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BEHAVIOUR OF SIGN TEST AND ONE
SAMPLE MEDIAN TEST AGAINST
CHANGES IN THE MODEL

Alfonso Garćıa–Pérez

The sign test and the test based on the sample median are asymptotically equivalent and
as a consequence, equivalent from a robustness point of view because the most important
robust measures in hypotheses testing are asymptotic. However, as this paper proves,
the behaviour of their power functions against changes in the model, inside a class of
distribuctions, is appreciably different for finite samples sizes. A new definition of sensitivity
of tests with respect to the type of the alternative is defined and, with it, we see that the
one sample median test is less sensitive than the sign test.

1. INTRODUCTION

The Neyman–Pearson lemma for maximin tests between neighborhoods of probabil-
ity measures which are dominated by 2-alternating capacities (see [14] and [15]) is,
basically, the only finite-sample optimality result of robust statistics; related with it
are [24], [2], [18] and also [4], [5] and [6].

Although the application of these results is not straightforward, the usage of sec-
ond order approximations, such as Edgeworth expansion or saddlepoint techniques,
can increase their possibilities of application. A good book on the first topic is [13]
and, on the second one, [7] and the paper [23].

Other traditional solution is to use asymptotic approach. Nevertheless, equivalent
tests from an (asymptotic) robustness viewpoint can have a remarkable different
behaviour when we consider finite sample sizes.

Here, we prove that two of these tests, the sign test and the one sample median
test, which have the same degree of robustness (for instance with the Rousseeuw
and Ronchetti approach, [26] and [27], based on the Hampel influence function),
have a different sensitivity in their power functions when we change the underlying
distribution.

To prove this we shall consider tail orderings on distributions. This idea has
been used extensively in mathematical statistics since Lehmann [21] introduced the
stochastic ordering, particularly on hypotheses testing (see [3], [25] and [12]).
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Here we shall use the tail ordering <t defined by Loh [22] which generalizes the
classical tail orderings ([28], [19] and [1]).

The paper is orgenized as follows. After some preliminaries, in Section 2 we study
the behaviour of sign test with respect tail ordering <t. We do the same about the
one sample median test in Section 3 and, finally, in Section 4 we get the main result
comparing the behaviour of both tests.

1.1. Preliminaries

Let X be a random variable with distribution Fθ depending on a location parameter
θ ∈ Θ.

In this paper we shall consider tests of the null hypothesis H0 : θ ≤ θ0 against
H1 : θ > θ0, although the results can be extended to other kind of hypotheses.

We shall suppose that the distribution of X belongs to the class of distributions
(see [12]) F∗ = {Fθ,b: Fθ,b is a distribution function (a) with density fθ,b with
respect to the Lebesgue measure, (b) a location in θ and scale in b family, being the
scale parameter determined by the condition

fθ,b(θ) = c, (1)

with c a known constant, (c) symmetric in θ, (d) strictly increasing in a neigh-
borhood of θ, (e) strongly unimodal}, which includes as a subclass the Box–Tiao
families with densities

fβ
θ (x) =

1

b Γ
(
1 + 1+β

2

)
21+ 1+β

2

exp

{
−1

2

∣∣∣∣
x− θ

b

∣∣∣∣
2

1+β

}
, −1 < β ≤ 1.

The main reason to consider these classes of distributions is that they are ordered
with respect to the tail ordering <t introduced by Loh [22]. Namely, if F, G ∈ F∗
and have the same symmetry center, θ,

F <t G ⇐⇒ Fθ,b(x) ≥ Gθ,b′(x), ∀ x > θ

or
F <t G ⇐⇒ Fθ,b(x) ≤ Gθ,b′(x), ∀ x < θ

being the uniform and double exponential distributions the extreme distributions of
F∗ class. For instance, it is

Uniform <t Normal <t Logistic <t Double Exponential.

And, for Box–Tiao families,

Uniform <t fβ1 <t fβ2 <t Double Exponential

if −1 < β1 < β2 ≤ 1. Also <t is location and scale-free.
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2. BEHAVIOUR OF SIGN TEST

Let X1, . . . , Xn be a random sample of X. For testing H0 : θ ≤ θ0 at level α against
H1 : θ > θ0, the ordinary sign test rejects H0 when the number, S, of plus signs
among the n differences Xi − θ0 is S ≥ kα, where kα is the smallest integer which
satisfies

1
2n

n∑

x=kα

(
n

x

)
≤ α.

In order to achieve the α-level we shall consider only the natural levels (smaller
than 0′5) for the sign test, i. e.,

α =
1
2n

n∑

i=j

(
n

i

)
, j = [n+3

2 ], . . . , n.

2.1. The Sign Test and the Tail Ordering <t

Although the sign test, φs, is a distribution-free hypothesis test, its power function
(nondecreasing in θ)

βF
φs

(θ) =
n∑

x=kα

(
n

x

)
[1− Fθ(θ0)]

x [Fθ(θ0)]
n−x

=
n!

(kα − 1)! (n− kα)!

∫ 1−Fθ(θ0)

0

xkα−1 (1− x)n−kα dx

is very sensitive to the supposed model Fθ.
For example, if the constant c which determines the scale parameter through

condition (1) is c = 1/2 and also it is θ0 = 0 and n = 5, the power functions under
uniform, normal, logistic and double exponential distributions are given in Figure 1
(α1 = 0.1875) and Figure 2 (α2 = 0.03125).

In both cases, the sensitivity of the power function can be noted. Moreover, the
tail ordering between the distributions is preserved. This a general property we
prove now.

Proposition 1. If F, G ∈ F∗ and F <t G =⇒ βF
φs

(θ) ≥ βG
φs

(θ), ∀ θ > θ0.

P r o o f . The power function of the sign test, βF
φs

(θ) , is a Beta cumulative distri-
bution function β(kα , n− kα + 1) in 1− Fθ(θ0),

βF
φs

(θ) = B (1− Fθ(θ0)) .

Since, for the same θ > θ0 , F <t G implies

Fθ,b(x) ≤ Gθ,b′(x), ∀x < θ
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if x = θ0, it will be

1− Fθ,b(θ0) ≥ 1−Gθ,b′(θ0), ∀ θ > θ0.

Because of the monotonicity of any cumulative distribution function we get the
result. 2

Fig. 1. A = βUnif
φs

; B = βNor
φs

; C = βLog
φs

; D = βDe
φs

.

Fig. 2. A = βUnif
φs

; B = βNor
φs

; C = βLog
φs

; D = βDe
φs

.
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3. BEHAVIOUR OF THE ONE SAMPLE MEDIAN TEST

For testing H0 : θ ≤ θ0 against H1 : θ > θ0, at level α < 0.5 and samples of size n
odd, the one sample median test, φm(M), is defined as

φm(M) =
{

1 if M > kn

0 otherwise

where M is the sample median and kn such that

Fn;θ0(kn) = Pθ0 {M ≤ kn} = 1− α.

This test is uniformly most powerful if Fθ ∈ F∗ when n = 1 and has good
robustness properties for finite sample sizes ([8], [9]). Also (see [10] and [11]) its
p-value has an asymptotic normal distribution which allows us to get its influence
function and qualitative robustness in the sense of Lambert ([16] and [17]).

Here we shall study the behaviour of its power funtion (nondecreasing in θ)

βF
φm

(θ) =
n∑

x= n+1
2

(
n

x

)
[1− Fθ(kn)]x [Fθ(kn)]n−x

=
n![(

n−1
2

)
!
]2

∫ 1−Fθ(kn)

0

x(n−1)/2 (1− x)(n−1)/2 dx

against changes in the model.

3.1. The One Sample Median Test and the Tail Ordering <t

All the numerical results we have got untill now, confirm for φm the same mono-
tonicity property that Proposition 1 established for the sign test. Nevertheless, by
now we have only a proof for Box–Tiao families; for these we first need a lemma.

Lemma 1. If F β1 , F β2 ∈ F∗ are two Box–Tiao families with densities fβ1 and
fβ2 , and with k1

n and k2
n as critical points for φm, then

if β1 < β2 =⇒ fβ1
θ0

(k1
n) > fβ2

θ0
(k2

n).

P r o o f . The density function of a Box–Tiao familiy can be written as

fβ
θ (x) = c(β) exp

{
−1

2

∣∣∣∣
x− θ

b(β)

∣∣∣∣
2

1+β

}
.

Because distributions belong to F∗, condition (1) implies c(β) = c, ∀ β; thus we can
write

fβ
θ0

(kn) = c exp
{
−1

2
[w(β)]2

}



164 A. GARCÍA–PÉRÉZ

where w(β) is the function

w(β) =
[
kn(β)− θ0

b(β)

]1/(1+β)

= [u(β)]1/(1+β)

(kn(β) > θ0, ∀β, because α < 0.5). Last equality is used as notation.
Then, to prove the lemma, it is enough to prove that function w(β) is increasing.
Let us observe that w(β) is differentiable because the functions

b(β) =
1

c Γ((3 + β)/2) 2(3+β)/2

and kn(β), defined as the inverse of the distribution function of the corresponding
Box–Tiao family in y = B−1(1− α), are differentiable.

We have

1− α =
n![(

n−1
2

)
!
]2

∫ F β
θ0

(kn)

0

x(n−1)/2 (1− x)(n−1)/2 dx

where

F β
θ0

(kn) = 0.5 + r(β)
∫ w(β)

0

exp
{
−1

2
z2

}
(1 + β) zβ dz

and r(β) the function

r(β) =
1

Γ((3 + β)/2) 2(3+β)/2
.

Then, if h(y) is the function — increasing and differentiable in (0,1) —

h(y) =
n![(

n−1
2

)
!
]2

∫ y

0

x(n−1)/2 (1− x)(n−1)/2 dx

we can write that

1− α = h

(
0.5 + r(β)

∫ w(β)

0

exp
{
−1

2
z2

}
(1 + β) zβ dz

)
.

On differentiating with respect β, it will be

0 = h′
(

0.5 + r(β)
∫ w(β)

0

exp
{
−1

2
z2

}
(1 + β) zβ dz

)

·
[
r′(β)

∫ w(β)

0

e−z2/2 (1 + β) zβ dz + r(β)

·
(

exp
{
−1

2
[w(β)]2

}
[w(β)]β (1 + β)w′(β) +

∫ w(β)

0

e−z2/2 zβ [1 + (1 + β) log z] dz

)]
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and then,

w′(β) =
−

∫ w(β)

0

e−z2/2 zβ

[
1 + (1 + β)

(
r′(β)
r(β)

+ log z

)]
dz

exp
{− 1

2 [w(β)]2
}

[w(β)]β (1 + β)
,

derivative that will be positive when and only when the integral

∫ w(β)

0

e−z2/2 zβ

[
1 + (1 + β)

(
r′(β)
r(β)

+ log z

)]
dz (2)

is negative.
The function

e−z2/2 zβ

[
1 + (1 + β)

(
r′(β)
r(β)

+ log z

)]

is negative untill the point z0 = exp{−1/(1 + β) − r′(β)/r(β)}, from which it is
always positive. If β in (2) is such that w(β) ≤ z0, the integral will be negative.

If w(β) > z0, we have a negative area (integral till z0) plus a positive area, but
proving that

∫ ∞

0

e−z2/2 zβ

[
1 + (1 + β)

(
r′(β)
r(β)

+ log z

)]
dz < 0

the positive area will never exceed the negative one, concluding that w′(β) > 0 and
then proving the lemma.

Easily we get

r′(β)
r(β)

= −1
2

[
log 2 + Digamma

(
3 + β

2

)]
. (3)

And also that
∫ ∞

0

e−z2/2 zβ

[
1 + (1 + β)

(
r′(β)
r(β)

+ log z

)]
dz < 0

is equivalent to
∫ ∞

0

e−y/2 y(β−1)/2

[
1 + (1 + β)

(
r′(β)
r(β)

+
1
2

log y

)]
dy < 0

i. e.,

Γ

„
1 + β

2

«
+ (1 + β)

r′(β)

r(β)
Γ

„
1 + β

2

«
+ (1 + β)

»
Γ′
„

1 + β

2

«
+

1

2
Γ

„
1 + β

2

«
log 2

–
< 0

replacing now r′(β)/r(β) by (3), the last expresion will be equivalent to

2 + (1 + β)
[
2Digamma

(
1 + β

2

)
− Digamma

(
3 + β

2

)]
< 0
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inequality (Figure 3) that follows from the properties of the digamma function (see
[20], pages 5 to 8). 2

Fig. 3. g(β) = 2 + (1 + β) [2Digamma((1 + β)/2)−Digamma((3 + β)/2)].

Lemma 2. Let F and G be two Box–Tiao families. Then, it holds that

If F <t G =⇒ Fθ(kF
n ) ≤ Gθ(kG

n ), ∀ θ > θ0.

P r o o f . If it is θ ≥ kF
n > θ0, then it will be

Fθ(kF
n ) ≤ Gθ(kF

n ).

And because it is kF
n ≤ kG

n , it will be

Fθ(kF
n ) ≤ Gθ(kF

n ) ≤ Gθ(kG
n )

getting the inequality. (For all F, G ∈ F∗, not necessarily Box–Tiao families.)
Now let θ0 < θ < kF

n .
Fθ(kF

n ) ≤ Gθ(kG
n ) is equivalent to

F
(
kF

n − (θ − θ0)− θ0

) ≤ G
(
kG

n − (θ − θ0)− θ0

)
if θ0 < θ < kF

n

i. e.,
Fθ0(k

F
n − x) ≤ Gθ0(k

G
n − x), ∀ x ∈ (0, kF

n − θ0).

Because kF
n and kG

n are critical points, it will be

Fn;θ0(k
F
n ) = 1− α = Gn;θ0(k

G
n )
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i. e.,
kG

n = G−1
n;θ0

Fn;θ0(k
F
n ) = G−1

θ0
Fθ0(k

F
n )

and so, Fθ0(k
F
n ) = Gθ0(k

G
n ). Moreover, for Lemma 1 it is fθ0(k

F
n ) > gθ0(k

G
n ), then

there will exist an interval (0, d), such that

Fθ0(k
F
n − x) ≤ Gθ0(k

G
n − x), ∀ x ∈ (0, d).

If it is d ≥ kF
n − θ0 we have finished. Let us suppose it is d < kF

n − θ0. Becuase of
the continuity of functions Fθ0 and Gθ0 , in the extreme d we shall have the equality

Fθ0(k
F
n − d) = Gθ0(k

G
n − d)

that will be equivalent to

Fn;θ0(k
F
n − d) = Gn;θ0(k

G
n − d). (4)

Considering now, as significance level α′, one minus the common value (4),

1− α′ = Fn;θ0(k
F
n − d) = Gn;θ0(k

G
n − d),

kF
n − d and kG

n − d would be the critical points, associated with F and G, for α′, say
kF

n (α′) and kG
n (α′), and then we should have again

Fn;θ0(k
F
n (α′)) = Gn;θ0(k

G
n (α′))

and because of Lemma 1

fθ0(k
F
n (α′)) > gθ0(k

G
n (α′)).

Then, there would exist an interval to the left of kF
n (α′) = kF

n − d in which

Fθ0(k
F
n − x) ≤ Gθ0(k

G
n − x)

and then, d would not be the upper extreme of the interval in which we have the
inequality. Hence, must be d ≥ kF

n − θ0. 2

Proposition 2. Let F and G be two Box–Tiao families. Then, it holds that

If F <t G =⇒ βF
φm

(θ) ≥ βG
φm

(θ), ∀ θ > θ0.

P r o o f . Let θ > θ0. The power function of median test, βF
φm

(θ) , is the cumulative
distribution function of a Beta distribution β((n + 1)/2 , (n + 1)/2) in 1− Fθ(kF

n )

βF
φm

(θ) = B
(
1− Fθ(kF

n )
)
.

Using Lemma 2, if F <t G it will be 1−Fθ(kF
n ) ≥ 1−Gθ(kG

n ), and now we shall
get the result because of the monotonicity of any cumulative distribution function.

2
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4. JOINT BEHAVIOUR OF SIGN AND ONE SAMPLE MEDIAN TESTS

Because the sample median M is the Hodges–Lehmann estimator for θ associated
with the sign test, the asymptotic behaviour of this test and the one sample median
test will be the same when we use the traditional robustness measures which have
an asymptotic character.

For instance, because of the asymptotic efficacy of both tests is the same,

eff(S, F ) = eff(M, F ) = 2 f(0), (5)

the contribution of both tests to the asymptotic relative efficiency will be the same
when we do comparisons with another test based on a statistic T ,

ARE(S, T ) =
[

eff(S, F )
eff(T, F )

]2

=
[
eff(M, F )
eff(T, F )

]2

= ARE(M, T )

and, of course, ARE(S, M) = 1.
Also, because of (5), the asymptotic power of both tests will be the same. And,

of course, the influence function (see [26] and [27]) of both tests will agree:

IFφs(x; T, Fθ) =
sign(x− θ)

2 f(θ)
= IFφm(x; T, Fθ).

Thus, the influence functions in the sense of Lambert [16] will also be the same.

4.1. Behaviour with Finite Samples

In contrast with the identical asymptotic behaviour that we saw in the last para-
graph, the sensitivity to changes in the model of the two tests can be high if the
sample size is finite.

For instance, for testing the null hypothesis H0 : θ ≤ 0 against H1 : θ > 0, with
sample size n = 5 and significance level α = 0.1875, the power function of the sign
test with uniform and double exponential distributions (dotted curves) looks more
sensitive than the corresponding ones to the one sample median test (solid curves)
also with uniform and double exponential distributions (Figure 4) that, as we saw
in Propositions 1 and 2, are the extreme distributions.

The new measure of robustness, we are going to define, takes into account these
remarks. It considers only tests that reach power 1 with the aim to avoid tests like
the trivial one φ(x) = α ∀x, which is insensitive to any change of distribution
although having a constant power α, and also because the two tests considered in
this paper are more sensitive far away from θ0 (for instance, φs has a power function
with first derivative independent of the model in θ = θ0).

Definition 1. Let Φα be the class of level α tests φ with power function contin-
uous, increasing (in θ such that α < βφ(θ) < 1) and that reach power 1, at least
when θ →∞.
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We shall call sensitivity of a test φ ∈ Φα against changes in the model inside a
class of distributions F for a given power γ to

∆φ(γ) = sup
F,G∈F

∣∣∣
(
βF

φ

)−1
(γ)− (

βG
φ

)−1
(γ)

∣∣∣

and we shall say that φ1 has tail-power more robust than φ2 against changes in
models of F class if and only if there exists an interval (β, 1) such that ∀ γ ∈ (β, 1)
is ∆φ1(γ) < ∆φ2(γ).

Fig. 4. A = βUnif
φs

; B = βUnif
φm

; C = βDe
φm

; D = βDe
φs

.

Remark 1. A test φ1 with tail-power more robust than φ2 is not necessarily
better (in terms of power) than φ2. For example, let us think in a test φ1 with a
power function that increases very slowly to one and with nearly the same power
function for all distributions in F , and a test φ2 that reaches power one very quickly
for all distributions in F except for some few of them.

Considerations of efficiency are being studied in order to get optimal robust tests
in the sense of find the most powerful inside the class of tests with bounded sensi-
tivity, ∆φ(γ) ≤ c.

Definition 2. The sensitivity against changes in the model is easier to obtain in
tests with ordered power with respect a class of distributions, i. e., in tests φ such
that, if ≺ is a tail-ordering on distributions of a class F , have the following property,

If F,G ∈ F and F ≺ G =⇒ βF
φ (θ) ≥ βG

φ (θ), ∀ θ ∈ Θ1

(or βF
φ (θ) ≤ βG

φ (θ) ∀ θ ∈ Θ1) where Θ1 is the alternative hypothesis.

From Propositions 1 and 2 we get the next result.
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Proposition 3. It holds
(a) φs has ordered power with respect to the F∗ class and tail-ordering <t, and
(b) φm has ordered power with respect to the Box–Tiao families and tail-ordering <t.

We conclude the paper with a result that confirms the idea suggested by Figure 4.

Proposition 4. φm has tail-power more robust than φs against changes in models
of Box–Tiao families.

P r o o f . Because φm, φs ∈ Φα and have ordered powers with respect to the Box–
Tiao families, given a power γ ∈ (α, 1), it will be

∆φm
(γ) =

(
βDE

φm

)−1
(γ)− (

βU
φm

)−1
(γ)

and
∆φs

(γ) =
(
βDE

φs

)−1
(γ)− (

βU
φs

)−1
(γ).

Because the first alternative, θm
1 , for which βU

φm
(θm

1 ) = 1 is

θm
1 = kU

n +
1
2c

and the first θs
1 in which βU

φs
(θs

1) = 1 is

θs
1 = θ0 +

1
2c

it will be θs
1 < θm

1 because α < 0.5; then, there will exist an interval, (β1, 1), in
which (

βU
φs

)−1
(γ) <

(
βU

φm

)−1
(γ), ∀ γ ∈ (β1, 1).

Moreover, for θ > kDE
n , it is

β′φm
(θ) =

n! c ec(kDE
n −θ0)(n+1)

[(
n−1

2

)
!
]2 2(n−1)/2

[
1− 1

2
e−2c(θ−kDE

n )

](n−1)/2 [
e−2c(θ−θ0)

](n+1)/2

and

β′φs
(θ) =

n!c
(kα − 1)!(n− kα)!2n−kα

[
1− 1

2
e−2c(θ−θ0)

]kα−1 [
e−2c(θ−θ0)

]n−kα+1

.

The first term in both derivatives does not depend on θ. The second one converges
to 1,

lim
θ→∞

[
1− 1

2
e−2c(θ−kDE

n )

](n−1)/2

= lim
θ→∞

[
1− 1

2
e−2c(θ−θ0)

]kα−1

= 1.
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And since n − kα + 1 < (n + 1)/2 the last term in both expressions makes that
β′φm

(θ) goes to zero more quickly than β′φs
(θ) ; then, there exists a θ1 such that

β′φm
(θ) < β′φs

(θ), ∀ θ > θ1.

Since also it is
lim

θ→∞
βφm(θ) = lim

θ→∞
βφs(θ) = 1

it must be
βφs(θ) < βφm(θ), ∀ θ > θ1

and because both power functions are increasing in θ, there will exist an interval
(β2, 1) in which

(
βDE

φs

)−1
(γ) >

(
βDE

φm

)−1
(γ), ∀ γ ∈ (β2, 1).

Taking β = max{β1, β2}, there will exist an interval (β, 1) in which

(
βU

φs

)−1
(γ) <

(
βU

φm

)−1
(γ), ∀ γ ∈ (β, 1)

and (
βDE

φs

)−1
(γ) >

(
βDE

φm

)−1
(γ), ∀ γ ∈ (β, 1)

i. e., in which
∆φm(γ) < ∆φs(γ)

and the proof follows. 2

Remark 2. A complementary study, in a future paper, of the behaviour of the
power and level of these tests would be interesting in order to confirm the result of
Proposition 4, but now considering “neighborhoods” of a distribution F0 specified
in terms, for instance, of ε-contamination

Pε = {F |F = (1− ε)F0 + εH , H ∈M}

where M is the space of probability measures. Specially with F0 equal to the normal
distribution.
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