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Radim Jiroušek, George Klir, Ivan Kramosil,
Friedrich Liese, Jean-Jacques Loiseau,
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A DETERMINISTIC LQ TRACKING PROBLEM:
PARAMETRISATION OF THE CONTROLLER

L’uboš Čirka, Ján Mikleš and Miroslav Fikar

The article discusses an optimal Linear Quadratic (LQ) deterministic control problem
when the Youla–Kučera parametrisation of controller is used. We provide a computational
procedure for computing a deterministic optimal single-input single-output (SISO) con-
troller from any stabilising controller. This approach allows us to calculate a new optimal
LQ deterministic controller from a previous one when the plant has changed. The de-
sign based on the Youla–Kučera parametrisation approach is compared to the classical LQ
design.

1. INTRODUCTION

Optimal control design, based on LQ performance criterion has been derived histor-
ically first in terms of the state space approach. By this method Riccati equations
have to be solved (e. g. [5]). Progress in polynomial algebra and the algebraic polyno-
mial approach to the synthesis of control loops presented e. g. by [3, 4], have offered
new tools for the tracking LQ control problem. Algebraic methods have been well
developed for a wide class of both deterministic and stochastic (LQG control) sys-
tems.

In [1], a non-conventional deterministic LQ tracking problem is discussed. This
deterministic problem follows from some features of control of real technological
processes. For the most part of theoretical works reference signal is assumed to be
from a class of stochastic functions. However, in technological practice, references
belong always to a class of deterministic functions. Moreover, practical needs of
control show, that it is not always sufficient to restrict the output and control signals
only. Very often, the control signal derivatives should be restricted as well. The
solution of such a control problem represents then a non-conventional LQ problem.
This paper introduces the non-conventional problem of optimal tracking based on
minimisation of a modified quadratic performance criterion.

The aim of this paper is to present an alternative to the classical LQ tracking
problem. It is based on the Youla–Kučera parametrisation approach. We provide
a computational procedure for computing a deterministic optimal controller from
any nominal (stabilising) controller. This approach allows us to calculate a new
optimal LQ deterministic controller from a previous one when the plant has changed
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Fig. 1. Block diagram of the closed-loop system.

(supposing that the previous controller is stabilising for the new plant, too). The
nominal controller is based on algebraic approach developed by Kučera. The control
design is performed in input-output formulation leading to Diophantine and spectral
factorisation equations.

1.1. Notation

All systems in this work are assumed to be SISO and continuous-time. The systems
are described by means of fractions of polynomials in complex argument s, used in
L-transform. RH∞ denote the set of stable proper rational transfer functions and
S denote the set of stable polynomials.

For simplicity, the arguments of polynomials are omitted whenever possible – a
polynomial X(s) is denoted by X. We denote X∗(s) = X(−s) for any function
X(s).

2. CLOSED–LOOP SYSTEM

2.1. System description

Consider the closed-loop system illustrated in Figure 1. A continuous-time linear
time-invariant input-output representation of the plant to be controlled is considered

Ay = Bu (1)

where y, u are process output and controller output, respectively. A and B are
polynomials that describe the input-output properties of the plant.

We assume that the condition deg B ≤ deg A holds (i. e. transfer function of the
plant is proper).

The reference w is considered to be from a class of functions expressed in the
form

Fw = H (2)

where H, F are coprime polynomials and degH ≤ degF .
The controller is described by the equation

Xũ = Y e (3)
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where the pair X, Y are coprime polynomials and X(0) is nonzero. The precom-
pensator is described by the equation

Fcu = ũ. (4)

Evidently, the precompensator is only the component of the feedback controller. We
suppose here that AFc and B are coprime polynomials.

Asymptotic tracking of the reference w is ensured for an arbitrary F just when
F in (4) divides Fc. This claim will be fulfilled always for Fc = F . By substituting
this relation to (4), this equation can be expressed in the form

Fu = ũ. (5)

See [1] for details.

Remark 1. When considering the most common case of references – step changes
then H = 1, F = s in (2) and the precompensator is given as 1/s. However, if the
controlled plant has a pole s = 0 (on the stability boundary), then the precompen-
sator can be removed. In general, the precompensator is not necessary if F divides
A, which is unfortunately not true for the majority of the plants.

2.2. Nominal controller

Consider the nominal plant and the nominal controller transfer functions in the
fractional representations

G =
NG

DG
, C =

NC

DC
, (6)

where

NG =
B

M1
, DG =

A

M1
(7)

NC =
Y

M2
, DC =

FX

M2
(8)

and M1, M2 ∈ S with degrees degM1 = degA and degM2 = degFX, DG, NG, DC

and NC ∈ RH∞.
Stabilising nominal controllers are then given by solution of Diophantine equation

DGDC +NGNC = 1. (9)

Substituting equations (7) and (8) into (9), the condition of stability in S takes the
form

AFX +BY = M1M2 = D (10)
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3. DETERMINISTIC NON–CONVENTIONAL LQ TRACKING PROBLEM

In this section two approaches to LQ tracking problem will be compared. The first
one is more classical and it is based on the determination of optimal closed-loop poles
that minimise the LQ cost function. The second approach follows more modern ideas
of the Youla–Kučera parametrisation of all stable controllers.

The general conditions required to govern the control system properties are
– stability of the control system

– asymptotic tracking of the reference.
The goal of optimal deterministic LQ tracking is to design a controller that enables
the control system to satisfy the above basic requirements and in addition the control
law that minimises the cost function

J =
∫ ∞

0

(
ϕũ2(t) + ψe2(t)

)
dt (11)

where e = w−y denotes the control error and ϕ > 0, ψ ≥ 0 are weighting coefficients.
The cost function (11) can be rewritten using Parseval’s theorem, to obtain an
expression in the complex domain

J =
1

2πj

∫ j∞

−j∞

(
ũ∗(s)ϕũ(s) + e∗(s)ψe(s)

)
ds. (12)

3.1. Classical LQ problem

Theorem 1. Define stable polynomials Dc and Df resulting from spectral factori-
sations

D∗cDc = ϕA∗F ∗AF + ψB∗B (13)
D∗fDf = A∗AH∗H (14)

then internal stability and solution of the deterministic LQ problem (11) is given by
the controller polynomials Xc, Yc calculated from a pair of Diophantine equations.
The solution exists if AF and B have no unstable common factors and is unique.

The feedback part of the controller results as a solution of the coupled bilateral
Diophantine equations:

ψB∗Df −AFV ∗ = D∗cYc (15)
ϕA∗F ∗Df +BV ∗ = D∗cXc. (16)

P r o o f . See [1]. 2

Corollary 1. If polynomials AF and B are coprime then the pair of Diophantine
equations (13), (14) is reduced to the implied Diophantine equation

AFXc +BYc = DcDf . (17)

P r o o f . See [2, 3]. 2
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3.2. LQ problem: Youla–Kučera parametrisation

Let us now follow another approach. Suppose that a stabilising controller that gives
rise to the closed-loop polynomialD (not necessarily LQ optimal or minimum degree)
has been found and let us study the use of the Youla–Kučera parametrisation.

There are infinitely many solutions of (10) that stabilise the plant. The nominal
solution (X,Y ) will serve only as a starting point. It is possible to search among
general solutions to minimise the cost (11). In our case, all such controllers (cf.
Figure 2) are given by the following theorem:

Theorem 2. Let the nominal model plant G = NG/DG, with NG and DG coprime
over RH∞, be stabilised by a controller C = NC/DC , with NC and DC coprime
over RH∞. Then the set of all stabilising controllers for the plant G is given by

C(S̄) =
Ns

Ds
=
NC +DGS̄

DC −NGS̄
, (18)

where

S̄ ∈ RH∞. (19)

P r o o f . See [6]. 2

Corollary 2. Let the nominal model plant G = NG/DG = B/A, with NG, DG,
B and A defined by (7), be stabilised by a controller C = NC/DC = Y/FX, with
NC , DC , Y and FX defined by (8). Then the set of all stabilising controllers for
the plant G is given by

C(S̄) ≡ C(S) =
Ys

FXs
=

Ym +AmFS

FXm −BmFS
=
Ym +AmFS

Xm −BmS

1
F
, (20)

where

S̄ = FS ∈ RH∞, Am = AM2, Bm = BM2, Xm = XM1 and Ym = YM1. (21)

Remark 2. Asymptotic tracking can be assured only if the denominator in (20)
is divisible by F . Therefore, S̄ = FS is chosen. The term 1/F represents the
precompensator that forms a part of the controller. From aspects of some following
procedures one may be formally separated from the controller.

We now present a solution to the deterministic LQ controller design problem in
the Youla–Kučera parametrisation framework starting from the plant model B/A
and any stabilising controller Y/FX, using the set of all stabilising controllers for
the plant, i. e. we show how to compute optimal S̄ that minimises (11).
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Fig. 2. Block diagram of the closed-loop system.

Theorem 3. Consider the minimisation of the cost function (11) with respect to
the Youla–Kučera parameter S̄ that is specified as a transfer function. Solve spectral
factorisation equations (13), (14) for stable Dc and Df and the bilateral Diophantine
equation with unknown Sn, V ∗

ψDfB
∗X − ϕDfA

∗F ∗Y = SnD
∗
c + V ∗D. (22)

The optimal Youla–Kučera parameter is then given as

S̄ = FS, S =
Sn

DcDf

M1

M2
∈ RH∞. (23)

Since Dc, Df , M2 are stable, it follows that S is a stable transfer function and fulfills
the condition from the Youla–Kučera parametrisation.

P r o o f . To begin the proof, the two signals (ũ, e) used in the cost function (11)
are derived using the equations (1), (3), (5), and (20) describing the closed-loop
system (so that the desired signals are functions of only the external signal w)

ũ =
Ym +AmFS

M1(AFX +BY )
AFw =

Ym +AmFS

M1D
AH (24)

e =
Xm −BmS

M1(AFX +BY )
AFw =

Xm −BmS

M1D
AH. (25)

Minimising equation (11) with respect to all stable S represents minimising the
following cost function in complex domain

J =
1

2πj

∫ j∞

−j∞

(
ũ∗(s)ϕũ(s) + e∗(s)ψe(s)

)
ds =

1
2πj

∫ j∞

−j∞
(ϕSũ + ψSe) ds (26)
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where Sũ and Se are spectral functions of the form

Sũ = ũ∗ũ =
(
Ym +AmFS

M1D
AH

)∗(
Ym +AmFS

M1D
AH

)

= S∗SA∗AH∗H
A∗mAmF

∗F
M∗

1D
∗M1D

+ S∗A∗AH∗H
A∗mF

∗Ym

M∗
1D

∗M1D

+SA∗AH∗H
AmFY

∗
m

M∗
1D

∗M1D
+A∗AH∗H

Y ∗mYm

M∗
1D

∗M1D
(27)

Se = e∗e =
(
Xm −BmS

M1D
AH

)∗(
Xm −BmS

M1D
AH

)

= S∗SA∗AH∗H
B∗mBm

M∗
1D

∗M1D
− S∗A∗AH∗H

B∗mXm

M∗
1D

∗M1D

−SA∗AH∗H
BmX

∗
m

M∗
1D

∗M1D
+A∗AH∗H

X∗
mXm

M∗
1D

∗M1D
. (28)

The direct minimisation of the cost function (26) with respect to a polynomial is a
difficult task. Therefore, we complete the terms to squares.

ϕSũ + ψSe =

= S∗S
A∗AH∗H
M∗

1D
∗M1D

(ϕA∗mAmF
∗F + ψB∗mBm)

+S∗
A∗AH∗H
M∗

1D
∗M1D

(ϕA∗mF
∗Ym − ψB∗mXm)

+S
A∗AH∗H
M∗

1D
∗M1D

(ϕAmFY
∗
m − ψBmX

∗
m) +

A∗AH∗H
M∗

1D
∗M1D

(ϕY ∗mYm + ψX∗
mXm)

= S∗S
A∗AH∗H

M∗
1M

∗
1M1M1

(ϕA∗AF ∗F + ψB∗B) + S∗
A∗AH∗H
M∗

1M
∗
1D

(ϕA∗F ∗Y − ψB∗X)

+S
A∗AH∗H
M1M1D∗

(ϕAFY ∗ − ψBX∗) +
A∗AH∗H
D∗D

(ϕY ∗Y + ψX∗X) . (29)

Let us now consider the term (29) and its first part containing S∗S

S1 =
A∗AH∗H

M∗
1M

∗
1M1M1

(ϕA∗AF ∗F + ψB∗B)

=
D∗fDf

M∗
1M

∗
1M1M1

(ϕA∗F ∗AF + ψB∗B) =
(
DfDc

M1M1

)∗(
DfDc

M1M1

)

where the stable polynomials Dc, Df are defined from two spectral factorisation
equations (13) and (14). The completing the squares approach gives thus

ϕSũ + ψSe =
(
DfDc

M1M1
S +

ϕDfA
∗F ∗Y

DD∗c
− ψDfB

∗X
DD∗c

)∗

×
(
DfDc

M1M1
S +

ϕDfA
∗F ∗Y

DD∗c
− ψDfB

∗X
DD∗c

)
+ yd (30)
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where yd is the rest that is independent of S.
For reaching the minimum value of J , clearly the way is to put the first term

equal to zero. From this equation, the optimal S can be determined. However, the
simple putting the brace equal to zero would not do the job: the resulting S would
not be stable. Therefore, we manipulate the second and third terms in brackets.
These can be separated in

ψDfB
∗X

DD∗c
− ϕDfA

∗F ∗Y
DD∗c

=
Sn

D
+
V ∗

D∗c
. (31)

The first term (Sn/D) is stable and the second one (V ∗/D∗c ) is unstable. Because
the second term is unstable and S is required be stable it vanishes in the cost. The
brace now reads

(
DfDc

M1M1
S − Sn

D

)
≡

(
DfDc

M1M1
S − Sn

M1M2

)
. (32)

Setting it to zero, S now reads

S =
Sn

DcDf
· M1

M2
. (33)

Because the denominator is stable, so is S as well. 2

Comparison of two approaches to LQ tracking problem is summarised by the
following corollary.

Corollary 3. If the classical LQ controller (Xc, Yc) is obtained from (15), (16)
and the parametrised LQ controller (Xs, Ys) is obtained from (20), (33) with stable
polynomials Dc and Df calculated from (13) and (14), then transfer functions of
these controllers are identical.

P r o o f . It is not difficult to check that
Yc

FXc
=

Ys

FXs
. (34)

Transfer function of the classical controller (Yc, Xc) can be obtained from equations
(15) and (16)

Yc

FXc
=

ψB∗Df −AFV ∗

F (ϕA∗F ∗Df +BV ∗)
.

Using equations (31) and (33), we can rewrite the Youla–Kučera parameter S as
follows

S =
Sn

DcDf
· M1

M2
=
ψDfB

∗X − ϕDfA
∗F ∗Y −DV ∗

D∗cDcDf
· M1

M2
. (35)

Putting (35) into (20) we have

Ys

FXs
=

YM1 +AM2FS

FXM1 −BM2FS
=

ψB∗Df −AFV ∗

F (ϕA∗F ∗Df +BV ∗)
2
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4. ILLUSTRATIVE EXAMPLE

In this section, an example is presented to to show all steps of the calculation in
both cases of LQ design. Let us consider the controlled system described by the
following transfer function

G(s) =
B(s)
A(s)

=
3

5s+ 1
.

The reference has been chosen as step change w(t) = 1(t). The weighting coefficients
ϕ and ψ in the cost function (11) have been selected as ϕ = 0.7, ψ = 0.8. Both
stable polynomials Dc(s) and Df (s) obtained from spectral factorisations (13), (14)
are of the form

Dc(s) = dc2s
2 + dc1s+ dc0

Df (s) = df1s+ df0

and their coefficients are given as

dc0 =
√
ψb20 ; dc2 =

√
ϕa2

1

dc1 =
√
ϕ+ 2dc2dc0

df1 = |a1| ; df0 = 1.

The resulting degrees of both polynomials of the controller transfer function are
deg Yc(s) = degXc(s) = 1. Their coefficients have been calculated from the poly-
nomial equation (17). The proper transfer function of the feedback classical LQ
controller (with precompensator) is given as

Cc(s) =
Yc(s)

F (s)Xc(s)
=

4.472s+ 0.894
4.183s2 + 4.811s

For the Youla–Kučera parametrised LQ controller a nominal controller that sta-
bilises the closed-loop is chosen as

C(s) =
Y (s)

F (s)X(s)
=

0.8133s+ 0.3333
0.2s2 + 0.56s

and yields the closed-loop pole polynomial of the form

D(s) = M1(s)M2(s)

where M1(s) = (1 + s) and M2(s) = (1 + s)2.
The polynomial Sn(s) is calculated from (22). This gives the optimal Youla–

Kučera transfer function S(s) as

S(s) =
Sn(s)

Df (s)Dc(s)
· M1(s)
M2(s)

=
−2.508s2 − 2.624s− 1.103

20.92s3 + 28.24s2 + 18.23s+ 2.683
· M1(s)
M2(s)

.
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Finally, calculation of the LQ controller Cs(s) yields

Cs(s) =
Ys(s)

F (s)Xs(s)
=

Y (s)M1(s) +A(s)M2(s)F (s)S(s)
F (s)X(s)M1(s)−B(s)M2(s)F (s)S(s)

with the same controller polynomials as in the first case.

5. CONCLUSIONS

In this paper, we have presented a procedure to compute deterministic LQ controller
from a stabilising controller using the Youla–Kučera parametrisation. The presented
controller design procedure ensures stability of the controlled system and asymptotic
tracking of the references most commonly used in practice. Two approaches have
been compared. The same result has been obtained in both cases. The proposed
approach can be applied in adaptive control framework.

(Received December 1, 2000.)
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