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Pod Vodárenskou věž́ı 4, 182 08 Praha 8

Kybernetika is a bi-monthly international journal dedicated for rapid publication of
high-quality, peer-reviewed research articles in fields covered by its title.

Kybernetika traditionally publishes research results in the fields of Control Sciences,
Information Sciences, System Sciences, Statistical Decision Making, Applied Probability
Theory, Random Processes, Fuzziness and Uncertainty Theories, Operations Research and
Theoretical Computer Science, as well as in the topics closely related to the above fields.

The Journal has been monitored in the Science Citation Index since 1977 and it is
abstracted/indexed in databases of Mathematical Reviews, Current Mathematical Publi-
cations, Current Contents ISI Engineering and Computing Technology.

Ky b e r n e t i k a . Volume 38 (2002) ISSN 0023-5954, MK ČR E4902.
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ON THE STABILIZABILITY OF SOME CLASSES
OF BILINEAR SYSTEMS IN IR3

Hamadi Jerbi

In this paper, we consider some classes of bilinear systems. We give sufficient condition
for the asymptotic stabilization by using a positive and a negative feedbacks.

1. INTRODUCTION

Stabilizability of bilinear systems of the form

ẋ = Ax + uBx (1)

(where x ∈ IRn, u ∈ IR and A, B are constant real matrices (n × n)) has widely
studied in the past years by many authors (see e. g. [1 – 13]). In [4], the authors
give a necessary and sufficient condition, algebraically computable, for the global
stabilization of the planar bilinear systems

{
ż = Ãz + vB̃z

z ∈ IR2, v ∈ IR and Ã, B̃ ∈ M(2, IR).
(2)

It turns out that the stabilizability by homogeneous feedback is equivalent to the
asymptotic controllability to the origin which is equivalent to the stabilizability.
Moreover, they show that there exists a large class of planar bilinear systems that
are not C1 stabilizable but stabilizable by means of homogeneous feedback of the
form v(z) = Q1(z)

Q2(z) , where Q1 is a quadratic form and Q2 is a positive-definite
quadratic form.

For the three dimensional case, in [3] the authors deal with a particular class
of bilinear systems of form (1) with A diagonal and B skew symmetric. For these
systems a necessary and sufficient condition for global asymptotic stabilization by
constant feedback and a sufficient condition for stabilization by a family of linear
feedbacks are given. Another interesting problem is considered in the literature.
The question is: does the local asymptotic stabilizability of (1) imply the global
asymptotic stabilizability? More precisely let us assume that there exists a feedback
law (locally defined) u : x 7→ u(x) such that the closed system ẋ = Ax+u(x)Bx (Σ)
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is locally asymptotically stable about the origin. Does there exist a feedback law
(globally defined) ū(x) which makes the origin of (1) globally asymptotically stable?

To the closed-loop system (Σ) a positive-definite function V (locally defined) is
associated, such that V̇ (x) (the derivative of V along the trajectories of system (Σ))
is negative definite.

Hammouri and Marques [8], proved that local asymptotic stabilizability implies
global asymptotic stabilizability under some assumption on the level surfaces of the
Lyapunov function related to system (Σ). Andriano [1] assert, that the answer to the
above question is yes without any assumption on the level surfaces of the Lyapunov
function. In [5] the authors clarify the result of Andriano given in [1].

This work is a contribution to the study of stabilization of bilinear systems by
homogeneous feedback. The results concern single-input bilinear systems of the form

ẋ = Ax + uBx (3)

where x ∈ IR3, u ∈ IR and TA, TB two matrices supposed have a same eigenvector
(TA denotes the transpose of matrix A). In a suitable basis matrices A and B can
be written as

A =




a(1.1) 0 0
a(2.1) a(2.2) a(2.3)

a(3.1) a(3.2) a(3.3)


 , B =




b(1.1) 0 0
b(2.1) b(2.2) b(2.3)

b(3.1) b(3.2) b(3.3)


 .

We define matrices Ã and B̃ as

Ã =
(

a(2.2) a(2.3)

a(2.3) a(3.3)

)
=

(
a b
c d

)
and B̃ =

(
b(2.2) b(2.3)

b(2.3) b(3.3)

)
.

We suppose more that system (2) is not stabilizable by a constant feedback and B̃
is not diagonalizable.

In this paper we show how to compute the homogeneous feedback of the system
(3) when the planar bilinear system (2) is stabilizable by a positive and negative
feedback.

The paper is organized as follows. In Section 2, for the convenience of the reader
we recall two results of constant use in the sequel.

Section 3: In the case where the eigenvalues of B associate to the common eigen-
vector of TA and TB is zero we give a necessary and sufficient condition for the
stabilizability of system (3), the feedback is given explicitly. Next we prove that
if the planar bilinear system is globally asymptotically stable (GAS) by a feedback
v(z) such that b1.1v(z) < 0 then system (2) is GAS.

In Section 4, we suppose that the system (2) is not stabilizable by a constant
feedback and B̃ is not diagonalizable. As an application of the last result of the
Section 2, we give a necessary and sufficient condition, algebraically computable,
for the global stabilization of the planar bilinear systems by a positive and negative
feedback.

ňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňň
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2. TWO RESULTS ON STABILIZATION

We recall the following theorem, because we need these results to prove that we can
stabilize some bilinear system by a positive and negative feedback (see Theorems
5, 6, 7 and 8).

Theorem 1. Consider the two-dimensional system,

T[ż1, ż2] =T [f1(z1, z2), f2(z1, z2)]

where T[f1, f2] is Lipschitz continuous and is homogeneous of degree p. Then the
system is asymptotically stable if and only if one of the following is satisfied:

(i) The system does not have any one-dimensional invariant subspaces and

I =
∫ 2π

0

cos θf1(cos θ, sin θ) + sin θf2(cos θ, sin θ)
cos θf2(cos θ, sin θ)− sin θf1(cos θ, sin θ)

dθ

=
∫ +∞

−∞

f1(1, s)
f2(1, s)− sf1(1, s)

ds < 0

or

(ii) The restriction of the system to each of its one-dimensional invariant subspaces
is asymptotically stable.

For a proof see [2, 7].

In the sequel we use constantly a result of asymptotic stability using positive-semi-
definite function. The theorem can be found in [9] or [10], we use the formulation of
[10]. Consider the differential equation

(Γ)

{
ẋ = X(x)

X(0) = 0

where X is a smooth vector field on IRn. For a differentiable function V , we denote
the action of X, considered as a differential operator, on V by XV , which is defined
by

XV (x) =
d
dt

V (Xt(x))t=0

Xt(x0) is the solution of (Γ) starting at x0, i. e. d
dtXt(x0) = X(Xt(x0)) and X0(x0) =

x0.
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Theorem 2. We suppose that there exists a function V ∈ C1(IRn, IR) such that

(1) V (x) ≥ 0 for all x ∈ IRn and V (0) = 0

(2) V̇ (x) = XV (x) ≤ 0.

We denote by L the largest positively invariant set of X contained in M = {x ∈
IRn : V̇ (x) = 0}

If the origin is asymptotically stable with respect to the system (Γ) restricted to
L, then the origin is asymptotically stable.

ňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňň

3. MAIN RESULT

Consider a single input bilinear system (3), we suppose that the TB and TA have a
same eigenvector
we recall that, in a suitable basis of IR3, the matrices A, B take the following forms

A =




a(1.1) 0 0
a(2.1) a(2.2) a(2.3)

a(3.1) a(3.2) a(3.3)


 , B =




b(1.1) 0 0
b(2.1) b(2.2) b(2.3)

b(3.1) b(3.2) b(3.3)




and Ã, B̃ as follows

Ã =
(

a(2.2) a(2.3)

a(2.3) a(3.3)

)
=

(
a b
c d

)
and B̃ =

(
b(2.2) b(2.3)

b(2.3) b(3.3)

)
.

For the sake of clarity, we set x = (x1, x2, x3) = (x1, z) where z = (x2, x3). We
denotes a(1.1) = α and β = b(1.1)

Theorem 3. In the case when β = 0 we can assume that:
The bilinear system (3) is GAS if and only if α < 0 and the planar bilinear system

ż = Ãz + vB̃z, (2) is GAS.
If system (2) is GAS by the feedback law v(z) = Q1(z)

Q2(z) (where Q1 is a quadratic

form and Q2 is a positive-definite quadratic form), then the feedback u(x) = Q1(z)
Q2(z)+x2

1

stabilizes the system (3).

P r o o f . The system (3) takes the form




ẋ1 = αx1
(

ẋ2

ẋ3

)
= x1

(
a(2.1)

a(3.1)

)
+ ux1

(
b(2.1)

b(3.1)

)
+ Ã

(
x2

x3

)
+ uB̃

(
x2

x3

)
.

(4)

It is clear that it is necessary for the stabilizability of (4) that α < 0 and the system
ż = Ãz + vB̃z is stabilizable.

We suppose now that these two conditions are satisfied. Let v(z) = Q1(z)
Q2(z) be a

stabilizing homogeneous feedback for ż = Ãz + vB̃z, where Q1 is a quadratic form
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and Q2 is a positive-definite quadratic form. We define u(x1, x2, x3) = Q1(z)
Q2(z)+x2

1
on

IR3. This feedback is homogeneous and C∞ in IR3 \ {0}. We denote by X(x) =
A(x)+u(x)B(x) the vectors field of the closed-loop system. We shall prove, by using
Theorem 2, that this system is asymptotically stable. It is clear that the vectors
field X and Y where Y (x) = (Q2(z)+ ‖x1‖2)X(x) have the same orbits. We choose
V (x) = x2

1, V is clearly positive-semi-definite on IR3. Since α < 0, then

Y V (x) = V̇ (x) = α(Q2(z) + ‖x1‖2)‖x1‖2 ≤ 0.

Let M be the set M = {x ∈ IR3 : V̇ (x) = 0}. It is clear that M is {0} × IR2 in IR3.
Then the vectors field Y is reduced on M to ż = Q2(z)(Ãz + u(0, z)B̃z.

Since Q2(z) is positive-definite and ż = Ãz + v(z)B̃z is asymptotically stable,
then Y and hence X, is asymptotically stable.

In the case when β 6= 0 and without loss of generality we can suppose that
a(1.1) = α < 0. 2

Theorem 4. If the planar bilinear system ż = Ãz + vB̃z (2) is globally asymptot-
ically stabilizable by a feedback law of the form v(z) = Q1(z)

Q2(z) such that βv(z) ≤ 0

∀ z ∈ IR2 − {(0, 0)} then the feedback u(x) = Q1(z)
Q2(z)+x2

1
stabilizes the system (3).

P r o o f . It is straightforward that the the closed-loop system (3) with the feedback
u(x) = Q1(z)

Q2(z)+x2
1





ẋ1 = αx1 + uβx1
(

ẋ2

ẋ3

)
= x1

(
a(2.1)

a(3.1)

)
+ ux1

(
b(2.1)

b(3.1)

)
+ Ã

(
x2

x3

)
+ uB̃

(
x2

x3

) (5)

is GAS. 2

The proof is organized as the proof of the preceding theorem. Since this system
is in triangular forms (see [10]), and ż = Ãz + u(0, z)B̃z is GAS, then the equation
(5) is GAS.

ňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňň

4. STABILIZABILITY OF PLANAR BILINEAR SYSTEM
BY A POSITIVE AND NEGATIVE FEEDBACK

In this section we consider the planar bilinear system ż = Ãz + vB̃z (2) which
it not be stabilizable by a constant feedback. We suppose that matrix B̃ is not
diagonalizable.

As an application of Theorem 4, in this section we construct a positive and
negative feedbacks who’s stabilize the planar bilinear systems (2).

ňňňňňňňňňňňňňňňňňňňňňňňňňňňňňň
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4.1. B̃ have no real eigenvalues

In a suitable basis of IR2, the matrix B̃ takes the following form

B̃ =
(

ν µ
−µ ν

)
.

For the sake of clarity, we set z = (z1, z2), z̃1 = e1z1 + e2z2 and z̃2 = −e2z1 + e1z2,
where e1 = (a− d)−

√
(b + c)2 + (a− d)2 and e2 = (b + c).

According to the assumption that system (2) is not stabilizable by a constant
feedback, it is the classification of planar bilinear systems we are speaking of [4], we
have

(i) Tr(Ã) ≥ 0, Tr(B̃) = 0 and (b + c)2 − 4ad > 0.

Theorem 5. If the condition (i) is satisfied then for t1 > 0 and t2 > 0 large enough

and d̃
√

t1
t2

+ ã > 0 the positive feedback law

v1(z1, z2) =
t1z̃

2
1 + (d̃− ã)z̃1z̃2 + t2z̃

2
2

µ(z̃2
1 + z̃2

2)
+

c− b

2µ
and the negative feedback law

v2(z1, z2) = − t1z̃
2
1 + (ã− d̃)z̃1z̃2 + t2z̃

2
2

µ(z̃2
1 + z̃2

2)
+

c− b

2µ
where

ã = (ae2
1 + (c + b)e1e2 + de2

2)/(e2
1 + e2

2) and

d̃ = (ae2
2 − (c + b)e1e2 + de2

1)/(e2
1 + e2

2)

stabilize the system (2).

P r o o f . We consider the closed-loop system (2) by the feedback v1(z1, z2)
(

ż1

ż2

)
=

(
Z1(z1, z2)
Z2(z1, z2)

)
= (z̃2

1 + z̃2
2)

[
Ã

(
z1

z2

)
+ v1(z1, z2)B̃

(
z1

z2

)]
.

Since the function (z̃2
1 + z̃2

2) is positive-definite then there is equivalence between
asymptotic stability of the vector field Z = (Z1, Z2) and the closed-loop bilinear
system (2), defining the function F as follows

F (z1, z2) = z1Z2(z1, z2)− z2Z1(z1, z2)

a simple computation gives

F (z1, z2) = −(t1z̃2
1 + t2z̃

2
2)(z̃2

1 + z̃2
2).

From Theorem 1 one can deduce that the vector field Z is GAS if and only if

I =
∫ +∞

−∞

Z1(1, s)
F (1, s)

ds < 0.
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It is easy to verify that

ãd̃ < 0 I = − π

t2

d̃t + ã

t(t + 1)
where t =

√
t1
t2

.

Since t1 and t2 have been chosen large enough such that v1(z1, z2) > 0 and d̃t+ã > 0,
then I < 0.

From the fact that the vector field Z is GAS, we can assume that the differential
equation

(
ξ̇1

ξ̇2

)
(6)

=

[(
a −b
−c d

)
−

(
t1ξ̄

2
1 + (d̃− ã)ξ̄1ξ̄2 + t2ξ̄

2
2

µ(ξ̄2
1 + ξ̄2

2)
+

b− c

2µ

) (
0 −µ
µ 0

)] (
ξ1

ξ2

)

ξ̄1 = e1ξ1 − e2ξ2 and ξ̄2 = e2ξ1 + e1ξ2 is GAS. Under a linear change in the state
space of the form z1 = ξ1 and z2 = −ξ2 the differential equation (6) becomes
ż = Ãz + v2(z1, z2)B̃z which it GAS. 2

ňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňňň

4.2. Case where the eigenvalues of B are real without B being
diagonalizable

In a suitable basis of IR2, matrices Ã and B̃ take the following forms

Ã =
(

a b
c d

)
B̃ =

(
λ 1
0 λ

)
.

According to the assumption that the system (2) is not stabilizable by a constant
feedback, it is the classification of planar bilinear systems we are speaking of [4], we
have

(i) Tr(Ã) > 0, Tr(B̃) = 0 and Tr(ÃB̃) = c 6= 0;

(ii) Tr(Ã) = Tr(B̃) = 0 and Tr(ÃB̃) = c 6= 0.

Without loss of generality, we can suppose that Tr(ÃB̃) = c > 0.

4.2.1. Case when Tr(Ã) > 0

We will treated separately the two subcases: 4bc+(a−d)2 < 0 and 4bc+(a−d)2 ≥ 0.

The sub case when 4bc + (a− d)2 ≥ 0.
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Theorem 6. If the condition (i) is satisfied then the negative feedback

v(z) = −b− (a− d)2

4c
− (d + a)2P (z)

4cQ(z)

where

Q(z) = (cz1 − (d + 2a)z2)
2 + 29

4 (d + a)2z2
2 and

P (z) = 26c2z2
1 + (88ac + 140cd)z1z2 +

(
849
2 d2 + 709ad + 621

2 a2
)
z2
2

stabilizes the system (2).

P r o o f . Suppose that, the condition (i) is satisfied. We consider the Lyapunov
function,

V (z) =
(

c2z2
1 −

dc + 5ac

2
z1z2 − (

17
2

a2 +
39
2

da + 10d2)z2
2

)2

+
133
4

(
d2 − a2

2
z2
2 + c(d + a)z1z2

)2

for the system (2), and the feedback law

v(z) = −b− (a− d)2

4c
− (d + a)2P (z)

4cQ(z)
.

One can verify that, V is positive-definite and the feedback law is homogeneous of
degree zero. A simple computation gives

V̇ (z) =
−(a + d)D(z)R(z)

Q(z)
< 0 ∀ z 6= 0

where R(z) =
(
cz1 + d−a

2 z2

)2
+ 19

2 (a + d)2z2
2 , and

D(z) =
(

c2z2
1 − (cd + 3ac)z1z2 −

(
33
4

a2 +
39
2

ad +
41
4

d2

)
z2
2

)2

+33
(

d2 − a2

2
z2
2 + c(d + a)z1z2

)2

.

This prove that the feedback v(z) stabilizes the system (2).

Since P (z)−Q(z) = 25
(
cz1 + (71d+46a)

25 z2

)2

+ 21461
100 (a+d)2z2

2 , is positive-definite
then

P (z)
Q(z)

> 1, ∀ z 6= 0.

Tacking into account the fact that 4bc + (a− d)2 ≥ 0 and P (z)
Q(z) > 1 then

v(z) < − (d + a)2

4c
− b− (a− d)2

4c
< 0. 2
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Proposition 1. The system (2) is not stabilizable by a positive feedback.

P r o o f . Consider the linear change of coordinates whose transformation matrix
is given by

P =
(

1 d−a
2c

0 1

)
.

The matrix B̃ keep its initial form and the matrix Ã becomes

Ã =

(
a+d
2 b + (a−d)2

4c

c a+d
2

)
.

In the new basis it is easy to verify that the set H = {(z1, z2) ∈ IR2 such that z1 ≥ 0
z2 = 2} is invariant by the open loop system ż = Ãz + vB̃z where v lie in IR+. 2

The sub case where 4bc + (a − d)2 < 0. Under a change in input state of the
form ṽ = ( 2c√

−4bc−(a−d)2
)v and if we consider the linear change of coordinates whose

transformation matrix is given by

P =

(
1 d−a

2c

0
√
−4bc−(a−d)2

2c

)
.

The matrix B̃ keep its initial form and the matrix Ã becomes

Ã =
(

a+d
2 −c̃
c̃ a+d

2

)

where c̃ =
√
−4bc−(a−d)2

2 .
In the new basis, we prove the following result.

Theorem 7. If the condition (i) is satisfied, then for −t > 0 large enough the
negative feedback

ṽ(z) =
(

a + d

2

) (
−z2

1 + (− 10c̃
a+d + p)z1z2 + (t + 7)z2

2

2c̃
a+dz2

1 − 5z1z2 + (( 7a+7d
c̃ ))z2

2

)

where

p = −15
(a + d)

c
− 8

(a + d)2 + c2

c(a + d)2

stabilizes the system (2).

P r o o f . Suppose that, the condition (i) is satisfied. We consider the closed-loop
system (2) by the feedback ṽ(z)
(

ż1

ż2

)
=

(
Z1(z1, z2)
Z2(z1, z2)

)

=
(

2c̃

a + d
z2
1 − 5z1z2 +

(
7a + 7d

2c̃

)
z2
2

)[
Ã

(
z1

z2

)
+ v(z1, z2)B̃

(
z1

z2

)]
.
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Since the function ( 2c̃
a+dz2

1 − 5z1z2 + ( 7a+7d
2c̃ )z2

2) is positive-definite then there is
equivalence between asymptotic stability of the vector field Z = (Z1, Z2) and the
closed-loop bilinear system (2), defining the function F as follows

F (z1, z2) = z1Z2(z1, z2)− z2Z1(z1, z2)

a simple computation gives

F (z1, z2) =
(

2c̃2

a + d

)
z4
1−5c̃z3

1z2+
(

4a + 4d +
2c̃2

a + d

)
z2
1z2

2−
pa + pd

2
z1z

3
2−

ta + td

2
z4
2 .

It is clear that for −t > 0 large enough F is a positive-definite function. From
Theorem 1 one can deduce that the vector field Z is GAS if and only if I =∫ +∞
−∞

Z1(1,y)
F (1,y) dy < 0. It is easy to verify that

I =
∫ +∞

−∞

Z1(1, y)− 4 ∂F
∂z2

(1, y)
F (1, y)

dy

=
a + d

8

∫ +∞

−∞

−( 2c̃
a+d )− (8 + 2( 2c̃

a+d )2)y + ( 28a+28d
2c̃ + p)y2

F (1, y)
dy.

Since p = −15 (a+d)
c −8 (a+d)2+c2

c(a+d)2 , then we can verify that −( 2c̃
a+d )− (8+2( 2c̃

a+d )2)y+
(28a+28d

2c̃ + p)y2 < 0 ∀ y ∈ IR. Consequently, the proof of theorem follows from
Theorem 1. 2

Theorem 8. If the condition (i) is satisfied, then for t > 0 large enough the positive
feedback

ṽ(z) =
(2c̃(a + d) + c̃3(a + d)/2 + 8c̃t)z2

1 − 8(a + d)z1z2 − (16(a + d)/c̃ + 8c̃t)z2
2

(c̃2(a + d)/2)z2
1 + 8tz2

2

stabilizes the system (2).

P r o o f . Suppose that, the condition (i) is satisfied. We consider the closed-loop
system (2) by the feedback ṽ(z)
(

ż1

ż2

)
=

(
Z1(z1, z2)
Z2(z1, z2)

)
=

(
c̃2

8(a + d)2
z2
1 + tz2

2

)[
Ã

(
z1

z2

)
+ v(z1, z2)B̃

(
z1

z2

)]
.

Since the function
(

c̃2

8(a+d)2 z2
1 + tz2

2

)
is positive-definite, then there is equivalence

between asymptotic stability of the vector field Z = (Z1, Z2) and the closed-loop
bilinear system (2), defining the function F as follows

F (z1, z2) = z1Z2(z1, z2)− z2Z1(z1, z2)

a simple computation gives

F (z1, z2) =
(

a + d

2

) (
c̃

a + d
z1 + z2

)2 ( −c̃

a + d
z2
1 + 2z1z2 − 2

a + d

c̃
z2
2

)
.
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It is easy to see that, if (1, ξ) verify F(1, ξ) = ξX1(1, ξ) − X2(1, ξ) = 0 then there
exists ν ∈ IR such that (X1(1, ξ), X2(1, ξ)) = ν(1, ξ).

In our case we have ξ = −c̃
a+d and ν = c̃+(a+d)ξ/2

ξ = −(a+d)/2 < 0. Consequently,
the proof of theorem follows from Theorem 1. 2

ňňňňňňňňňňňňňňňňňňňňňňňňň

4.2.2. Case where Tr(Ã) = Tr(B̃) = 0

Under the assumptions that Tr(Ã) = Tr(B̃) = 0 and Tr(ÃB̃) = c > 0, and in

suitable basis of IR2, the matrices Ã and B̃ can be written as Ã =
0
@ a b

c −a

1
A,

B̃ =
0
@ 0 1

0 0

1
A where c > 0 consider the linear change of coordinates whose trans-

formation matrix is given by

P =
(

1 −a
c

0 1

)
.

The matrix B̃ keep its initial form and the matrix Ã becomes

Ã =
(

0 b + a2

c
c 0

)
.

In the new basis and in the case where b+a2/c < 0 there is equivalence between the
stabilizability of system ż = (Ã+vB̃)z by a positive feedback and the stabilizability
of the system ż = (B̃ + vÃ)z (7) where v ∈ IR+. Moreover we can assume that
there is equivalence between the stabilizability of system ż = (Ã+vB̃)z by a negative
feedback and the stabilizability of the system ż = (−B̃ + vÃ)z (8) where v ∈ IR+.
The stabilizability problem of systems (7) and (8) was treated in the subsection 4.1.

In the case when b + a2/c > 0 we consider the change of feedback

ṽ(z) = v(z) +
a2 + bc

c
+ c

the system (2) becomes

ż = (Ā + ṽB̃)z where Ā =
(

0 −c
c 0

)
.

The characteristic polynomial of matrix Ā is equal to X2 + c2, so matrix Ā admits
a first integral, namely the positive-definite function

V (z1, z2) =
1
2
(z2

1 + z2
2).

Moreover, the rank of the family {B̃z, adĀB̃z, . . .} is equal to two on IR2\{0}, hence
for any positive constant δ the feedback law

ṽ(z) = − LB̃V (z)
δV (z1, z2)

= − z1z2

δ(z2
1 + z2

2)
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stabilizes the system (2) (the proof is a modification of the result of [6] with the
feedback rendered homogeneous; the proof is exactly the same). It follows for δ > 0
large enough the negative feedback

v(z) = − z1z2

δ(z2
1 + z2

2)
− a2 + bc

c
− c.

Proposition 2. The system (2) is not stabilizable by a positive feedback.

P r o o f . In the new basis it is easy to verify that the set H = {(z1, z2) ∈
IR2 such that z1 ≥ 2 z2 ≥ 2} is invariant by the open loop system ż = Ãz + vB̃z
where v lie in IR+. 2

(Received January 30, 2001.)
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