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ASYMPTOTIC RÉNYI DISTANCES
FOR RANDOM FIELDS:
PROPERTIES AND APPLICATIONS1

Martin Janžura

The approach introduced in Janžura [6] is further developed and the asymptotic Rényi
distances are studied mostly from the point of their monotonicity properties. The results
are applied to the problems of statistical inference.

1. INTRODUCTION

Explicit formulas for the asymptotic Rényi distances, as reasonable measures of
distance between two random processes or fields, can be obtained within the class
of Gibbs random fields (cf. [6]). Their properties in many aspects correspond to the
properties of the non-asymptotic Rényi distances which were defined in [9] as the
extension of the well-known I-divergence (Kullback–Leibler information – see also [7]
and [10]). The crucial problem is given by the existence of phase transitions, which
is an inherent property of random fields and which yields the break of continuity
or smoothness of some fundamental quantities. Therefore the notions have to be
treated carefully and the results cannot be generalized automatically.

In the present paper we deal with the asymptotic Rényi distances of fixed or-
der with varying parameters of the underlying Gibbs random fields. In Section 3
we define several functions of that type and study their properties (as well as the
properties of the inverse/pseudoinverse functions), mostly from the point of view of
monotonicity.

In Section 4 we first prove the appropriate version of the large deviations theorem
with the aid of techniques developed in [6] and the well-known result for the i.i.d.
variables (for an alternative proof see also [4]). The result deals essentially with the
quantities studied before, and it is applied to the problem of asymptotic behaviour
of the error probabilities in testing statistical hypotheses.

Finally, in Section 5 the asymptotic Rényi distances are applied to the problem of
parameter estimation. Following the principle of minimum distance estimation we

1Supported by the Grant Agency of the Academy of Sciences of the Czech Republic under Grant
A 1075601.
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introduce the estimates which minimize the asymptotic Rényi distances between the
empirical and the theoretical distributions to obtain a class of consistent estimators.

The paper is closely tied to the preceding paper [6], but in order to make it
self-contained, the basic definitions and results of [6] are recalled in the following
section.

2. PRELIMINARIES

2.1. Asymptotic Rényi distances

For a pair of probability measures P, Q on a measurable space (Ω,A) the Rényi
distance of order a ∈ R is defined by

Ra(P |Q) = (a− 1)−1 log
∫ (

dP

dQ

)a

dQ for a 6= 1

and

R1(P |Q) =
∫

log
dP

dQ
dP,

whenever the expression makes sense. Otherwise we set Ra(P |Q) = ∞.
Denoting by N the set of positive integers we suppose there exists a system of

sub-σ-algebras {An}n∈N satisfying An ↗ A for n →∞, and a system of constants
{Kn}n∈N with Kn →∞ for n →∞.

If the limit
Ra(P |Q) = lim

n→∞
(Kn)−1 Ra(Pn|Qn)

exists, where Pn = P/An and Qn = Q/An are the projections to the σ-algebra
An ⊂ A for every n ∈ N , we call it the asymptotic Rényi distance of order a ≥ 0.

For some basic properties of the Rényi distances and the asymptotic Rényi dis-
tances cf. [7]. Let us note that we could also consider a generalized sequence
(directed set, lattice) instead of N .

The above definition obviously depends on the choice of {An}n∈N and {Kn}n∈N

which are supposed fixed. On the other hand, as we shall see later, only some natural
choices give reasonable results.

2.2. Random fields

Let the measurable space (Ω,A) be given by the infinite-dimensional product

(X,B)T

where (X,B) is a fixed standard Borel space and T = Zd is the d-dimensional integer
lattice.

For every S ⊂ T let us denote by FS = Pr−1
S (BS) the sub-σ-algebra generated

by the projection function PrS : XT → XS , and by LS the set of all bounded
FS-measurable functions.
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Let
L =

⋃

S∈S
LS , S = {S ⊂ T ; |S| < ∞},

be the set of all local (cylinder) bounded measurable functions.
Let P denote the set of all probability measures on (X,B)T , which will be called

the random fields, and PΘ ⊂ P the subset of all shift-invariant (stationary) random
fields,

P ∈ PΘ iff P = P ◦ θ−1
t for every t ∈ T,

where θt is the shift defined by [θt(x)]s = xt+s for every t, s ∈ T, x ∈ XT . The set
P will be equipped with the topology of “local convergence” which is the coarsest
topology on P making all maps

P 7→
∫

f dP, f ∈ L,

continuous. By ‖ · ‖ we denote the usual supremum norm.
For the sake of simplicity we consider the system of cubes

{Vn}n∈N ,

where
Vn = {t ∈ T ; |ti| ≤ n for every i = 1, . . . , d} for every n ∈ N.

Thus, An = FVn and Pn = PVn is the restriction of P ∈ P to the σ-algebra FVn .
We set KVn = |Vn| = (2n + 1)d for every n.

Further, let us denote by ω a fixed reference probability measure on (X,B).

Proposition 2.1. For every P ∈ PΘ

R1(P |ωT ) = lim
n→∞

|Vn|−1 R1(PVn |ωT
Vn

)

exists and equals
sup
n∈N

|Vn|−1 R1(PVn |ωT
Vn

).

Moreover,
R1(·|ωT )

is affine and lower semicontinuous on PΘ, and its level sets
{R1(·|ωT ) ≤ c

}
, c ≥ 0,

are compact and sequentially compact.

P r o o f . Cf. Propositions 15.12, 15.16, 15.14 and 4.15 in [3]. 2

We could also understand the measure PVn on the σ-algebra BVn . Then we could
write ωVn instead of ωT

Vn
. Sometimes we shall not distinguish between these two

cases.
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2.3. Gibbs random fields

Let f ∈ L and P ∈ PΘ. Suppose there exist a constant cP (f) and a sequence
δ(Vn, P, f) → 0 for n →∞ such that

∣∣∣∣∣|Vn|−1

[
log

dPVn

dωT
Vn

−
∑

t∈Vn

f ◦ θt

]
+ cP (f)

∣∣∣∣∣ ≤ δ(Vn, P, f) a. s. [ωT ].

We write P ∈ G(f) and call P to be the (stationary) Gibbs random field with
respect to the potential f ∈ L. Let us summarize the main properties.

Proposition 2.2. The constant cP (f) does not depend on P since

cP (f) = c(f) = lim
n→∞

|Vn|−1c(Vn, f)

where

c(Vn, f) = log
∫

exp

{ ∑

t∈Vn

f ◦ θt

}
dωT for every n ∈ N.

The limit exists for every f ∈ L, and the function

c : L → R,

quoted as the pressure, is convex, continuous, and satisfies |c(f)| ≤ ‖f‖.

P r o o f . Cf. Proposition 4.1 and 5.2 in [6]. 2

Proposition 2.3. For every f ∈ L the set G(f) of (stationary) Gibbs random fields
is a non-void compact face (extremal subset) in PΘ. In particular, it is equivalently
given as

G(f) =
{

P ∈ PΘ;R1(P |ωT ) =
∫

f dP − c(f)
}

,

while for a general Q ∈ PΘ we have

R1(Q|ωT ) ≥
∫

f dQ− c(f).

P r o o f . Cf. Proposition 4.1, Corollary 6.7 and Theorem 7.1 in [6]. 2

If G(f0) = G(f1) we shall write f0 ≈ f1 and call the potentials equivalent. Some
characterization conditions can be found in Theorem 8.4 in [6]. Moreover, potentials
f0, f1 ∈ L are equivalent iff there is a constant c satisfying

ess sup[ωT ]

∣∣∣∣∣|Vn|−1
∑

t∈Vn

(f0 − f1) ◦ θt + c

∣∣∣∣∣ −→ 0 for n →∞.

From the above condition it also follows that f0 ≈ f1 iff
∫

(f0 − f1) dP + c = 0 for
every P ∈ PΘ.

Let us fix f0, f1 ∈ L. For every real a ∈ IR we denote fa = a f1 + (1− a) f0.
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Proposition 2.4. Let P 0 ∈ G(f0), P 1 ∈ G(f1). Then

Ra(P 1|P 0) = c(f0)− c(f1)− c(fa)− c(f1)
1− a

for a 6= 1,

and
R1(P 1|P 0) = c(f0)− c(f1) +

∫
(f1 − f0) dP 1.

P r o o f . Cf. Theorem 8.1 in [6]. 2

Let us fix f ∈ L. For V ∈ S and arbitrary A, B ⊂ T let us denote

qf (V ; A|B) =

∫
exp

{∑
t∈V f ◦ θt

}
dωA

∫
exp

{∑
t∈V f ◦ θt

}
dωB

.

For A ⊂ B we have a (conditional) density, and the corresponding measure will be
denoted as Qf (V ; A|B). In the particular case A = ∅, B = T we have

log qf (V ; ∅|T ) =
∑

t∈V

f ◦ θt − c(V, f).

We denote A−B = {a− b; a ∈ A, b ∈ B} for A, B ⊂ T .
For every n, `, k ∈ N with n > ` we denote

V (n, `, k) =
⋃

s∈Vk

[
V s

n−`

]

where V s
n−` = Vn−` + (2n + 1) s for every s ∈ Vk.

Note that V (n, `, 0) = Vn−`, V (n, 0, k) = V2kn+n+k, and |V (n, `, k)| = |Vn−`| ·
|Vk|.

For S ∈ S we denote `(S) = 2 max
s∈S

‖s‖ + 1 with ‖s‖ =
∑d

i=1 |si|. Let us also

recall that diam(S) = max
s1,s2∈S

‖s1 − s2‖ < `(S).

3. MONOTONICITY PROPERTIES OF THE ASYMPTOTIC RÉNYI
DISTANCES

Let f0, f1 ∈ L be a pair of non-equivalent potentials, let again P 0 ∈ G(f0), P 1 ∈
G(f1). Moreover, for an arbitrary fixed potential g ∈ L we denote gb = g+b(f1−f0),
and suppose some fixed Qb

g ∈ G(gb) for every b ∈ IR.
For every Q ∈ PΘ (whenever the expressions make sense) introduce the following

functions

H(Q) =
∫

(f1 − f0) dQ

I1
a(Q) = Ra(Q|P 0)−Ra(Q|P 1)

I2
a(Q) = Ra(P 0|Q)−Ra(P 1|Q)

J1
a(Q) = Ra(Q|Q0

g)

J2
a(Q) = Ra(Q0

g|Q).
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(In the notation J i
a, i = 1, 2 we omit the dependence on the fixed g. If necessary we

shall write J i,g
a .) In particular we denote

Hg(b) = H(Qb
g)

Ii
a,g(b) = Ii

a(Qb
g) for i = 1, 2

J i
a,g(b) = J i

a(Qb
g) for i = 1, 2.

We shall see that all the above defined functions obey important monotonicity
properties. The proofs are mostly based on the following straightforward but crucial
inequality.

Lemma 3.1. For arbitrary f, g ∈ L and Q ∈ G(g) it holds

c(f)− c(g) ≥
∫

(f − g) dQ.

P r o o f . For every P ∈ G(f) we obviously have

0 ≤ R1(Q|P ) = c(f)− c(g)−
∫

(f − g) dQ. 2

Proposition 3.2.

i) Hg(b) is increasing.

ii) I1
a,g(b) and I2

a,g(b) are increasing if a > 0 and decreasing if a < 0.

iii) J1
a,g(b) and J2

a,g(b) are decreasing on the negative half-line and increasing on
the positive half-line for a > 0, and vice-versa for a < 0.

P r o o f . i) For every b0, b1 ∈ R, b0 6= b1, we have

(b0 − b1) [Hg(b0)−Hg(b1)] = R1(Qb0

g |Qb1

g ) +R1(Qb1

g |Qb0

g ) > 0.

ii) For a = 1 we observe

I1
1,g(b

0)− I1
1,g(b

1) = Hg(b0)−Hg(b1).

With the aid of Lemma 3.1, for a > 1 we have

I1
a,g(b

0)− I1
a,g(b

1) =
1

a− 1

[
c(f0 + a(gb0 − f0))− c(f1 + a(gb0 − f1))

−c(f0 + a(gb1 − f0)) + c(f1 + a(gb1 − f1))
]

≥ a(b0 − b1)
a− 1

[
Hag+(1−a) f1(ab1 + a− 1)−Hag+(1−a) f1(ab0)

]
> 0
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if 0 < b0 − b1 < a−1
a . Similarly, for a < 1 we obtain

I1
a,g(b

0)− I1
a,g(b

1) ≥ a(b1 − b0)
1− a

[
Hag+(1−a) f1(ab0 + a− 1)−Hag+(1−a) f1(ab1)

]

> 0 if a < 0 and 0 < b0 − b1 <
1− a

−a

or if a ∈ (0, 1) and 0 < b0 − b1 <
1− a

a
.

For I2
a,g, a 6= 1, we can use the relation

I2
a,g(b) =

a

1− a
I1
1−a,g(b),

while for a = 1 we have simply

I2
1,g(b

0)− I2
1,g(b

1) = (b0 − b1) [Hf0(1)−Hf0(0)] .

iii) Again with the aid of Lemma 3.1 we have for a > 1

J1
a,g(b

0)− J2
a,g(b

1) =
a

a− 1
(b0 − b1)

[
Hg(ab1)−Hg(b0)

]
> 0

if b1 < b0 < ab1 or ab1 < b0 < b1.
for a = 1 we have directly

J1
1,g(b

0)− J1
1,g(b

1) ≥ b1(Hg(b0)−Hg(b1)) > 0 if b1(b0 − b1) > 0.

Further, for a ∈ (0, 1) we obtain

J1
a,g(b

0)− J1
a,g(b

1) ≥ a

1− a
(b1 − b0)

[
Hg(ab0)−Hg(b1)

]
> 0

if ab0 > b1 > b0 or ab0 < b1 < b0,

and, finally, for a < 0 it holds

J1
a,g(b

0)− J1
a,g(b

1) ≥ a

1− a
(b1 − b0)

[
Hg(ab0)−Hg(b0)

]
> 0

if 0 > b0 > b1 or 0 < b0 < b1.

For J2
a,g, a 6= 1, we can again use the relation

J2
a,g(b) =

a

1− a
J1

1−a,g(b),

while for a = 1 we have

J2
1,g(b

0)− J2
1,g(b

1) ≥ (b0 − b1)
[
Hg(b1)−Hg(0)

]
> 0

if (b0 − b1) · b1 > 0. 2
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Let us recall that the above studied functions are defined through arbitrary fixed
Qb

g ∈ G(gb) for every b ∈ IR. On the other hand only the functions

Hg, I1
1,g = const + Hg, and J1

1,g(b) = const + b ·Hg(b)− c(gb)

actually depend on the particular choice of Qb
g. All the other functions are in fact

continuous transforms of the potential gb, and therefore there are continuous func-
tions of b, strictly monotonous on the open real line (half-line). Thus, we may
directly define the inverse mappings

(Ii
a,g)

− = (Ii
a,g)

−1 : R → R

for i = 1, a 6= 0, 1; and i = 2, a 6= 0

(J i
a,g)

− = (J i
a,g)

−1 : R+ → R (resp. R− → R)

for i = 1, a 6= 0, 1; and i = 2, a 6= 0.
For the remaining functions let us define

H−
g (γ) = b if H(Q̃)b

g = γ for some Q̃b
g ∈ G(gb)

(I1
1,g)

−(γ) = b if I1
1 (Q̃b

g) = γ for some Q̃b
g ∈ G(gb)

and
(J1

1,g)
−(γ) = b if J1

1 (Q̃b
g) = γ for some Q̃b

g ∈ G(gb)

Theorem 3.3. All the functions H−
g , (Ii

a,g)−, (J i
a,g)− for i = 1, 2, a 6= 0, are

well-defined on open intervals, continuous and monotonous.

P r o o f . As it is indicated above, with the except of H−
g , (I1,g)−, (J1,g)−, the

proof is straightforward.
Let us prove the claim for H−

g .
The proof for I1

a,g(b) = const + Hg(b) and J1
a,g(b) = bHg(b) − c(gb) + const is

analogical.
With the aid of Proposition 3.2, for

γ ∈
(

inf
b∈R

Hg(b), sup
b∈R

Hg(b)
)

there exists bγ such that

Hg(b) ≤ γ for every b < bγ

and
Hg(b) ≥ γ for every b > bγ .

Therefore, by Proposition 7.2 in [6] there exist

b1
n → (bγ)− with lim Q

b1n
g = Q−

γ ∈ G(gbγ )
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and
b2
n → (bγ)+ with lim Q

b2n
g = Q+

γ ∈ G(gbγ ).

If H(Q+
γ ) > H(Q−γ ), we set

Qγ = ν Q−
γ + (1− ν)Q+

γ ∈ G(gbγ )

with ν = H(Q+
γ )−γ

H(Q+
γ )−H(Q−γ )

to obtain H(Qγ) = γ, and consequently H−
g (γ) = bγ .

Further, let γ0 = H(Qb0

g ), Qb0

g ∈ G(gb0), and ε > 0. We set

δ = min
Q∈G(gb0−ε)∪G(gb0+ε)

|H(Q)−H(Qb0

g )| > 0.

Thus, for |γ − γ0| < δ we obtain |H−
g (γ)−H−

g (γ0)| < ε by monotonicity of Hg. 2

From the above results we can conclude that the phase transitions (i. e. |G(gb)| >
1) cause only technical but not essential problems. We must only deal in fact with
“multifunctions” like

H̃g : b 7→ {H(Q); Q ∈ G(gb)}
in Proposition 3.2, and the inverse transforms in Theorem 3.3 may not be strictly
monotonous.

The result for J2
a,g can be for a ≥ 1 even strengthened in the following sense.

Proposition 3.4. Suppose b0, b1 ∈ R, a ∈ R, and a = 1 + (a − 1) b0

b1 . If b0

b1 > 1
then

J2
a,g(b

0) >
b0

b1
J2

a,g(b
1).

P r o o f . We may directly verify

Ra(Q0
g|Qb0

g )− b0

b1
Ra(Q0

g|Qb1

g )

= R1(Qb1

g |Qb0

g ) +
(

b0

b1
− 1

)
R1(Qb1

g |Q0
g) > 0 whenever

b0

b1
> 1. 2

Corollary 3.5. Let a ≥ 1 and b > 1. Then a = 1 + (a− 1) b ≥ 1 and
J2

a,g(b) > b J2
1,g(1) →∞ for b →∞.

P r o o f . The statement follows straightforward from the preceding proposition
with the aid of Theorem 8.3 in [6]. 2
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4. APPLICATION TO TESTING STATISTICAL HYPOTHESES

Suppose f0, f1, g, h ∈ L with non-equivalent f0, f1. Let us fix some P 0 ∈ G(f0),
P 1 ∈ G(f1). For the sake of simplicity we may assume

f0, f1, g, h ∈ LS with `(S) = `.

We shall study the asymptotic behaviour of the error probability

Q0
g(C(γVn

))

of the test given by the critical region

C(γVn
) =

{
dP 1

Vn

dP 0
Vn

> eγVn

}
, γVn

∈ R for every n ∈ N,

for testing the simple statistical hypothesis

H0 : Q = Q0
g ∈ G(g)

against the alternative
H1 : Q = Q0

h ∈ G(h).

The main result is contained in the following theorem.

Theorem 4.1. Let |Vn|−1γVn −→ γ0 = I1
1 (Qa0

g ) with some Qa0

g ∈ G(ga0
), a0 > 0.

Then
lim

n→∞
|Vn|−1 log Q0

g(C(γVn)) = −J1
1 (Qa0

g ) < 0.

P r o o f . We may write for every a ≥ 0

|Vn|−1 log Q0
g(C(γVn)) = |Vn|−1 log QO

g

(
1 ≤

(
e−γVn

dP 1
Vn

dP 0
Vn

)a
)

≤ −|Vn|−1 γVna + |Vn|−1 log
∫ (

dP 1
Vn

dP 0
Vn

)a

dQ0
g

−→ −γ0a + c(ga)− c(g0)− a(c(f1)− c(f0))

= R1

(
Qa0

g |Qa
g

)
− J1

1 (Qa0

0 )

directly from definitions. Taking minimum over a ≥ 0, we obtain −J1
1 (Qa0

0 ) as the
upper bound, and −J1

1 (Qa0
0 ) < 0 since f0, f1 are non-equivalent. The lower bound

is much more complicated and will be proved with the aid of the following sequence
of results. 2
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Lemma 4.2.
i) Suppose V (n, 0, km) ⊂ Vm ⊂ V (n, 0, km + 1). Then it holds

{
dP 1

Vm

dP 0
Vm

> eγVm

}
⊃





∑

t∈V (n,`,km)

(f1 − f0) ◦ θt > γ̃n
m





where

γ̃n
m = γVm + |Vm|

{
c(f1)− c(f0) + δ(Vm, P 0, f0) + δ(Vm, P 1, f1)

+
(

1− |Vn−`| |Vkm
|

|Vn| |Vkm+1|
)
‖f1 − f0‖

}
.

ii) For Q̃g
n,` =⊗s∈T Q̃g,s

n,` with Q̃g,s
n,` = Qg(V s

n ; ∅|V s
n−`) it holds

d[Q0
g]V (n,0,k)

d[Q̃g
n,`]V (n,0,k)

≥ exp
{
−|Vn| |Vk|

{
4‖g‖

(
1− |Vn−2`|

|Vn|
)

+ δ(V (n, 0, k), Q0
g, g)

}}
.

P r o o f . i) The assertion follows from the definition of Gibbs random fields and
an obvious bound.

ii) Again by definition we have

log[dQ0
g]V (n,0,k) ≥

∑

t∈V (n,0,k)

g ◦ θt − |Vn| |Vk|
[
c(g) + δ(V (n, 0, k), Q0

g, g)
]

and

log[dQ̃g
n,`]V (n,0,k) =

∑

t∈V (n,0,k)

g ◦ θt − |Vk| c(Vn, g)−
∑

s∈Vk

log qg(V s
n ; V s

n−`|T ),

where the latter term can be bounded with the aid of Lemma 6.2 ii) in [6] by

|Vk| |Vn|
(
2‖g‖ (1− |Vn|−1 |Vn−2`|)

)
.

Since by Proposition 5.2 in [6] we have

|c(g)− |Vn|−1 c(Vn, g)| ≤ 2‖g‖ (
1− |Vn|−1 |Vn−`|

)
,

we obtain the result by combining the bounds. 2

Proposition 4.3. For every n > 2` it holds

lim inf
m→∞

|Vm|−1 log Q0
g (C(γVm)) ≥ min

a≥0
(Sn

` (a)),
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whenever the minimum is attained, where

Sn
` (a) = |Vn|−1 log

∫
exp



a

∑

t∈Vn−`

(f1 − f0) ◦ θt



 dQ̃g,0

n,`

−a
{
γ0 + c(f1)− c(f0) + (1− |Vn|−1 |Vn−`|) ‖f1 − f0‖}

−4‖g‖ (1− |Vn|−1 |Vn−2`|).

P r o o f . Let us denote

Fn,`
s =

∑

t∈V s
n−`

(f1 − f0) ◦ θt ∈ FV s
n
.

Then with the aid and notation of Lemma 4.2 we observe

|Vm|−1 log Q0
g(C(γVm

)) ≥ |Vm|−1 log[Q̃g
n,`]V (n,0,km)


 ∑

s∈Vkm

Fn,`
s ≥ γ̃n

m




−|Vm|−1
{|Vn| |Vkm |

{
4‖g‖ (1− |Vn|−1 |Vn−2`|) + δ(Vm, Q0

g, g)
}}

.

Since under the product measure

[Q̃g
n,`]V (n,0,km) =⊗s∈Vkm

Q̃g,s
n,`

the variables {Fn,`
s }s∈Vkm

are independent, we obtain the result with the aid of the
well-known Cramér large deviations theorem for i.i.d. random variables (cf. e. g.
Section 2.2 in [2]). 2

Lemma 4.4. It holds
∣∣∣Sn

` (a)−R1(Qa0

g |Qa
g) + R1(Qa0

g |Q0
g)

∣∣∣
≤ (

1− |Vn|−1 |Vn−2`|
) (

10‖g‖+ 2|a| ‖f1 − f0‖) = En,`(a).

P r o o f . By definition we have

Sn
` (a)−R1(Qa0

g |Qa
g) + R1(Ga0

q |Q0
g)

= −4‖g‖ (1− |Vn|−1 |Vn−2`|)− a(1− |Vn|−1 |Vn−`|) ‖f1 − f0‖

+


|Vn|−1 log

∫
exp



a

∑

t∈Vn−`

(f1 − f0) ◦ θt



 dQ̃g,0

n,` − c(ga) + c(g)


 .

Since by Lemma 6.1 and Lemma 6.2 ii) in [6] we have
∣∣log qg(Vn; ∅|Vn−`)− log qg(Vn−`;∅|T )

∣∣ ≤ 2‖g‖ (|Vn| − |Vn−2`|),
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the latter term above can be bounded by

2‖g‖ (1− |Vn|−1 |Vn−2`|) +
∣∣|Vn|−1[c(Vn−`, g

a)− c(Vn−`, g)]− c(ga) + c(g)
∣∣

≤ 2‖g‖ (1− |Vn|−1 |Vn−2`|) + |Vn|−1 |Vn−`| (2‖ga‖+ 2‖g‖) (1− |Vn−`|−1 |Vn−2`|)
by Proposition 5.2 in [6].

Thus, putting all the terms together and simplifying with the aid of the obvious
inequality |Vn−2`| < |Vn−`| < |Vn| we obtain the final bound. 2

Proposition 4.5. Let an ∈ argmina≥0S
n
` (a). Then

an → a0 as n →∞.

P r o o f . Let us denote

S(a) = R1(Qa0

g |Qa
g)−R1(Qa0

g |Q0
g|),

and observe
R1(Qa0

g |Qa
g) = J2

1,ga0 (a− a0).

Therefore, by Proposition 3.4 and Corollary 3.5, we have

S(a)− S(a0) = J2
1,ga0 (a− a0) >

|a− a0|
ε

δε for |a− a0| > ε > 0

where
δε = min

(
J2

1,ga0 (ε), J2
1,ga0 (−ε)

)
> 0.

Then we obtain
Sn

` (a0) < S(a0) + En,`(a0)

while for |a− a0| > ε we have

Sn
` (a) > S(a)− En,`(a) > S(a0) +

|a− a0| δε

ε
− En,`(a).

Let us observe

En,`(a) ≤ En,`(a0) +
|a− a0|

ε
En,`(ε).

Therefore suppose n to be large enough to satisfy

2En,`(a0) + En,`(ε) < δε.

Then it holds
Sn

` (a) > Sn
` (a0) for |a− a0| > ε

and, consequently, |an − a0| ≤ ε which proves the claim. 2

Remark 4.6. The above result can be also deduced from the convex property of
every function Sn

` and the pointwise convergence proved in Lemma 4.4.
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Corollary 4.7. It holds

lim
n→∞

min
a≥0

{Sn
` (a)} = min

a≥0
S(a) = −J1

1 (Qa0

g ).

P r o o f . Directly by Lemma 4.4 and Proposition 4.5. 2

Remark 4.8. Let us suppose (with the notation of Theorem 4.1)

γ0 < I1
1 (Qa

g) for every a > 0, Qa
g ∈ G(ga).

Thus we have by Theorem 4.1

0 ≥ lim inf
n→∞

|Vn|−1 log Q0
g(C(γVn

)) ≥ −J1
1 (Qa

g)

for every a > 0, Qa
g ∈ G(ga).

By Proposition 7.2 in [6] we have a sequence

ak → 0 and Qk ∈ G(gak) with J1
1 (Qk) → J1

1 (Q0) = 0

for some Q0 ∈ G(g0).
Thus for such γ0 we obtain the zero rate. 2

Now we can formulate the main result of the asymptotic behaviour of the error
probabilities.

Theorem 4.9. For every

γ0 ∈
(

max
Q∈G(g)

I1
1 (Q), min

Q∈G(h)
I1
1 (Q)

)

there exist
Qa0

g ∈ G(ga0
), Qb0

h ∈ G(hb0), a0 > 0 > b0,

such that
γ0 = I1

1 (Qa0

g ) = I1
1 (Qb0

h ),

and for every |Vn|−1 γn → γ0 it holds

lim
n→∞

|Vn|−1 log Q0
g (C(γVn)) = −J1,g

1 (Qa0

g ) < 0

and
lim

n→∞
|Vn|−1 log Q0

h (C(γVn)c) = −J1,h
1 (Qb0

h ) < 0.

P r o o f . It is sufficient to prove the existence of Qa0

g and Qb0

h with the above
properties. Then the rest of the proof follows from Theorem 4.1.
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For every f ∈ L let us denote

I+(f) = max
Q∈G(f)

I1
1 (Q), I−(f) = min

Q∈G(f)
I1
1 (Q).

Thus, we have to prove that the interval (I+(g), I−(h)) belongs to the definition
range of both

(I1
1,g)

− and (I1
1,h)−.

Due to the monotonicity and continuity of the above functions, proved in Theo-
rem 3.3, and since

I1
1 (Qa

g)− I1
1 (Qb

h) = H(Qa
g)−H(Qb

h),

it is sufficient to prove

lim
a→∞

[
H(Qa

g)−H(Qb
h)

] ≥ 0 for fixed b

and
lim

b→−∞
[
H(Qa

g)−H(Qb
h)

] ≥ 0 for fixed a.

For a− b > 0 we observe

0 ≤ R1(Qa
g |Qb

h) + R1(Qb
h|Qa

g)
a− b

= H(Qa
g)−H(Qb

h) +

∫
(g − h) (dQa

g − dQb
h)

a− b

where the latter term vanishes as either a →∞ and b → −∞.

Remark 4.10. From the above proof it is clear that the definition ranges of (I1
1,g)

−

and (I1
1,h)− coincide for every g, h ∈ L. This common range I depends only on the

potentials f0, f1.
The validity of the above theorem can be extended to every γ0 ∈ I, but at least

one of the rates would be zero.

Remark 4.11. By the famous Neyman–Pearson lemma it is well-known that the
optimal tests are based on the likelihood ratios, i.e. in our case we should set f0 = g
and f1 = h. Then it can be proved that at least one of the rates is strictly better
to compare with the general “unfitted” testing procedure stated at the beginning of
this section (cf. e. g. [5]).

5. APPLICATION TO PARAMETER ESTIMATION

Suppose that g1, . . . , gK ∈ L is a fixed collection of mutually non-equivalent poten-
tials, and denote

Γ = Lin(g1, . . . , gK).

Further let us consider some f ∈ L. We shall interpret Γ as a parameter class and f
as the “empirical” potential, based on some given data (we shall discuss the proper
meaning later – cf. Remark 5.3).
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Let us choose some P f ∈ G(f), and Qg ∈ G(g) for every g ∈ Γ. Then, for fixed
a > 0, we may define the “estimate” gf

a simply as the projection

gf
a ∈ argming∈ΓRa(P f |Qg)

whenever it exists.

Theorem 5.1. i) If a > 1 then the estimate gf
a exists for every f ∈ L.

If ‖fn − f‖ −→ 0 as n →∞ then

‖gfn
a − gf

a‖ −→ 0.

ii) The estimate gf
1 exists for every f ∈ L and P f ∈ G(f). If ‖fn − f‖ −→ 0 as

n →∞ then
min

gf
1∈Mf

‖gfn

1 − gf
1 ‖ −→ 0

where
Mf =

{
argming∈ΓR1(P f |Qg); P f ∈ G(f)

}
.

If f ∈ Γ then Mf = {f}.
iii) If a ∈ (0, 1) then the estimate gf

a exists for every f from some open neighbor-
hood ∂Γ of Γ in L. If ‖fn − f‖ −→ 0 as n →∞ with f ∈ ∂Γ then

‖gfn
a − gf

a‖ −→ 0.

P r o o f . i) Let us fix some g0 ∈ Γ. Then

Ra(P f |Qg0
) ≤ 2‖f − g0‖

by Theorem 8.3 in [6].
By Proposition 3.4 and Corollary 3.5 we obtain, providing ‖f − g‖ > 1,

Ra(P f |Qg) > ‖f − g‖R1

(
P f |Qf+ g−f

‖g−f‖
)

> ‖f − g‖ · δ

where
δ = min

h∈Γf ,‖h‖=1
R1(P f |Qf+h) ∈ (0, 2)

and Γf = Lin(f, g1, . . . , gK). (We assume f, g1, . . . , gN to be mutually non-equivalent
since otherwise we would have directly f ≈ g∗ for some g∗ ∈ Γ, and consequently
gf

a = g∗.)
Thus, for every g ∈ Γ satisfying ‖f − g‖ > max

(
1, 2‖f−g0‖

δ

)
= β we have

Ra(P f |Qg) > Ra(P f |Qg0
),

and the minimum is attained in the set

{g ∈ Γ; ‖g − f‖ ≤ β} .
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Thus the existence of the estimate is proved, and the consistency

gfn
a −→ gf

a

follows by the uniform convergence

∣∣Ra(P fn |Qg)−Ra(P f |Qg)
∣∣ ≤ 2a

a− 1
‖fn − f‖.

ii) For a = 1 the existence follows from Corollary 3.5 in the same way as above.
By Proposition 7.2 in [6] we can find a subsequence

{
Pn(j) ∈ G(fn(j))

}
j∈N

where
Pn(j) −→ P 0 and R1(Pn(j)|ωT ) −→ R1(P 0|ωT )

for some P 0 ∈ G(f).
Let g0 = argming∈ΓR1(P 0|Qg). Then for ‖g − g0‖ > ε it holds

R1(P 0|Qg)−R1(P 0|Qg0
) > cε‖g − g0‖

with some cε > 0.
Thus

R1(Pn(j)|Qg0
) ≤ R1(P 0|Qg0

) + δj ,

where

δj =
∣∣∣∣
∫

g0(dPn(j) − dP 0)
∣∣∣∣ +

∣∣∣R1(Pn(j)|ωT )−R1(P 0|ωT )
∣∣∣

and, at the same time, for ‖g − g0‖ > ε it holds

R1(Pn(j)|Qg) ≥ R1(P 0|Qg0
) + cε‖g − g0‖ − δj − γj(g − g0),

where γj(g − g0) =
∣∣∫ (g − g0) (dPn(j) − dP )

∣∣.
Obviously, there exists jε large enough to satisfy

2δj + γj(g − g0) < cε‖g − g0‖ for every j ≥ jε,

and, consequently, ‖gn(j)−g0‖ −→ 0 as j →∞. Since we can find such a subsequence
{Pn(j)}j∈N with g0 ∈ Mf in every subsequence of {P fn}n∈N , we conclude the
claimed convergence.

If f ∈ Γ we have obviously f = argming∈ΓR1(P f |Qg) for every P f ∈ G(f), and
therefore Mf = {f}.

iii) For a ∈ (0, 1) we cannot apply Proposition 3.4.
Thus, let us fix some g0 ∈ Γ and denote

δL = min
g∈Γ, ‖g−g0‖≥L

Ra(Qg0 |Qg)



524 M. JANŽURA

for some large L > 0.
Let f ∈ L satisfy ‖f − g0‖ ≤ ε, where ε < δL

1−a
2 . Then

Ra(P f |Qg0
) ≤ 2‖f − g0‖ ≤ 2ε

and ∣∣∣Ra(P f |Qg)−Ra(Qg0 |Qg)
∣∣∣ ≤ 2a

1− a
‖f − g0‖ ≤ 2aε

1− a
.

Therefore

Ra(P f |Qg) ≥ Ra(Qg0 |Qg)− 2aε

1− a
≥ δL − 2aε

1− a
> Ra(P f |Qg0

)

if ‖g − g0‖ ≥ L.
Thus the existence is proved and the consistency follows similarly as for a > 1.2

Remark 5.2. It is obvious that whenever the estimate in the preceding theorem
exists it can be also obtained by solving the system of equations

∫
gi dQg =

∫
gi dP af+(1−a) g for i = 1, . . . , K

for Qg ∈ G(g) and some P af+(1−a) g ∈ G(af + (1 − a) g). This equations can be
formally used for the numerical solution with the aid of the “stochastic gradient
method” (cf. [12] for details).

Remark 5.3. The empirical potential f could be hardly obtained by any non-
parametric estimate. Thus we shall calculate it as a parametric estimate. We can
realize that for a = 1 the above defined estimate depends on the data only through
the “empirical integrals” ∫

gi dP f

which can be substituted with the empirical mean
∫

gi dP f :=
1
|Vn|

∑

t∈Vn

gi ◦ θt

where Vn ⊂ Zd is an observation region. Then the potential f can be obtained again
with the stochastic gradient method (see [12]).

Let us emphasize that the empirical potential can be in such a way estimated
from a much large space Γ0 ⊃ Γ. Thus the estimate will be usually performed in
two steps. First, we find f ∈ Γ0 as the a = 1 estimate with the aid of the empirical
means, and the final estimate is given as gf

a ∈ Γ with arbitrary a > 0.

(Received March 13, 1998.)
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