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Pod Vodárenskou věž́ı 4, 182 08 Praha 8

Kybernetika is a bi-monthly international journal dedicated for rapid publication of
high-quality, peer-reviewed research articles in fields covered by its title.

Kybernetika traditionally publishes research results in the fields of Control Sciences,
Information Sciences, System Sciences, Statistical Decision Making, Applied Probability
Theory, Random Processes, Fuzziness and Uncertainty Theories, Operations Research and
Theoretical Computer Science, as well as in the topics closely related to the above fields.

The Journal has been monitored in the Science Citation Index since 1977 and it is
abstracted/indexed in databases of Mathematical Reviews, Current Mathematical Publi-
cations, Current Contents ISI Engineering and Computing Technology.

K yb e r n e t i k a . Volume 36 (2000) ISSN 0023-5954, MK ČR E4902.
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OPTIMAL MULTIVARIABLE PID REGULATOR
1

Jiř́ı Mošna and Pavel Pešek

A continuous version of optimal LQG design under presence of Wiener disturbances is
solved for MIMO controlled plant. Traditional design tools fail to solve this problem due
to unstability of the augmented plant. A class of all optimality criteria, which guarantee
existence of an asymptotical solution, is defined using a plant deviation model. This class
is utilized in design of an optimal state and an error feedback regulator which is presented
here. The resultant optimal error regulator is interpreted as an optimal multivariable
matrix PID regulator.

1. INTRODUCTION

This paper deals with structure design and parameter setting of an optimal multi-
variable matrix PID regulator using LQG optimization. This regulator is a general-
ization of a classical PID regulator often used in industry control applications.

According to alternative system theory [14], the optimization problem is described
as a design of an autonomous causal control system composed from an augmented
plant and a regulator. The augmented plant is a controlled system comprising all
surroundings relevant to the given problem. Components of the control system are
mutually connected only via informational relations and they are not influenced by
the environment.

There is a large range of literature about the output regulation problem, e. g. [4]
for the latest one. However, they mostly deal with deterministic models. We consider
a non-astatic stochastic linear t-invariant system, where the nominal output and
external plant disturbances are modeled by Wiener process represented by a system
of parallel integrators. According to internal model principle [5], an integration
feedback must be included in the system in order to guarantee the error to be
asymptotically zero.

In this paper, we study a connection between the solution of LQ/LQG optimiza-
tion and design of PID regulators. We use the results of [7, 13] to derivate a plant
deviation model. This model is used for defining a class of such optimality criteria
that allow to design a state space feedback regulator is defined using the plant de-

1This work was partly supported by the Ministry of Education of Czech Republic under Project
No. VS97159 and by Grant Agency of the Czech Republic through Grant No. A2147701
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viation model. Even if the augmented plant is unstable, the standard approach of
LQG optimization can be used.

In cases, where the plant state is measured, the optimal regulator uses its optimal
estimation. However, this can be complicated by undetectability of some states of
the augmented plant. Then the estimator is designed using a fact that the optimal
control law is a specific combination of the linear state variables.

The resultant optimal error feedback regulator can be interpreted as a matrix
MIMO PID regulator. We would like to point out that the LQG optimization gives
both optimal regulator structure and optimal parameter setup.

2. PROBLEM FORMULATION

Consider an augmented plant of the controlled plant and a Wiener model of the
surroundings described by

ẋ = A · x + B · u + G · w + Γ · ξ (1)

ẇ = ∆ · ξ (2)

y = C · x (3)

yM = C · x + H · w, (4)

where x ∈ IRn is state of the controlled plant (1) and u ∈ IRr y ∈ IRp are its control
input and output, respectively. Further, w ∈ IRm is vector of Wiener disturbances,
and ξ ∈ IRq is an absolutely random fictitious process with zero mean and known
covariance which models all randomness in the controlled plant. The additional
variable yM ∈ IRp represents a measured output available for control. Block scheme
of the augmented plant is shown in Figure 1.

It is supposed that the dimensions of control input and controlled output are
equal. Furthermore, nonsingularity of the dynamic matrix A and full rank of the
gain matrix CA−1B are assumed.

The following text deals in detail with both the full information feedback design,
where yM corresponds to the augmented state (x, w), and the error feedback design,
where yM is the control error e = y − yR.

We look for such a controller that realizes a causal control law

u(t) = φ(t, yM [0, t], u[0, t)) (5)

and guarantees the best behavior of the control system for given condition. Asymp-
totic solution of the LQG optimization is not feasible, because the controlled aug-
mented plant is not stabilizable due to presence of the generator of Wiener distur-
bance (2). In most cases variance of the error e grows to infinity and value of the
standard quadratic optimality criteria becomes unlimited.

The need to define another class of quadratic optimality criteria which removes
this unpleasant property is simplified by definition of a deviation model of the aug-
mented plant [13]. The deviation model is obtained by the following transformation
of the plant state

xE = x + A−1 · (G − B · L) · w, (6)
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Fig. 1. Block scheme of the augmented plant.

where
L = −

(

C · A−1 · B
)−1

·
(

H − C · A−1 · G
)

. (7)

Then the plant deviation model is given as

ẋE = A · xE + B · uE + ΓE · ξ (8)

e = C · xE . (9)

The input uE is defined as deviation

uE = u − uN (10)

of input u from its nominal trajectory

uN = −L · w. (11)

An optimal state feedback regulator for the plant deviation model can be obtained
by applying standard tools of LQG optimization for optimality criterion

J = lim
tF →+∞

E

{

1

tF

∫ tF

0

(x′

E · Q · xE + u′

E · R · uE) dt

}

, (12)

where Q ≥ 0 and R > 0.
A class of quadratic optimality criteria which guarantee existence of a solution of

the LQG problem for the augmented plant (1)–(4) is defined by utilizing equivalence
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of the plant deviation model and the augmented plant. This class is obtained by
substitution of the transformations (6) and (10) to the criterion (12). Then the
criterion evaluating performance of the augmented plant can be expressed in a form

J = lim
tF →+∞

E

{

1

tF

∫ tF

0

(e′ · Qe · e + (u + L · w)′ · R · (u + L · w) dt

}

, (13)

where Qe = C ′QC. Since we have assumed controllability and observability of
the controlled plant, providing Qe > 0 the solution of the optimization for the
criterion (13) yields an optimal state feedback regulator. Note that a similar way of
the selection optimality criterion was used for solving SISO deterministic tracking
problem, see e. g. [12].

3. OPTIMAL LQG REGULATOR

Due to unstability of the augmented plant, the standard design tools can not be used
directly. However, the solution can be obtained using equivalence of the deviation
model and the augmented plant.

Assume that solution of the algebraic Riccati equation relevant to optimality
criterion (12) exists. Then the optimal state feedback regulator for deviation model
(8) – (9) is obtained using standard tools [3] as

u∗

E = −LE · xE . (14)

Design of the optimal feedback regulator for measured output yM = (x, w) follows
from transformations (10) and (6) and has a form

u∗ = −
(

L + LE · A−1 (G − B · L)
)

· w − LE · x. (15)

Now, we discuss the error feedback regulator in detail. From the separation
theorem, the optimal error feedback regulator for measured output yM = e, is given
as

u∗ = ûN − LE · x̂E , (16)

where

ûN(t) = E {uN (t) | e〈0, t), u〈0, t)} (17)

x̂E(t) = E {xE(t) | e〈0, t), u〈0, t)} (18)

are estimations of uN and xE produced by an optimal estimator. This design of
an estimator removes the problem of nondetectability of some states of the aug-
mented plant. The estimator produces estimations of the nominal output uN and
the deviation state xE which are observable through error e.

Since we assume (CA−1B) to be nonsingular, the output matrix C must be of
full row rank. This allows us to find such a regular transformation that the output
matrix of the system has a form

C = [Ip 0] , (19)
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where Ip is an identity matrix with dimension p.
Hence we can rewrite the plant deviation model (8) for uE = u − uN as

[

ė

ẋe

]

=

[

A1,1 A1,2

A2,1 A2,2

] [

e

xe

]

+

[

B1

B2

]

u −

[

B1

B2

]

uN +

[

ΓE,1

ΓE,2

]

ξ. (20)

The dynamic model of the nominal control uN is obtained by differentiation of
equation (11). After substitution (2) into (11), the behavior of the nominal control
can be described as

u̇N = −L ·∆ · ξ. (21)

Equations (20) and (21) represent a suitable model for estimation of xe and uN .
From the assumption of observability of (C, A) and nonsingularity of matrix A, it
can be concluded that the state of the estimation model is observable.

Using the estimation model, we define a fictitious measurement

z = ė − A1,1 · e − B1 · u. (22)

After substitution of ė from (20) into (22), the variable z can be expressed as

z = A1,2 · xe − B1 · uN + ΓE,1 · ξ. (23)

Using (20), (21) and (23), the estimation model can be rewritten as

[

ẋe

u̇N

]

=

[

A2,2 −B2

0 0

] [

xe

uN

]

+

[

A2,1 B2

0 0

] [

e

u

]

+ ξ̄1 (24)

z =
[

A1,2 −B1

]

[

xe

uN

]

+ ξ̄2, (25)

where ξ̄1 and ξ̄2 are absolutely random processes with zero mean and covariance
matrices as

covξ̄1,ξ̄1
=

[

ΓE,2Γ
′

E,2 ΓE,2∆
′L′

L∆Γ
′

E,2 L∆∆
′L′

]

, covξ̄2,ξ̄2
= ΓE,1Γ

′

E,1,

covξ̄1,ξ̄2
=

[

ΓE,2ΓE,1

L∆Γ
′

E,1

]

.

(26)

An optimal estimator for the estimation model (24) and (25) and the noise co-
variance matrices (26) are obtained by standard design tools in a form

[

˙̂xe

˙̂uN

]

=

[

A2,2 −B2

0 0

] [

x̂e

ûN

]

+

[

A2,1 B2

0 0

] [

e

u

]

+ K · (z − ẑ) (27)

ẑ = A1,2 · x̂e − B1 · ûN , (28)

where the innovation (z − ẑ) was derived from (23) and (28) as

(z − ẑ) = ė − A1,1 · e − B1 · u − A1,2 · x̂e + B1 · ûN . (29)
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The optimal regulator (16) is given by the gain matrix LE . If we denote the first
p columns of the state regulator gain matrix LE as Le and the remaining block as
Lx, the regulator can be rewritten as

u∗ = ûN − Lx · x̂e − Le · e. (30)

The optimal error feedback regulator with inputs u and e and output u∗ is rep-
resented by equations (27) and (30). The recommended control u∗ is optimal in
open–loop control. Thus the LQG regulator can be used in an open–loop as an
advisor in the control system with variable structure of the plant (see Figure 2a).
This can be used for elimination of wind–up effect, as e. g. in [2].ControlledComponentOptimalLQG �� ee e qe u�uuc OtherControl

ControlledComponentOptimalLQG-q euu� ��Optimal PID Controller
a) b)

Fig. 2. Structure of LQG and PID control.

4. OPTIMAL PID REGULATOR

Here, we assume that every recommended control is realized, which means that

u = u∗. (31)

Then, after substitution (31) into (27), we obtain the optimal feedback regulator as
shown in Figure 2.b. The following text deals with a relation between this and a
PID regulator.

Denoting the last p rows of the innovation gain matrix K as K2 and the remaining
block as K1, the optimal regulator (27) and (30) can after substitution of (31) into
(27) and some calculations be rewritten in a form

˙̂xe = AR,1 · x̂e + BR,1 · e + K1 · ė (32)

˙̂uN = AR,2 · x̂e + BR,2 · e + K2 · ė (33)

u∗ = −Lx · x̂e + ûN − Le · e, (34)
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where
AR,1 = A2,2 − K1 · A1,2 − (B2 − K1 · B1) · Lx

AR,2 = −K2 · A1,2 + K2 · B1 · Lx

BR,1 = A2,1 − K1 · A1,1 − (B2 − K1 · B1) · Le

BR,2 = −K2 · A1,1 + K2 · B1 · Le.

(35)

If the matrix AR,1 is nonsingular, then p eigenvalues of the regulator (32)–(34) are
zero. They can be interpreted as p parallel integrators in the error feedback. Such
regulator, according the internal model principle [5], guarantees robust servomech-
anism of control system.

The regulator (27) and (30) can be easily written as a matrix MIMO PID regu-
lator, after using following substitutions

x̂e = xD − A−1

R,1 · BR,1 · e (36)

ûN = uI + AR,2 · A
−1

R,1 · x̂e −
(

AR,2 · A
−1

R,1 · K1 − K2

)

· e, (37)

where AR,1 is assumed to be a nonsingular matrix. After (36) and (37) are sub-
stituted into (32)–(34) and some simplifications we obtain the matrix MIMO PID
regulator as

uP = KP · e (38)

T I · u̇I = e (39)

T D · ẋD + xD = BD · ė (40)

uD = CD · xD (41)

u∗ = uP + uI + uD, (42)

where uP is proportional, uI integrational and uD derivative control component and

KP = −Le − AR,2 · A
−1

R,1 · K1 + K2 + Lx · A−1

R,1 · BR,1

−AR,2 · A
−1

R,1 · A
−1

R,1 · BR,1

T I =
(

BR,2 − AR,2 · A
−1

R,1 · BR,1

)

−1

T D = −A−1

R,1

BD = −A−1

R,1 ·
(

K1 + A−1

R,1 · BR,1

)

CD = AR,2 · A
−1

R,1 − Lx.

(43)

Here, the matrix KP is a proportional and KD = CDBD a derivative feedback
gain matrix. Matrices T I , T D are integrational and derivative matrix time constant,
respectively.

This structure of the optimal error feedback regulator was expected. However,
the structure of the matrix derivation block is unusual. If we rewrite it in a Jordan
form, we obtain (n−p) scalar derivators. Time constants of these derivators are given
by the eigenvalues of T D. Input of the derivators is a linear weighted combination
of the error. The derivative control action is then given by a linear combination of
the individual output derivator components.
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5. EXAMPLE

Here, we shown an example of the proposed LQG optimal control design. Consider
a stable plant of a third order with two inputs and two outputs, where

A =





−1 0 0
0 − 1

2
0

0 0 −1



 , B =





1 0
0 1

2

0 1



 , G =





0 0 −1
0 0 − 1

2

0 0 −1



 ,

C =

[

1 1 0
0 1 1

]

, H =

[

−1 0 0
0 −1 0

]

, Γ =





0 0 0
0 0 0
0 0 0



 , ∆ =





1 0 0
0 1 0
0 0 1



 .

The generalized disturbance w represents reference signals of outputs y and exo-
disturbances of the controlled plant. Diagonality of the disturbance generator matrix
∆ guarantees a mutual independence of the components of the disturbance vector
w.

In this case, the solution of equation (7), which determines the nominal control
(11), is given by matrix

L =

[

−1 0.5 −1
0 −0.5 −1

]

.

Defining the optimality criterion (12) as

J = lim
tF →∞

E

{

1

tF

∫ tF

0

(

(y − yR)
′

· (y − yR) + (u − uN )
′

· (u − uN)
)

dt

}

.

the gain matrix of the optimal regulator (15) for measured state of the augmented
plant is given as

Le =

[

0.4825 −0.0404 −0.0798
0.3425 0.5369 −0.1618

]

.

Finally, the calculation of parameters of the matrix MIMO PID regulator (38) –
(42) yields

KP =

[

−1.8991 −0.2793
−0.6739 −1.8811

]

, T I =

[

−0.4340 −0.0181
0.2849 −0.6222

]

,

T D = 1.4609, B =
[

−0.0003 0.5023
]

, CD =

[

0.8233
0.7855

]

.

As there is less information available for the PID regulator then for the state
regulator, its control quality is lower. In this example, the optimality criterion value
of the state regulator is J∗

state = 0.831, and of the PID regulator is J∗

PID = 1.503.
Responses of the plant variables u, y to a unit step of w are shown in Figure 3. Both
regulators, state and PID one, were used.

Difference between control quality of the state and the error feedback control
increases when the plant is not stable. This fact will be demonstrated in the next
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Fig. 3. Responses of control system to an input step on exo-disturbances.

example with an unstable plant. The plant has the same quadratic form [10] of all
transfer functions between outputs and inputs as the stable plant. Two transfer
functions have the same quadratic form if and only if the absolute values of their
zeros and poles and gains are identical. The most different results are obtained for a
“conjugated” plant with zeros and poles of all transfer functions which lie opposite
to poles and zeros of the stable plant in the complex plane.

“Conjugated” plant is created by changing signs of matrices A and C. Then the
value of the optimality criterion of the state regulator is Jstate = 7.997 and of the
error regulator JPID = 20050.830. The difference in quality between control of a
stable and an unstable plant with state regulator is shown in Figure 4.

6. CONCLUSIONS

In this paper, solution of a continuous version of the LQG problem under presence
of Wiener process was shown. As a result of the optimization for error regulation, a
structure and a parameter setup of a matrix MIMO PID regulator was obtained. It
can be proven that the matrix MIMO PID regulator guarantees a servo robustness
of the control system.

Authors experience [8] shows that in most cases the complexity of the error feed-
back regulator structure can be reduced without a significant loss of quality. Para-
metric optimization of the regulator structure can also provides information about
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Fig. 4. Responses of control system with state regulator and stable/unstable plant to an
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the quality loss for the reduced regulator structure.
Discrete version of the presented problem can be solved the same way [9].

(Received December 22, 1997.)
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[8] J. Mošna, J. Melichar and P. Pešek: Optimality versus complexity: Optimal matrix

PID regulator. In: Preprints of the 3rd European IEEE Workshop CMP’98, Prague
1998, pp. 139–143.



Optimal Multivariable PID Regulator 253
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[14] P. Žampa: On a new system theory and its new paradigms. In: Cybernetics and

Systems’96, Austria Society for Cybernetic Studies, Vienna 1996, Volume 1, pp. 3–7.
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