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DECOUPLING IN SINGULAR SYSTEMS:
A POLYNOMIAL EQUATION APPROACH

Leyla Gören and Müjde Güzelkaya

In this paper, the row by row decoupling problem by static state feedback is studied
for regularizable singular square systems. The problem is handled in matrix polynomial
equation setting. The necessary and sufficient conditions on decouplability are introduced
and an algorithm for calculation of feedback gains is presented. A structural interpretation
is also given for decoupled systems.

1. INTRODUCTION

The input-output decoupling problem reduces a multi-input multi-output system to
a set of single-input single-output systems. This problem was first introduced by
Morgan [14] and the first major results were established by Falb and Wolovich [7].
Since then, there have been many contributions to this subject [4, 6, 9, 17]. Solutions
for the decoupling problem of singular square systems via modified proportional
and derivative feedback were given by Christodoulou and Paraskevopoulos [3] and
Christodoulou [2]. The necessary and sufficient conditions for decoupling of singular
systems via static state feedback were reported by Ailon [1] and the results on the
same subject with the structure of the closed loop system were also established by
Paraskevopoulos and Koumboulis [15]. In [1], the decoupling problem of a singular
system has been investigated for different rank conditions defined on the system and
the problem has been solved as an extension of the results of Falb and Wolovich. In
[15], it has been shown that the decoupling problem of a singular system by static
state feedback can be recasted to the decoupling problem of an ordinary system via
pure derivative state feedback.

In this study, the decoupling problem for square systems is investigated using
polynomial equation approach and a theorem on decouplability of regularizable
singular systems by static state feedback is given. An algorithm for the construc-
tion of feedback gains and some structural properties of decoupled system are also
presented. Although the results given in this study are developed for regularizable
singular systems, they are also true for both regular and ordinary systems.



186 L. GÖREN AND M. GÜZELKAYA

2. PRELIMINARIES

A generalized state-space system is defined by the equations,

Eẋ = Fx+Gu (1a)

y = Hx (1b)

where x ∈ Rn, u ∈ Rm, y ∈ Rp and E(n × n), F (n × n), G(n ×m) and H(p × n)
are matrices with entries in R, the field of real numbers. The classification of a
system whether it is ordinary or singular depends on the singularity of matrix E.
The dynamics of (1) are completely characterized by the pencil sE−F . We assume
that system (1) is regularizable, i. e. there exists a matrix K ∈ R with compatible
dimension such that rank {sE−F +GK} = n. The application of admissible static
state feedback,

u = −Kx+ Lv (2)

where v ∈ Rm and K, L are matrices over R, results in closed loop system transfer
function,

TK,L(s) = H[sE − F +GK]−1GL. (3)

Let D(s) and N(s) be a pair of matrices in R[s], the ring of polynomial matrices,
such that

[sE − F −G]
[
N(s)
D(s)

]
= 0 (4)

where
[
N(s)
D(s)

]
is irreducible and column reduced.The matrices D(s) and N(s) are

said the right external description of system (1a), [13]. The regularizability of system

(1a) implies that rank [sE − F − G] = n and rank
[
N(s)
D(s)

]
= m. Lemma 1 of

Kučera [10] can be arranged as follows for admissible state feedback of regularizable
systems.

Lemma 1. Let [sE − F ] and G be regularizable and
[
N(s)
D(s)

]
be defined by (4).

Then, for any compatible matrix K with entries in R, (sE−F +GK) is nonsingular
if and only if [D(s) +KN(s)] is nonsingular.

P r o o f . We write (4) as,

[sE − F −G]
[

In 0
−K Im

] [
In 0
K Im

] [
N(s)
D(s)

]
= 0

and so,
[sE − F +GK]N(s) = G[D(s) +KN(s)]. (5)

If [D(s) +KN(s)] is nonsingular, then

X(s) = N(s) [D(s) +KN(s)]−1
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is a rational solution of the equation

[sE − F +GK]X(s) = G

in R(s), the field of rational functions. Hence, over the field R(s),

rank [sE − F +GK] = rank [sE − F +GK G] (6)

= rank [sE − F G]
[
In 0
K Im

]

= rank [sE − F G] = n

so that (sE − F +GK) is nonsingular.
If (sE − F +GK) is nonsingular, then

Y (s) = (sE − F +GK)−1G

is a rational solution of the equation

Y (s) [D(s) +KN(s)] = N(s) (7)

Hence, over the field R(s),

rank [D(s) +KN(s)] = rank
[
D(s) +KN(s)

N(s)

]

= rank
[
Im K
0 In

] [
D(s)
N(s)

]
= rank

[
D(s)
N(s)

]
= m

(8)
so that [D(s) +KN(s)] is nonsingular. 2

Throughout the paper, we assume that p = m, i. e. the system has the same
number of inputs and outputs. When the closed loop transfer function TK,L(s) is
diagonal and nonsingular, the system is single input-single output or the row by row
decoupled and its transfer function can be given as,

TK,L(s) = W−1(s), W (s) = diag[wi(s)] (9)

where, wi(s)’s are in R(s) (i = 1, 2, . . . ,m). However, in this study, we shall consider
that wi(s)’s are in R[s]. Thus, the closed loop system designed will be proper. As
it is known, this is desirable for practical reasons, in order to avoid an impulsive
response for every initial condition.

The closed loop system transfer function can be written in terms of the right

external description, i. e.
[

N(s)
D(s) +KN(s)

]
which comes from (5), as,

W−1(s) = HN(s) [D(s) +KN(s)]−1L (10)
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by using Lemma 1 and (3). Since W (s) is defined as an invertible matrix, it is clear
that HN(s) should be invertible. Relation (10) can be arranged in the form of a
polynomial matrix equation as,

W (s)HN(s) = XD(s) + Y N(s) (11)

where,
X = L−1, Y = L−1K. (12)

Thus, the problem of decoupling with making proper is considered as under what
conditions there exists a diagonal W (s) which ensures that (11) has a solution pair
X, Y with entries in R, such that X nonsingular. In fact, this problem is closely
related with the existence conditions of the constant solutions of a matrix polynomial
equation.

3. CONSTANT SOLUTIONS OF A MATRIX POLYNOMIAL EQUATION

In order to derive a necessary and sufficient condition for the constant solutions of
a matrix polynomial equation, the following definition is presented.

Definition 1. For a matrix A(s) over R[s] with dimension (p×q), degA(s) denotes
the maximum degree of the elements of A(s). Let a given integer be n ≥ degA(s)
and a vector be

ψn(s) := [sn sn−1 · · · s 1]T (13)

then, the coefficient matrix A of size [p × q(n + 1)] associated with A(s) can be
defined as,

A(s) := AΨn(s) (14)

where
Ψn(s) := blockdiag [ψn(s)] (15)

with size [q(n+ 1)× q], [8].

It should be noted that the coefficient matrix of a polynomial matrix is uniquely
determined by the polynomial matrix, for a given integer n. The following property
of this representation demonstrates a characteristic of a polynomial matrix, which
is reflected on the coefficient matrix.

Property 1. The rows of a polynomial matrix A(s) are linearly dependent in R
if the rows of A are linearly dependent and vice versa.

P r o o f . Since ψn(s) and so Ψn(s) have no constant kernel space, the property
can be proven by the existence of a nonsingular matrix T with entries in R such
that,

T A(s) =
[
A1(s)

0

]
(16)
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and then by Definition 1,

TA Ψn(s) =
[
A1

0

]
Ψn(s) ;

[
A1

0

]
= TA. (17)

2

A result of this property, which will be used later, is that if a polynomial matrix
is nonsingular, then its coefficient matrix has independent rows. A lemma can be
given by using Definition 1 and Theorem 1 of [12].

Lemma 2. Let P (s), Q(s) and R(s) be matrices of size (m×m), (p×m) and (m×
m) respectively with their entries inR[s], and n = max{degP (s), degQ(s), degR(s)}.
Then the equation,

X P (s) + Y Q(s) = R(s) (18)

has a solution pair X, Y with entries in R, such that X is nonsingular, if and only
if the row space of the coefficient matrix of R(s) for n, i. e. R, is a subspace of that

of the coefficient matrix of
[
P (s)
Q(s)

]
for n, i. e.

[
P
Q

]
, and also the rank of

[
P
Q

]

is equal to the rank of
[
R
Q

]
.

P r o o f . LetX, Y be matrices with entries in R, then equation (18) can be written
as, ( [

X Y
] [

P
Q

]
−R

)
Ψn(s) = 0 (19)

by using Definition 1. Since ψn(s) and so Ψn(s) have no constant kernel space,
equation (19) is satisfied if and only if the following matrix equation has a solution
pair X, Y ,

[
X Y

] [
P
Q

]
= R. (20)

As it is known, the equation (20) has a solution if and only if the row space of

R, is a subspace of that of
[
P
Q

]
. When equation (20) can be written as,

[
X Y
0 Ip

] [
P
Q

]
=

[
R
Q

]
(21)

then, it is evident that the matrix X is nonsingular, if and only if the rank of
[
P
Q

]

is equal to the rank of
[
R
Q

]
. 2

Let P (s) be a column degree ordered polynomial matrix with column degrees
of n1 ≥ n2 ≥ · · · ≥ nm with size of (p × m). By using Definition 1 the following
representation can be given for P (s),

P (s) = P Ψ(s) (23)
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Ψ(s) := blockdiag [ψni
(s)] (i = 1, 2, · · · ,m) (24)

with size (m + q) ×m (q :=
∑m

1 ni) and P is the coefficient matrix of P (s) with
size [p× (m+ q)].

Lemma 3. Let
[
D(s)
N(s)

]
be an irreducible and column reduced matrix in R[s]

and n1 ≥ n2 ≥ · · · ≥ nm be its column degrees. If there exists a polynomial matrix
M(s) such that [

X Y
0 In

] [
D(s)
N(s)

]
=

[
M(s)
N(s)

]
(25)

where X, Y are matrices with entries in R and X is nonsingular, then the following
holds,

a) The column degrees of M(s) are equal to or less than ni respectively.

b) The rank of the matrix which corresponds to the columns with degree ni of

the coefficient matrix of
[
M(s)
N(s)

]
is equal to m, i. e.,

rank
{

lim
s→∞

[
M(s)
N(s)

] [
diag [s−ni ]

]}
= m. (26)

P r o o f . The condition (a) is easily proven when the equation (25) is considered
column by column. From Lemma 2 and (25), the following equation has also a
nonsingular solution, [

X Y
0 In

] [
D
N

]
=

[
M
N

]
. (27)

Furthermore,
[
M
N

]
contains the coefficient matrix that corresponds to the

columns with degrees ni. So Lemma 2 proves (b) when (27) is considered column
by column. 2

The conditions given in Lemma 3 are regarded as the necessary conditions for the
existence of nonsingular constant solution pair of a polynomial matrix equation. In
order to extend the above analysis to decoupling problem, a property of Definition
1 is presented as follows.

Property 2. Let a(s) be a polynomial, deg a(s) denotes the degree of a(s) and
µ ≥ 0 be an integer. Then, the coefficient matrix [sµa(s)] is determined as

sµa(s) = aDµψn(s) (28)

where D is a constant matrix defined as,

D =

{
D(j, k) = 1 if j > 1 and k = j − 1

D(j, k) = 0 else

}
; j = 1, · · · , n+ 1; k = 1, · · · , n+ 1

(29)
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and n ≥ µ+ deg a(s), a(s) = aψn(s) as in Definition 1.

P r o o f . Let a(s) be a polynomial such as

a(s) = [0 0 · · · 0 an−λ an−λ−1 · · · a1 a0]ψn(s) (30)

Furthermore, the polynomial [sa(s)] can be written as,

s a(s) = [0 · · · 0 an−λ an−λ−1 · · · a1 a0 0]ψn(s) (31)

where λ = n − deg a(s). It is easily seen that the effect of the multiplication by
‘s’ appears as a left shifting operation on the coefficient matrix. This effect can be
represented by the matrix D given in (29). Moreover, it can be extended to Dµ for
multiplication by sµ. 2

The expression given in Property 2 is also true for a row vector of polynomials
by using the following definition,

D?
µ := blockdiag [Dµ] (32)

and the coefficient matrix of a row vector sµA(s) is then easily obtained as,

sµA(s) = A D?
µ Ψn(s). (33)

It should be noted that µ can at most be equal to {n− degA(s)}.

4. MAIN RESULTS

In order to solve the decouplability problem in singular systems, first, we have to
determine the degrees of wi(s), (i = 1, 2, . . . ,m) defined in (9), such that they enable
the existence of a nonsingular constant solution pair of the equation,

[
X Y

] [
D(s)
N(s)

]
= W (s) HN(s). (34)

Let the degrees of wi(s) be represented as µi, then the condition (a) in Lemma 3
implies that µi’s, i = 1, 2, . . . ,m have the values of

µi ≤ di =
m

min
j=1

{dij} (35)

where,
dij = nj − kij ; kij = deghnij

nj = the jth column degree of
[
D(s)
N(s)

]
.

(36)

In this expression, hnij(s)’s are the entries of HN(s). As it will be explained
later, di’s are also related with the infinite structure orders of the ith row of T (s).
Let wi(s)’s have the following structure,

wi(s) = widis
di + · · ·+ wi1s+ wi0 6= 0. (37)
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Thus, by using Definition 1 and Property 2 and (32), the following representations
can be given as,

W = blockdiag [wi]; HN? =



HN?

1
...

HN?
m


 ; HN?

i =



HNiD

?
di

...
HNiD

?
0


 (39)

such that, HNi is the coefficient vector of the ith row of HN(s). So the coefficient
matrix of W (s)HN(s), i. e. WHN , is easily derived as,

WHN = WHN? (40)

in terms of the coefficient vector of wi(s). As a consequence of the above analysis,
the problem of decoupling with making proper has been reduced to the solvability
problem of the following equation,

XD + Y N = W HN? (41)

where the sizes of the matrices mentioned above are as follows,

D · · ·m× (n1 + 1 + . . .+ nm + 1);N · · ·n× (n1 + 1 + . . .+ nm + 1);
W · · ·m× (d1 + 1 + . . .+ dm + 1)

HN? · · ·m× (d1 + 1 + . . .+ dm + 1)× (n1 + 1 + . . .+ nm + 1);
HN?

i · · · (di + 1)× (n1 + 1 + . . .+ nm + 1)
HNi · · · 1× (n1 + 1 + . . .+ nm + 1);D?

j · · · (n1 + 1 + . . .+ nm + 1)

×(n1 + 1 + . . .+ nm + 1);Dj · · · (nj + 1)× (nj + 1).

It is clear that the above equation has a solution pair {X, Y }, if and only if the

row space of WHN? is a subspace of that of
[
D
N

]
. So, the notation below is given.

Notation 1. The matrix composed of the rows of HN?
i which are linearly de-

pendent on the rows of
[
D
N

]
is denoted by HN¦

i . In other words, the row space

of HN¦
i is a subspace of the row space of HN?

i while the row space of HN¦
i is a

subspace of that of
[
D
N

]
.

Consequently, when the matrix HN¦ composed of HN¦
i ’s is defined as,

HN¦ =



HN¦

1
...

HN¦
m


 (42)
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the row space of HN¦ is a subspace of that of
[
D
N

]
. It can be shown that an

appropriate matrix W ¦ can be derived from (40) as,

W ¦ = blockdiag [w¦i ] ; w¦i 6= 0 (43)

in which w¦i ’s are row vectors.
As a summary of the above analysis it has been shown that the following state-

ments are equivalent;

a) For a system given in terms of H, N(s) and D(s) the problem of decoupling
with making proper by static state feedback has a solution.

b) There exists a W (s) defined in (9) such that the equation X D(s)+Y N(s) =
W (s)HN(s) has a solution pair X, Y in R, with X nonsingular.

c) There exists a W ¦ defined in (43) such that the equation X D + Y N =
W ¦HN¦ has a solution pair X, Y in R, with X nonsingular.

In order to present a theorem on the decoupling problem, the following notation
and the remark are given.

Notation 2. From Notation 1 denote the k′is, (i = 1, 2, . . . ,m) as

ki =





1 if rank
[
HN¦

i

N

]
> rank[N ]

0 if rank
[
HN¦

i

N

]
= rank[N ]




. (44)

Remark 1. For W ¦ defined in (43), the rank of
[
W ¦HN¦

N

]
is equal to,

rank
[
W ¦HN¦

N

]
=

m∑

i=1

ki + rank[N ]. (45)

P r o o f . From Notation 1 and 2, the following relation can be stated as,

rank
[
w¦iHN

¦
i

N

]
= rank[N ] + ki. (46)

Furthermore, since W (s)HN(s) is an invertible polynomial matrix, Property 1
implies that each w¦iHN

¦
i in [W ¦HN¦] brings an independent row from w¦jHN

¦
j for

i 6= j. So, when (46) is evaluated for i = 1, 2, . . . ,m, (45) is proven. 2

As a consequence of the previous results, the following theorem can be given on
decouplability of system (1).
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Theorem. Let system (1) be regularizable and
[
D(s)
N(s)

]
be its external descrip-

tion. Then, the problem of decoupling with making proper by static state feedback
for system (1) has a solution, if and only if,

rank
[
D
N

]
=

m∑

i=1

ki + rank [N ] (47)

where ki’s are given in Notation 2 and
[
D
N

]
is the coefficient matrix of

[
D(s)
N(s)

]
.

P r o o f . It is mentioned before that, the problem of decoupling with making
proper by static state feedback is the same as the solvability problem of,

XD + Y N = W ¦HN¦ (48)

such that X nonsingular. So, Lemma 2 proves both necessity and sufficiency by
using Remark 1, Notation 1 and Notation 2. 2

5. CONSTRUCTION

The proof of Theorem provides a procedure for the construction of gains K and L.
The procedure can briefly be given as follows,

(a) Find the external description of system (1a) as

[sE − F −G]
[
N(s)
D(s)

]
= 0

such that
[
N(s)
D(s)

]
is irreducible and column proper.

(b) Calculate di’s, HN¦
i ’s, ki’s by using (35), Notation 1 and (42), and Notation 2

respectively.

(c) Check the following condition,

rank
[
D
N

]
=

m∑

i=1

ki + rank[N ]

if it fails, the system is not decouplable by static state feedback.

(d) If the system is decouplable, solve the following equation,

XD + Y N = W ¦HN¦.

Finally, find the feedback gains as K = X−1Y, L = X−1.
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An example. In (1), let,

E =




1 0 0
0 0 1
0 0 0


 , F =




0 0 0
0 0 0
0 0 1


 ,

G =




1 0
0 1
0 0


 , H =

[
1 0 0
1 1 0

]
,

follow the construction

step (a),
[
N(s)
D(s)

]
=




1 0
0 1
0 0
s 0
0 0




;

step (b), d1 = 1, d2 = 0, HN
¦
1 =

[
1 0 0
0 1 0

]
; k1 = 1;

HN
¦
2 =

[
0 1 1

]
; k2 = 0

step (c), rank
[
D
N

]
= 3; rankN = 2;

rank
[
D
N

]
= rankN +

2∑
i=1

ki = 2 + 1 = 3

so that the system is decouplable,

step (d), X =
[
α β
0 γ

]
, Y =

[
ε 0 ζ
η η θ

]
, W ¦ =

[
α ε 0
0 0 η

]

i. e. w1(s) = αs+ ε w2(s) = η.

6. STRUCTURAL PROPERTIES OF DECOUPLED SYSTEMS

As it is known, the decouplability of ordinary systems is completely determined with
their infinite zero structure orders, [5, 16]. In this section, we shall try to obtain
some structural results for singular systems only in regular case, i. e. (sE − F ) is
nonsingular. For this aim, we call the Smith McMillan factorization at infinity of
rational functions.

Definition 2. [11] Let T (s) be a given (p×m) rational matrix. Then the Smith
McMillan form of T (s) at infinity gives,

Λ(s) =
[

Λr 0
0 0

]
, Λr(s) = diag [s−δ1s−δ2 . . . s−δr ] (49)
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where r is the rank of T (s) and δ1 ≤ δ2 ≤ . . . ≤ δr are integers. These integer are
called the infinite structure orders of T (s). This form is uniquely determined from
T (s) by Smith McMillan at infinity, or in other words in Rc(s), the ring of causal
(proper) rational functions, as following

T (s) = B1(s)
[

Λr(s) 0
0 0

]
B2(s) (50)

where B1(s) and B2(s) with size (p × p) and (m × m) respectively are defined as
units of the ring of causal rational matrices, namely bicausal (biproper) rational
matrices. It will be useful to note that B(s) is a bicausal matrix if and only if
det[ lim

s→∞
B(s)] 6= 0.

Proposition 1. Let system (1) be regular and invertible, and T (s) be its transfer
function, and tTi (s) be the rows of T (s), i = 1, 2, . . . ,m. Then, system (1) is de-
couplable, only if the infinite structure orders of T (s) are respectively equal to the
infinite structure order of tTi (s) for i = 1, 2, . . . ,m.

P r o o f . If the system is decouplable, then there exists a precompensator C(s)
which decouples the system, and we can write,

T (s)C(s) = diag [s−di ] B0(s) (51)

where B0(s) is a bicausal and diagonal matrix, and di’s are integers. Let us define
a set of indices δi, i = 1, 2, . . . ,m, such that,

δi = min
{
σ, lim

s→∞
sσtTi (s) 6= 0,∞;σ ∈ I

}
(52)

and a matrix with entries in R, such that,

lim
s→∞

diag [sδi ] T (s) = T. (53)

We shall assume that the δi’s are increasingly ordered; otherwise the outputs are
renumbered. It should be noted that δi is the infinite structure order of ith row of
T (s) and T is invertible. When the relation (51) is arranged by using δi’s, we have,

diag[sδi ] T (s) C(s) diag[sνi ] = B0(s) (54)

from diagonality of B0(s), here νi = di − δi. Since the matrix ‘diag[sδi ]T (s)’ is a
bicausal matrix, we obtain,

T lim
s→∞

C(s) diag[sνi ] = B0 (55)

when (54) is evaluated at infinity. Here B0 = lim
s→∞

B0(s) and rankB0 = m. As a

result of (55),

det
{

lim
s→∞

C(s) diag [sνi ]
}
6= 0. (56)
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Let, a bicausal matrix B(s) be obtained from C(s) as follows,

B(s) = C(s) diag [sνi ]. (57)

Thus, from (54) and (57), we write,

T (s) = diag [s−δi ] B0(s)B−1(s) (58)

and finally by Definition 2 we say that δi’s are also the infinite structure orders of
T (s). 2

When the closed loop system is required to be proper, i. e. di’s are defined as
nonnegative integers, a natural result is that if δi < 0, i. e. it is an infinite pole, then
νi = −δi, di = 0 and if δi ≥ 0, i. e. it is an infinite zero, then νi = 0 , di = δi, since
each δi is either positive or zero or negative integer. So it is clear that di’s defined
in (35) coincides with di’s defined in (51).

7. CONCLUSION

In this study, the row by row decoupling problem of regularizable singular square sys-
tems is investigated by polynomial equation approach. The necessary and sufficient
conditions of the problem of decoupling with making proper by static state feedback
is given in Theorem, such that the closed loop system is proper. A procedure for
the construction of feedback gains K, L is also proposed. Moreover a structural
interpretation is given in Proposition 1 which provides a necessary condition for
decouplability of regular singular systems in terms of their infinite structure orders.
The results presented here are not limited in the case of singular systems, i. e., they
are also true for ordinary square systems.

(Received October 20, 1994.)
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