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ADAPTIVE ESTIMATION IN
LINEAR REGRESSION MODEL

Part 2. Asymptotic normality

JAN AMos ViISEK

Asymptotic representation of an adaptive estimator based on Beran’s idea of minimizing Hellinger
distance is derived. It is shown that the estimator is asymptotically normal but not efficient. From
the practical point of view the approach may be useful because it selects a model with distribution
of residuals symmetric ”as much as possible” (in the sense of Hellinger distance applied on F(x)
and 1 — F(z)). It is not difficult to construct a numerical examples showing that sometimes it is
the only way how to find proper model.

1. INTRODUCTION

This paper is the second part of the article “Adaptive estimation in linear regression
model”. The reasons and clarifying discussions about the adaptive estimation may
be found in the first part (cf. [20]). Also the notation of the present paper is the
same as in the first part and the numeration of theorems and lemmas continues.

The proof of consistency of the adaptive estimator included in the first part of
this paper has shown that the technique which leads to all results concerning the
adaptive estimator is simple application of classical tools. The proof of Theorem 2
is of a similar character but much more longer. Therefore it will be divided into a
sequence of steps, assertions and lemmas, proofs of which will be omitted. We shall
show only as examples the proofs of Lemmas 3, 6 and 8. The reason for inclusion of
the last three mentioned proofs is the fact that they represent the steps which yield
a little unusual form of the result formulated in Theorem 2. All details can be found
in technical report [17].

2. PRELIMINARIES

In this section we shall prepare tools for proving asymptotic normality of the esti-
mator [((,,)(Y). To this end we restrict ourselves on such densities g for which:

o' (]?

9(y) dy < co,

i) Fisher information is finite, i. e., the derivative of g exists and f

i) suplg'(y)] < Ks
YyER

g(an)

iii) — 0 for n— o0

where K3 is a finite constant. We need also an additional assumption on the kernel
w. We shall assume that
/ t2w(t)dt
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is finite and denote it by K. (Moreover we shall assume that all assumptions made
in the part 1 — see Sections 2, 3 and 5 — hold.)

Remark 4. Condition iii) seems at the first glance a little strange. But it is clear
that for any g with sufficiently smooth tails (even with arbitrarily heavy tails) we
may for given {a,}52, " oo find {¢,}22; \, 0 such that iii) holds. It may cause that
{en}22; will converge to zero rather slowly. Nevertheless, it is not inconsistent with
other conditions which we assumed to be fulfilled (see, e.g., conditions for Theorem

1).

Moreover from the assumption [ t?w(t)dt < co we have

lim t*w(t) =0,

[t]—o0

lim tw(t) =0

[t| =00
and also
lim tw'(t) = 0.

|t] — o0

Another consequence is that [ |t|w(t)dt < oo and hence also [ [tw?(t)|dt < K [ [tjw(t)dt <
.

Let us start with a simple assertion.

Assertion 1. For any § € RP and for all k =1,2,...,p we have
o/
h(y, Y, B) i (—y, Y, B)dy =
95, (1, Y, B)hn(—y,Y, B)dy

Ohnp (y,Y, Ohn(—y,Y,

Similarly it is not difficult to show that

e Z [ (e =2+ X2 - ) (21

OEgn (y.Y,B) 9Egn (y,Y.8°)
Let us denote { BIn }5250 y L

Remark 5. Since

Ohn(y,Y, B) /
'hn - 7Y7 d == hn 7Y7 . d
/78& (—y,Y,B)dy (y,Y,B) 96, Yy
we have 52 [ (y, Y, B)hn(—y, Y, B)dy = 2 [ LWL p (—y ¥, B)dy

Lemma 3. For any € RP and k=1,2,...,p we have

/L’?ﬂ n(y,Y,3) — 8; Ez gn(y,Yﬁ) (Y )]ZZOP (n~1er3an.)

Proof. To prove the assertion of the lemma let us write

0

0
1 0
- %Efgn@,xmbn(y) {aﬁ Vo) = 5 Egn<y,m>] -

1, P

- B8] a0V - Y0} ) (1)

v, Y, 3) {E%gn(y, Y, ) [gé (y,Y,0)—
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So we have arrived at the following inequality

{5l - B YA <

< 3E lElgn(y,Kﬂ)bi(y){ gn(y,Y, ) — 0 Egn(vavﬂ)}

e Bk

+ 9,2y, Y, ) [ gn(y,Yﬁ)} {Elgn(y,Yﬁ)

o,
0} 0¥.9) ~ Eban. 9]+ s 0¥.0) ~ Erantuv.0)] o).

Now
E'gn(y,Y,B)-E [aﬁ 9n(y,Y, B) — 8nggn(y,Y,ﬂ)} =

1 0 < o
Ew (e — (Y — XiB)) H -

= E Y9,y Y, B) - [Z{w (Yi — X[B))) -
—Ew’ ( Sy — (Vi - XTB) )}xik]Qz

= (.Y, 8) ZE{w’ — (Vi = Xip))) —
—Ew( Yy —(Y; — XI'B)) )} x2

< yﬂﬂ3§:@ﬁ{w Ly — (Vi - XTa)))

=1

Wl = (- XTEDR
0YI LA E{ ey (0 X))

< is WEP E g,V ) {1Zw(c;1<y—m—xm>>)}

nc (Z) i=1,..., ncy P
(

1 [w’ Z)P 2 1
= sup sup xi -ET n 7Y7/6 -E n aKﬁ .
et SRy i 9n (.Y, B) - Egn(y, Y. B)

2
Since sup,cr [“i;((zz))} < sup,er [ w( ))} sup,cr w(z) the last expression is of order

O(n~tc;?). Similarly

1 1 4
Eilgn(%Y’ ﬁ) -E [gg(y,yv 6) - EEQn(%Y» ﬁ):| S

IN

1 1 2
e, ¥.0)-E{ [50:V:) - Efon. )]

[gé (v,Y,B) +EZga(y,Y, 5)} }

= E_lgn(y7Y7 /6) -E [gn(y»Ya ﬁ) - Egn(y,Ya ﬁ)]z

and using similar steps as in the proof of Lemma 1 we shall show that this expression
is small.
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Finally,

0
9. (.Y, B) - ‘ 35,9

(y,Yﬁ)’
= [Zw (ently — (Vi— X?ﬁ)))]
=1

!
< ¢;b sup |xik|~sup| w(z) <c 'Ky Ko
i=1,...,n zER w(z)

where we have used an inequality

al_|—a2<maux{a1 a2}
by +by — by’ by
valid for by, by > 0.

Using all derived inequalities together with

1 1 2 —
Elod(w.v.0) - Efgn(y,Y,ﬂ)] < (nen) 1816171%10@),

see [20], last line before Lemma 2, the assertion of the lemma follows.

Remark 6. Notice that

0
%E2 (_yaKﬁ):

) % {Z/ wlen (—y = 2+ X7 (6 = 67)g(2) dz}

1Y Jwe (= 2+ X (8= 8°)ming(z) dz

2en {30 fw (e (cy = =+ XT (6= )l (2)dz}?

1LY J ey e = XT(B — 8°)ring(2) dz

2en (S0, fuler y+Z—XT(ﬁ—ﬁ°)) Jg(z)dz}
)z

(NI

Ly Jwe gy —t = XT(B = Bo)))wing(—t) dt
2en {3 fwlen!(y—t— XT3 — fo))g(—t)dt}?
LS e = XT (5~ Gu))eig(t)
2en (S0, Julent(y—t— XT3 - Bo))g(t)de}
It gives
OEzgn(—y.Y.0)|  _  OEig(uY.B)|
o B=0o Wi o,

In a similar way we can show that

Egn(—y,Y, %) = Egn(y.Y.8°).

Zwlkw ety — (Y — XTB)))

103

et <

(2)

The last equality has to be used to prove the next lemma. That is why this lemma

holds only for 8 = 3°.

Lemma 4. Forany k,{=1,2,...,p we have

32
/{hn(_y7xﬂo) : mhn(yayv 60)_

2

0
08108

— Efga(-y.Y. 0

2
Edgu(y.Y, ﬁo)bi(y)} dy = Op(n~"c;®
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Lemma 5. For any € RP and k, £ =1,2,...,p we have

/ {ahn@,xm Oha(—y, )
861@ 8ﬁ€

o i o s 2
_ Y Ez Y.B) - — -Ezqg. (—v.Y. 3)b> = “1e=3a.).
aﬂk gn(ya 75) 8ﬂg gn( Y, 7ﬁ)bn(y)} dy Op(n Cp an)

Lemma 6. For any k,/=1,2,...,p

/ 0%*Egn(y,Y, 3°)

95,37, bn(y)dy = o(1).

Proof. The absolute value of above given integral is not larger than
1 <& B
o Dzl - //w”(cnl(y - z))g(?«)bn(y)dzdy’ =
=1
1 n
= > lewaul| [ [ w090 - tcn)bn(y)dtdy‘ <
no—1
1 n an .
o) Z |TikTie| - w” ()g(y — te,)dtdy| +
=1 —an

1 n
+ —5 Z |Tirxie| - // w” (t)g(y — ten)bn(y)dtdy
" i3 an<|z|<an+tcy,

IN

.3

Let us consider the first integral. It is equal to
1 n
—5 D vkl ‘/w”(t) [Glan — ten) — G(—an — tey)] dt’ =
=1

= % Z | T3kl - ‘/w//(t) {G(an) — G(=an) — [9(an) — g(—an)] ten+
n =1
+[9'(&n) = 9'(Ga)] t2ch } dt|

where &, € (min{—a, — tc,, —a,}, max{—a, — tc,,—a,}) and ¢, € (min{a, —
ten, an}, max{a, — tcy,an}). Since [w”(t)dt = [w/(t)]*°, = 0 we have

/ W) [Glan) — G(—an)]dt =0.

Similarly due to
glan) = g(—an)
we have

/w”(t)t [g(an) — g(—an)] dt = 0.

Remember that n=1 Y"1 | |zikzie| < K3Z. So, to finish the proof, we need to show
that

e / [0/ (6) — 9/ (Ca)] 0" (D)2t

is small. It may be done as follows. Let us fix some ¢ > 0 and find K so that

W ()] £2dt < ——.
/M' )t < o
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(It is possible, because | [ t2w” (t)dt| < [t2|w” (t)|dt < K3 [ t?w(t)dt < oc.)
Then we have

3

! / " e B
‘/tI>K [¢/(&n) — 9/ (Co)] W ()Pt < 2 K5 - el

Now we shall estimate that part of integral which is over {¢ : |t| < K}. Due to
/ 2 ’ 2
I(g) = [ %dt being finite we have lim;_o ' OF — 0 and due to fact that

9 g9(t)
limp o g(t) is also zero we have

lim |¢/(t)| = 0. (4)

[t]— o0

Denote by @ the integral [ ¢?|w”|d¢ . Due to (4) we may find L > 0 so that for any
ly| > L we have |¢'(y)| < ;5. Finally find ng € A so that for any n > ng we have
an > 2L and ¢, - K < L. Then for any such n we have |¢'(&,)] < 1o as well as
19'(Cn)| < 1 Hence

! —q W' 2 i :E
/t|<K [9(6) =g/ ()] v (OPdt) < 2- £5.Q

2

The proof for the second member in (3) is based on the Cauchy-Schwarz inequality

and the fact that [, ., . . b2 (y)dy < ct. O
Lemma 7. For any £k =1,2,...,p we have
Ohn(y,Y,8°)  OE2gu(y, Y, B°
/ (y ) OEzgn(y )bn(y) "
0Bk 0Bk
X [ha(=5,Y,8%) = EZgu(—y,Y,8%ba(y)]| dy = Op(n ¢, 2an).

Assertion 2. .
/ 9E2gn(y,Y,8°)

E2g,(y,Y, B°)2 (y)dy = 0.
26, an(y, Y, B°)b;, (y)dy

Lemma 8. Let n~!c;%?2 — 0. Then for any k = 1,2,...p we have

s Ohn(y,Y,3°)  OE2g.(y,Y, ") s 0Ny ()
OE2 g, (y,Y, %)

— 8—ﬁkbn(y) hn(ya Ya ﬂo) - E%gn(yayv ﬂo)bﬂ(y)] } dy = Op(l)'

Proof. Using equality (1) we obtain

[8hn(y,Y,ﬁo)  OE3g,(y,Y, ")

bn(y)l E2g,(y, Y, 82)bn(y) =

00k 0Bk
~ B2 {1 [5gn(y,Y,BO) B 8E9n(y,1€ﬂ0)}
n 2 00y 0Bk
1 a n 7Y7 0 — 3 3 ’
B QQ(gﬂkﬁ)gnl(y,Kﬂo) i 0. Y.8Y) — Elg.n.v.0)]
n 7Y7 0 — l
;Wgnl(y,Kﬂo)E’-’gn(y,Kﬂo)x

3

< |gwy.s) - Elgwvs0]} =Y R

Jj=1
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Let us consider at first R;. We have

Agn(y, Y, 8°) aEgn(y%ﬂO)} 2 ‘
[ oo |
o 3gn(y,KﬁO)_3Egn(y,Y,ﬂO)} ‘
= /_{ 9By om YT
Ign(y,Y,8°)  9Egu(y,Y, 50)] d
" /an<y|<an+c‘}l|: 9Bk OBk Y )

Let us study at first the first integral of the right-hand-side of the last inequality.
Let us fix an € > 0 and 6 > 0. Then a straightforward computation gives (notice the
factor n*)

P {né

“ T0gn(y,Y,8°)  OEgn(y,Y,°)
/[ B op }dy‘”}g

—Qn

[i Tik [w(c;l(an -V + XFp%) - /w(cgl(an — z))g(z)dz:|

<}

> e an = ¥i+ X)) — [ = 221

AN
o)
——
:\
|
o
3

\
a
Ead

| ——
=3
o
3
-
\
S
3

\
=
+

>
~
=

\

—
S
=
S

(~an z))g(z)dzﬂ

>

A
N
]
3
S
3
L

>

> e [ (o=t X7 - [ (e (-an =g

Let us write e; instead of ¥; — X 3°. Then the first probability is bounded by

o {Zm ot (an = ) = [wles = ()] } <

4-K2 zn: E {U}(Cnl(an —¢)) — /w(cgl(an — z))g(z)dz}2 <

g2nc2 “

IN

IN

K2 5

48224 /w2(c;1(an —2))g(z)dz = ‘;fj: /w2(t).g(an Cotdtm
. 2

= 4 K4 /w2(t) [g(an) — cpt g/(an +€n(an,t))} dt

e2c,

where [£,(an,t)| < cplt]. Since g(ca") — 0 it follows

4-K?
e2c,

(/ w2(t)dt < K, /w(t)dt - K1> . (8)

4
= -Kz/g’(an—&—fn(amt))wz(t)dt

o(an) / W (t)dt — 0 (7)

The integral

<
2

<
2

b

} |

(6)
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may be bounded using the fact that £, (an,t)| < ¢,|t|. Indeed, for any L € R

‘/gl(a” +§"(anvt))tw2(t)dt’ _

= |{/ Jr/ }{g'(an+§n(an,t))tw2(t)}dt
[t|>L [t|<L

At first fix M > 0 so that for any |y| > M we have

: (9)

5e2

/

Then select ng € A" and L > 0 so that for any n € A, n > ng it holds:
2
a) flt\>L |tw2(t)|dt < 16.Kf.€Kjf.K5’

b) a,—cn-L>M

g(an) 5e2
) < 8K, K2

(see assumption iii) at the beginning of this part of paper). Now taking into account
(7), (8) and (9) we see for n > ng that the first probability in (6) is bounded by 3.
The second probability in (6) may be treated along the similar lines. Let us consider
now the second member or right-hand-side of (5) (again notice n2). Probability that
this member is larger than £ may be treated as follows.

P (n%cn 2 Z > 5)

< L E {/ D win [w' (e (v — ) — Ew'(c, ' (y — 1) dy} <

2pm 4
€ ncn n<\y|<an+0i i=1

/ war [ (e (y =€) — Bw' (3 (y — e))] dy
an<|y|<an+cf}z

1
< ——E d
o EQTLC% {/an<y|<an+cj§ Y
" 2
/ {Z i [w' (e M (y — ) — Bw' (e (y — e1))] } dy
an<|y‘<an+cﬁ i=1
1 = _ _ 2
< = Z%k/ [w/(cnl(y —2)) —Ew'(c; (y - ei))] dzdy
e n an<|yl<an+cd i=1
K? _ 2
< 2 [ et =2 gterazay
£ an<‘y|<an+cﬁ

which converges to zero for n — oo. Hence nzR; = 0p(1). The same result one
obtains for n? Ry using inequality (2) together with idea which the proof of Lemma
1 was based on. Really, one has

10gn(y,Y, %) _ 1 . 2
‘28@@ 9n (4,Y.8°) [gﬁ(y,Y,ﬂO) - Efgn(y,Y,ﬁO)} =
1

< g Ky Ky E~'9n(y,Y, 6% [9n(, Y, 8°) — Egu(y, Y, 8°)]” = Op(n~"c;2)

(see proof of Lemma 1). It implies (under assumption of present lemma) that
nzRy = op(1).
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For the R3 we may write (let us use a little abbreviated form because there cannot
be any confusion)

3gn _ . Ogn _
8ﬁ 1E 20n [gn - Efgn} {aﬂ FET 9n [ 9n — Eg”] +

Ogn OEg, — 1 1 1
+ {agk - Tﬁgk } E lgn} Ezg, [gﬁ —Eégn} +

w

+ %Eﬂg: Efégn [ g — Ezgn} ZS]

Let us start with the first right-hand-side member (obtained after carrying out ap-
propriate multiplication). We shall use again (2). Hence to show that P(n% |S1] >
g) — 0 for n — oo it is (more than) sufficient for T,, = niE~ égn[gn — Eg,] and
Ve = ni [gn E2 gn] to prove that both converge to zero in probability. The Cheby-
shev inequality helps in both cases.

1
P(|T| >e1) < %E’lgnE [9n —Ega]” = O (n~%¢;)
1

and
ns 1 2 p3
P(\Vn|>sl)§?E[g§_52gn] < “3E7'9.E [9. — Eg]
1 1

where we have used Lemma 1 and inequality (a — b)? < b=2(a? — b*)? valid for
a >0 and b > 0. A similar result may be obtained for nzS,. The last member,
namely nz Ss3, stays on the left-hand-side of expression given in present lemma. That
concludes the proof. a

The following two lemmas have been proved in [1] but were not stated explicitly
there.

Lemma 9 (Beran [1]).

Lemma 10 (Beran [1]).

ha(y,Y, %) — E2 g (y, Y, 8°)b,(y)] b (y)dy

3

;/aEégn(?ﬁxﬁo) [
0Bk
-1 |:Z:}_1 xrk} -

n

- > g (Y= XiB%)g ™ (Vi — Xi8°) + 0, (1).

i=1

N | =
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Proof. We shall present nearly literally Beran’s proof. We may write

3

%/W [P (y, Y, 3°) — E2 g (y, Y, B2)bn (y)] bn(y)dy =

L[ 0B gy Y. 8% s 0
= 2” {/ 95s E gn(yyyﬂ)

% [9n(y, Y, 8°) — Egn(y.Y, Bo)bn(y)} b (y)dy

3 O g, (y, Y, 8°) 0
/ A E™2gn(y,Y,3")
[ha(y, Y, 8°) — E3g,(y.Y, ﬂo)bn(y)]2 bi(y)dy} : (10)
Since
OEzg,(y,Y, °)
TE 9n(y,Y, 8| <
1 | K Jw' (e (y — 2))g(2)dz
O S Cﬁl(y —2))g(2)dz
4f ’ w(cn 1(3 zz» 1
< 'Ky Ky
and
E[h(,,8°) — Edga(y,Y,8")ba(y)]” <n ey K- b2(y)

(see the proof of Lemma 1) we obtain that the second integral of the right-hand-

side of (10) is Op(n~'c2a,) and after multi plication by nI converges to zero in
probability. Let us put

and
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Then for the first integral of right-hand-side of (10) we have

var {né / w?lgn(y,iﬂﬁo) [9n(y,Y, %) — Egn(y,Y, 3°)] bi(y)dy}

OB

0
= C’;Q Var{/aEgn(ymElgn(y,Y’ﬂo)

et

[w(ey ' (y = Yi + XiB%)) — Ew(ey ' (y — Yi + X[ 6°))] b (y)dy}

) 2
2{ Hm] {/[Z:EZ% wh(ez (y — i+ XTB7)] dy

/w(c;l(y -Yi+ Xiﬁo))bi(y)dy}2

< 72E |: OEgn(y,Y, 5 )

- 35k

— |: i= 1xzk:| f S;l(y) . 5;1 .
<

<

n

Let us denote by W, the integral

1 [ OEgu(y.Y, ")
”/ 0P

Further, again following [1], let us denote

n
1 Lik
Upk =n~ 2{ 111} s'(Y,

j=1

Then we have

varU,, =

st [zt )" (1[50 [ty - ooty ay =

= o[ [y gy <2 B )

E 90 (.Y, 8°) [9n (v, Y, 8°) — Egn(y,Y, %]

XTﬂO —1(Y XTﬁO)

[l fg(gyay

2
E"gu (. Y, 0wy (y — Vi + XT 50>>bi<y>dy}

w(ey Yy — Yi + X B)02 (y)dy)” <

b2 (y)dy.



Adaptive Estimation in Linear Regression Model, Part 2 111

and also

cov (Wnkv Unk) =

OEgn(y,Y,8°) -
_ E{ / ggyiﬁkﬁ)E Lu(y Y. 8 [90(5. Y. B) — Eguly, Y. 5°)] 2(y)dy -

[Z} > - X5 - ﬁ°>} -

n -
Jj=1

L~ [9Egu(y,Y.8%) 0
oot [P L e, (. 6)

{
> lwlepy =Y+ XI8%) = Ew(ey'(y—Yi+ X)) b2 (y)dy -
=1

Zs’(yj - X% Y, — XJTﬁO)} —
j=1

3

- *ZZ = e ~XEE) Bl - 0 - XTE)
[w(cgl(y—z))) [ ow t))g(t)d]b<>dy.s'<z>s<z>dz

- lar[Tn, = //{fw g(t)at] }

[ wlea (v =)t~ wiey (v = )0 (w)dy - s (2)s(=)dz
since Es'(Y; — XT3%)s~1(Y; — XT3%) = 0. The last expression is equal to

s [ s w(es (y — )R W)y - 5'()s(x)dz. (1)

Now let us put
dn(y) = i - 573 (y) - / w(e; (y — 2))s' (2)s(2)dz.

Since s'(y) € Lo there exists for every ¢ > 0 a differentiable function ¥. € Lo such
that ¥, € Lo and ||s'(y) — ¥c|| < &, where || - || denotes the Lo-norm. Then put also

A e(y) = 571 (1) - / w(eg (y — 2)be(2)s(2)dz.

By the Cauchy-Schwarz inequality we have

J&war< [|azszw{ [uo-2easp{ oo - epas)] a
= ot [{ [ vl - peraay
S O

Since also
2

linc” = [ st { [[wlest v - Dwersteras} ay

/{c13Z(y)/w(cnl(y—z))s2(z)dz.c1/w(c1( —Z)Wg(z)]zdz} dy
‘1// y—2)) e ( )2dzdy—/¢2 )dz = ||y || (12)
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and
dcly) = et esi ) [ wler (o= 2)pae)s(z)dz =
= s y) / w(t)Ve(y — ent)s(y — ept)dt

which implies
lim dp . (y) = ¥:(y),

n—oo

it follows by Vitali’s theorem that

Tim [ 6 () (9)ddy = 2 (13)
Now
ldne = aul? = [zt { [ et - Dlontc) - s’<z>]s<z>dz}2 dy
< [{arsrw [ueo- e}
{eat [utert - v - s Pa fay
= [e) - S P = e -5 <
Hence

| [t [ s’(y)dn@)dy\ <

IN

| [t - s’(y)]dn,5<y>dy] | [0t - au (il <

{ [0 wiPay [ . dy}é .
+ {/[S’(y)]zdy/[dn,s(y) - dn(y)de};

e{lldnell + 115"} < e {llvell + 11"} -

This inequality and (13) imply that

IN

IN

lim [ s'(y)dn(y)dy = ||s'(y)]%. (14)

(Really we may write
s'dn = 8'(dp = dpe) + (5" = Ye)dn e + Pe(dne —ve) + (V2 = [s1°) + [

and value of the integral of any member of the right-hand-side, except the last one,
can be bounded by some constant multiplyed by € which was fixed but arbitrary.)
Finally using (11), (12) and (14) we obtain

Jim cov (W Un) =[S0, 25 [150)Pdy

((cov (W Unt)) = e [0, 2517 [ [ s Gt 0 - 2D () (2)s(a)d
= S =] [ s R ).
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But,

’ / {s'()dn(y) — SL(y)dn(y)}bi(y)dy’ <

1
3
< {/[s’ s;]Qdy/di(y)dy} — 0 forn — oo

and making use of (14) one obtains

lim [ s, (y)da(y)dy = [|s' ()] )

n—oo

3. ASYMPTOTIC NORMALITY

In this section we will give the main result of the paper. Let us summarize all
assumptions we have made and we will need for the Theorem 2.

We have assumed that “the random errors” in model (1) are i.i.d. according to
the d.f. G which has finite Fisher information I(g). It mean that the d.f. G is
supposed to be twice differentiable. Denote the first and the second derivative by g
and by ¢’, respectively. Moreover g is assumed to be symmetric around zero. Then
we have required the existence of constant Ki,..., Kg such that for the kernel w,
the design matrix and the derivative of density ¢’ we have

sup w(y) < Ki, sw% < Ko,
yeER yER ‘

sup Ll < K6, sup sup |z5] < Ky,
yeER ieN j=1,....p

sup ' (y)] < K5 and [ y?w(y)dy = K¢ < 0.
ye

For the bandwidths {c,}52; \, 0 and the supports (given by a sequence {a,}5; /
00) of kernel estimate we need

=0.

lim ncPa,? =co and lim 9(an)

n—oo n—oo  Cp
Basic conditions for identifiability of model were the following: For any § > 0 there
are A € (0,1) and Ka € R so that

lim sup sup /E%gn(yﬂf, B) E%gn(—y,Y,ﬁ)dy <A
n—oo BeCp(8,Ka,B%)

and

limsup  sup /hn(y, Y, B)hn(—y,Y,0)dy < A in probability.

n—oo BEC,Ka,B°)

Let us write throughout this section A" instead of B(n) (Y) and for any function

_ e OF(BM) OF(B)
F = F(B) write =55— instead of Z3- i’

Theorem 2. Under the just summed up conditions we have for B" the following
asymptotic representation

n n

p
n2I(g) - Y (Bp = BDY wie=n"2> g/ (Yi— X[ B9 (¥i — XT8°) + 0,(1).

{=1 i=1 =1
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Proof. Since /™ maximizes

over all 3 € RP, it follows (see Assertion 1 and Remark 5) that for every n € N and
k=1,2,...,p

Ohn(y, Y, 6" R

[P v iy <o (15)
B

Now expanding Mh (—y,Y, B) at the point 3° to approximate %@?Bn)hn(—y, Y, B")

we obtain

3hn(y7Y7ﬁA") an _ 8hn(y?Ya ﬁo)
[ P v ryay = [ et

. Z{/ {8% Y5, oy oy o O Y 5) ahnw,m%} dy},

hn(_ya K 60)dy +

9Bk OBk 0B
(87 = BY) + (8" — BOTR(B" — 8°),

where sup, .y, [R.s| = Op(1). Now successively using (15), Lemma 4 and 5 and

77777

multiplying the whole equality by nz we obtain

0
f/whn(—y,ﬁﬂo)dy=

_ O°E2gu(y,Y, 5°)
U

E2g,(—y, Y, 8%)+

0000y
OE2g,(y,Y, 3°) OEZ g, (—y, Y, %) | o
+ 90, 5, by, (y)dy+
P
+ Y@y Rj¢ + Oy(n"'c,%a )}\/E(B?—B?)-
Jj=1

A straightforward computation gives

92E2 g, (y,Y, 5°)

b 0y =
9500 E2g9.(y,Y, ")
1, o) { PE0n(. Y. 1) oy
= 2E gn(y, Y, 5°) 05100, E72g.(y,Y, ")
13Egn(y,Yﬁ )e- oy, OEgn(y, Y, 39\ _
_ }GQEgn(y,Y,ﬂO) 3 3E%gn(y,Y,f)’°) OEzg,(y,Y, ")
2 0Bx9B 0Bk 9B '

Now making use of Lemma 6 and Remark 6 we may write

ahn(yaxﬁo) 0 _

- 8E%n ,Y, OaE% n_a}/a 0
_ 22{/ gn(y,Y, 57) O gn(—y ﬁ)bi(y)dy

a0k 0B

>_(B} = B)) - {R}se + Opln e "an) + o(U} ValBy - B9).
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Finally, due to Lemma 7 and 8 we obtain

2 A OE2 g, (y, Y, 3°) OE g, (—y, Y, 3°
Z\/ﬁ(ﬁ?—ﬁ?){/ 9ol Yo ) OB an s V)
/=1

0k 9B

+Zﬂ” B9) - {R}je + Op(n~ ey %an) p =

Jj=1

3 0 )
= f/ aE gnaz;yﬁ )bn(y) [hn(—y7Y750) _ Eign(%}/’ﬁo)bn(y)] dy—l—op(l).

The last equality may be rewritten to

ST IR e D | 0/ S 4 y - 2))g(=)dz]”
2 V(5 ﬂ”{ len (y = 2)g ()i >dy+

373 = ) {RYe + Op(n " %an) b =
j=1
3 0 .

Using Lemma 9 and 10 and denoting for any k = 1,2,...,p n~! Z;:lz Trp DY Tg
we arrive at

Z Va(BE — B)TpTe { I(g) + o(1) + Z(ﬁj" — ) {R} ;o + Op(n e %a,)
=1 j=1

= iy g (Vi - X[ (Y~ XT6%) 4 0,(1).

i=1

From it follows that for any £ =1,2,...,p

Vn(By — B)) = 0,(1)

and that concludes the proof. O

4. NUMERICAL STUDY

A very first idea about numerical performance of adaptive estimator may be built
up on the following tables. We have used well known Salinity and Stackloss data
sets. Their description and explanation may be found in a lot of papers and books,
g., [12] or [11].
Let us explain abbreviations in the following tables.
LS — denotes Least Squares estimate;
B(.5) — regression quantiles for « = .5;
B pr(.10) — the estimator is defined as follows: use a preliminary estimator Bpreliminary
(in our case ﬁpreliminary = %(B(l) + ﬁ(Q) was used) and evaluate residuals; after
trimming off 10 10 to the rest;
BK B(.15) — Trimmed Least Squares estimate after trimming off points according to
regression quantiles 3(.15) and 3(.85);
Huber — M-estimate with ¢(z) = signz - min{|z|, 1.25} and with 1.483 - M AD as
a scale estimate used for rescaling of residuals;
Andrews — M-estimate with ¢ (z) = sin () I{|z|<x} (MAD as a scale estimate was
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used);

LMS — Least Median of Squares (in fact model in which ([2] + [2*])-th order
statistic of residuals was minimized);

LTS (Rousseeuw) — Least Trimmed Squares (in fact this estimate is pp(a) where
as the preliminary estimator serves LM S);

Adaptive — adaptive estimator from this paper;

TLS (Adaptive) — Trimmed Least Square where trimming was according to Adaptive
estimator and in both cases of the data sets four points were trimmed off. More
precisely, when calculating results in the last line of the next tables for Salinity data
the points 5, 16, 23 and 24 were trimmed off; while for Stackloss data the points 1,
3, 4 and 21 were excluded.
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SALINITY DATA

Method Estimates of coefficients
Intercept Sallag Trend H20 Flow
LS 9.59 Ny -.026 -.295
B(.5) 14.21 740 -111 -.458
Bpe(.10) 14.49 774 -.160 -.488
Bk B(.15) 9.69 .800 -.128 -.290
Huber 13.36 756 -.094 -.439
Andrews 17.22 .733 -.196 -.578
LMS 36.70 .356 -.073 -1.298
LTS (Rousseeuw) 35.54 .436 -.061 -1.277
Adaptive 36.70 .367 -.071 -1.276
TLS (Adaptive) 30.28 .589 -.259 -1.091
Method Estimates of coefficients
Intercept  Air Flow  Temperature Acid
LS 39.92 =72 -1.30 15
B(.5) 39.69 -.83 57 .06
Bpr(.10) 40.37 -T2 -.96 .07
Bx (.15) 42.83 -.93 -.63 .10
Huber 41.00 -.83 -.91 .13
Andrews 37.20 -.82 -.52 .07
LMS 34.50 -.71 -.36 .00
LTS (Rousseeuw) 35.48 -.68 -.56 .01
Adaptive 34.50 =72 -.36 .00
TLS (Adaptive) 37.65 -.80 -.58 .07
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