj(0,Θ, L) = Ṽ
(0)
j (0,Θ, L) = tM∆j

LΨ.

Given that the matrix ∆j
L has the form




0j`k 0j`k . . . 0k 0k

L∗jj`Ik 0k . . . 0k 0k

L∗jj`+1Ik L∗jj`Ik 0k . . . 0k

...
. . . . . .

...
...

L∗jq Ik L∗jq−1Ik L∗jj`+1Ik L∗jj`Ik
t0j`k



,

where the matrix 0j`k is as 0j`k = t(0k, . . . , 0k︸ ︷︷ ︸
j` times

); we obtain,

Ṽj(0,Θ, L) =
q∑

h=j`

L∗jh
tMq−h.

The initial model is a MA(q), so the matrix M(x) is as follows

M(x) = Θ(x)Σε
tΘ1(x) = xqΘ(x)Σε

tΘ(x−1) = xq

q∑

j=−q

C(j)xj .
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Therefore the matrix coefficients M0,M1, . . . ,Mq are respectively equal to C(−q),
C(−q + 1), . . . , C(0) and the matrix covariances may be written by Lemma 1

C(j) =





tΩJjΩ, if j ≥ 0

tΩ tJjΩ, if j < 0.

Hence

Ṽj(0,Θ, L) =
q∑

h=j`

L∗jh
tC(−h) = tΩ




q∑

h=j`

L∗jh J
h


 Ω = tΩ∆j

LΩ.
2

4. NUMERICAL EXAMPLES

In this section, let us examine some simple cases. The process considered is two-
dimensional and the sampling law is such that L1 6= 0.

• Let X be a first order moving average process: Xt = εt + Θεt−1,

where Θ =
(

0.5 −1
0 0.5

)
and Σε = I2.

The spectrum of the process X is given by:

ĈX(z) = CX(−1)z−1 + CX(0) + CX(1)z = Σε
tΘz−1 +

(
Σε + ΘΣε

tΘ
)

+ ΘΣεz.

So

zĈX(z) =
(

1
2z

2 + 9
4z + 1

2 −z2 − 1
2z

− 1
2z − 1 1

2z
2 + 5

4z + 1
2

)
.

The spectrum of the process X̃ is obtained by applying Corollary 3:

Ĉ
X̃

(z) = Ṽ−1(0,Θ, L)z−1 + Ṽ0(0,Θ, L) + Ṽ1(0,Θ, L)z

= L1Σε
tΘz−1 +

(
Σε + ΘΣε

tΘ
)

+ L1ΘΣεz.

So

zĈ
X̃

(z) =
(

1
2L1z

2 + 9
4z + 1

2L1 −L1z
2 − 1

2z
− 1

2z − L1
1
2L1z

2 + 5
4z + 1

2L1

)
.

In Tables 1 and 2, we compute the zeros of the process X̃ for different values
of L1.
a) When the sampling distribution is a Bernoulli law, we have
Lj = pj−1(1− p)2−j , j ∈ {1, 2}.

a) When the sampling distribution is a Poisson law, we have
Lj = e−λ λj−1

(j−1)! , j ≥ 1.



330 A. KADI

Remark. In all the tables, we only report the models with zeros inside the unit disk.

Table 1. Bernoulli law.

L1 zeros modules of zeros

0.1 −0.0245± 0.0195i 0.0313

0.2 −0.0494± 0.0391i 0.0630

0.3 −0.0755± 0.0587i 0.0956

0.4 −0.1033± 0.0783i 0.1296

0.5 −0.1338± 0.0979i 0.1658

0.6 −0.1684± 0.1173i 0.2053

0.7 −0.2096± 0.1357i 0.2497

0.8 −0.2621± 0.1512i 0.3026

0.9 −0.3381± 0.1558i 0.3722

We notice, from Table 1, that the zeros of the sampled process X̃, are more
stable than those of the process X. We also see, that the more L1 is small, the more
these zeros are stable. So the more the sampling process has increments of longer 2,
the more the zeros of X̃ are stable. In Kadi [10], we study by means of numerical
examples the behaviour of the zeros of X̃ in relation with the zeros and the poles of
X in the univariate case. The same properties are reported.

Table 2. Poisson law.

λ L1 zeros modules of zeros

0.1 0.9048 −0.3427± 0.1553i 0.3764

0.3 0.7408 −0.2293± 0.1426i 0.2700

0.4 0.6703 −0.1965± 0.1304i 0.2358

0.6 0.5488 −0.1501± 0.1074i 0.1846

1 0.3679 −0.0941± 0.0720i 0.1185

3 0.0498 −0.0122± 0.0097i 0.0156

6 0.0025 (−06046± 0.4837i)× 10−3 0.7742× 10−3

9 1.2341× 10−4 (−0.3010± 0.2408i)× 10−4 0.3855× 10−4

We notice the same behaviour as in the case of the Bernoulli law.

• Let X be a first order autoregressive process: Xt + ΦXt−1 = εt,

where Φ =
(

0.25 1
0 −0.5

)
and Σε = I2.

The spectrum of the process X̃ is obtained by applying Corollary 2:
2∏

j=1

(
1− zL̂(rj)

)(
1− z−1L̂(rj)

)
Ĉ

X̃
(z) =

2∑

j=−2

Ṽj(Φ, 0, L)zj .
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To compute the coefficients Ṽj , we need:

M(x) =
(− 1

2x
2 + 9

4x− 1
2 −1− 1

4x
−x2 − 1

4x
1
4x

2 + 17
16x− 1

4

)

|Φ̃(z)| = φ̃0z
2 + φ̃1z + φ̃2

= z2 −
(
L̂(r1) + L̂(r2)

)
z + L̂(r1)L̂(r2)

A =




I2 I2
−L̂(r2)I2 −L̂(r1)I2

02 02




R1 =
M(r1)

(1− r21)(1− r1r2)(r1 − r2)
and R2 =

M(r2)
(1− r22)(1− r1r2)(r2 − r1)

.

Then we obtain:

Ṽ0(Φ, 0, L) =
1
2
(R1 +R2 + tR1 + tR2)− (φ̃1L̂(r2) +

1
2
φ̃2

1 +
1
2
φ̃2

2)(R1 + tR1)

−(φ̃1L̂(r1) +
1
2
φ̃2

1 +
1
2
φ̃2

2)(R2 + tR2)

Ṽ1(Φ, 0, L) = −(L̂(r2) +
1
2
φ̃1 +

1
2
φ̃1φ̃2)(R1 + tR1)− (L̂(r1) +

1
2
φ̃1

+
1
2
φ̃1φ̃2)(R2 + tR2)

Ṽ2(Φ, 0, L) = −1
2
φ̃2

(
R1 +R2 + tR1 + tR2

)
.

In Tables 3 and 4, we compute the poles and the zeros of the process X̃ for
different values of the Bernoulli parameter p and the Poisson parameter λ.
a) When the sampling distribution is a Bernoulli law, we have L̂(z) = (1−p)z+pz2.
b) When the sampling distribution is a Poisson law, we have L̂(z) = z exp(λ(z−1)).

Table 3. Bernoulli law.

p poles zeros

0.1 −0.2188; 0.4750 −0.1392; 0.1409

0.2 −0.1875; 0.4500 −0.1228; 0.1242

0.3 −0.1563; 0.4250 −0.1055; 0.1065

0.4 −0.1250; 0.4000 −0.0871; 0.0878

0.5 −0.093; 0.3750 −0.676; 0.0679; 0.7280

0.6 −0.0625; 0.3500 −0.466; 0.0468; 0.5559

0.7 −0.0313; 0.3250 −0.8662; −0.0242; 0.0242; 0.4575

0.8 1.387× 10−17; 0.3000 −0.5467; 0.0000; 0.0000; 0.3862

0.9 0.0313; 0.2750 −0.4207; −0.0261; 0.0260; 0.3295
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Table 4. Poisson law.

λ poles zeros

0.1 −0.2206; 0.4756 −0.1401; 0.1418

0.3 −0.1718; 0.4304 −0.1139; 0.1151

0.4 −0.1516; 0.4094 −0.1224; 0.1033

0.6 −0.1181; 0.3704 −0.0822; 0.0828; 0.9973

0.9 −0.0812; 0.3188 −0.0585; 0.0587; 0.5320

1 −0.0716; 0.3033 −0.8435; −0.0521; 0.0523; 0.4825

3 −0.0059; 0.1116 −0.1472; −0.0046; 0.0046; 0.1425

6 −1.3827× 10−4; 0.0249 −0.0314; 0.0313

9 −3.2518× 10−6; 0.0056 −0.0063; 0.0069

In the univariate case, we observe on many examples that the zeros of X̃ are more
stable than those of X. This property needs to be more studied to determine the
conditions under which this property holds.

(Received September 19, 1996.)
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