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ROBUST STABILITY OF NON LINEAR
TIME VARYING SYSTEMS1,2

Ezra Zeheb

Systems with time-varying non-linearity confined to a given sector (Luré type) and a
linear part with uncertainty formulated by an interval transfer function, are considered.

Sufficient conditions satisfying the Popov criterion for stability, which are computation-
ally tractable, are derived.

The problem of checking the Popov criterion for an infinite set of systems, is reduced to
that of checking the Popov criterion for a finite number of fixed coefficient systems, each
in a prescribed frequency interval.

Illustrative numerical examples are provided.

1. INTRODUCTION

A large group of “real life” engineering systems, which are non-linear and (possibly)
time-varying, can be classified as Luré type systems. This class of systems will be
defined formally in the next section, but it is a well known one and extensively
treated in the literature for many years. Essentially, the (single input single output
case) system is composed of a single non-linear and (possibly) time varying element,
in cascade, or in the feedback path, of a linear system.

The non-linear element, although constrained by some conditions, is of a very
broad nature and allows a large class of non-linearities, so that uncertainties and
ignorance about the exact type of non-linearity are taken care of, and do not im-
pair stability analysis of the system. On the other hand, with a few exceptions
[2] – [5], [10], [11] the linear part of the system is assumed, in the vast majority of
publications on the subject, to be exactly known and precisely modeled by its trans-
fer function or state-space description, with no uncertainties. This is obviously not a
realistic assumption, even if the model is precise with no neglected dynamics, since
the physical parameters of the system are never known exactly and, in addition,
they are subject to changes.

In [3], [5], [10], [11] continuous-time systems are considered, whereas in [2], [4]
discrete-time systems are considered. In [10], [11] parameter uncertainties in the
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linear part of the system are assumed, and sufficient conditions for the existence
of the Popov stability criterion [8] are derived. Note that the Popov stability cri-
terion is itself only a sufficient condition for stability, but not a necessary one. In
[3], parameters uncertainties in the linear part of the system are again assumed,
and a necessary and sufficient algorithm is derived for the existence of the Popov
stability criterion. The price is in the computational complexity of the algorithm.
The results in [5] pertain to uncertainty in the frequency response of the linear part
of the system, which is a non-parametric form of uncertainty.

In this paper, we consider the parametric form of uncertainty. We use some
recent results [7] on the tight envelopes of the frequency response of a family of
interval coefficients transfer function of a continuous-time system. These results
allow us to obtain sufficient conditions satisfying the Popov criterion, which are
computationally tractable. The computational tractability is the main advantage
of the present approach relative to previous work. In fact, checking stability of the
entire (infinite) family of systems, is reduced to checking the Popov condition for
a finite number of systems, each with a fixed coefficient linear part, and each in a
prescribed frequency interval. Some of these results are described in [12].

The structure of the paper is as follows: In Section 2, some preliminary derivations
are presented and the problem is stated formally. The main results are presented in
Section 3, illustrative numerical examples are provided in Section 4, and the paper
is concluded in Section 5.

2. PRELIMINARIES AND STATEMENT OF THE PROBLEM

Consider a single-input single-output Luré type continuous-time system, as described
in Figure 1 and formulated by its state space representation:

ẋ = Ax + bF (y, t), y = cx (1)

where
x = x(t) ∈ IRn , A ∈ IRn×n , b ∈ IRn×1 , y ∈ IR , c ∈ IR1×n (2)

and F is a non-linear (possibly time-variable) continuous function from IR to IR
satisfying the following sector conditions:

F (0, t) = 0 , 0 < K1 <
F (y, t)

y
< K2 < ∞ for y 6= 0. (3)

Fig. 1. Luré type continuous-time (possibly time-variable) system.
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The relationship between the state space representation and the transfer function
G(s) of the linear part of the system, from input z to output r = −y, is given by

G(s) = c(sI −A)−1b. (4)

If the system is not time-variable, i. e. F (y, t) ≡ F (y), then it was shown by Popov
[8] that such a system is stable (the equilibrium x = 0 is asymptotically stable in the
large) for every non-linearity as in (3), if the linear part of the system (the transfer
function G(s) or the matrix A) is stable and, in addition, there exists a real number
q such that

1
K2 −K1

+ Re [(1 + jωq) G(jω)] +
K2

K2 + K1
|G(jω)|2 > 0 ∀ ω ≥ 0. (5)

The time-variable case has been considered in [9], where it was shown that the
system is stable for every non-linearity as in (3), if the Popov criterion is satisfied
with q = 0. It can be verified that imposing q = 0 in (5) yields the condition

Re
1 + K2G(jω)
1 + K1G(jω)

> 0 ∀ ω ≥ 0. (6)

Suppose now that the uncertainty is not only with regard to the non-linear part of
the system, expressed in (3), but there is also parametric uncertainty with regard to
the linear part of the system namely, the numerator and denominator of the rational
transfer function G(s) are interval polynomials. In other words, their coefficients
are not known exactly, but only known to take on values in given intervals. It will
be shown in the next section how to check the above stability conditions, in this
uncertainty case.

3. CHECKING STABILITY IN THE CASE OF UNCERTAINTY

Let
G(s) =

A(s)
B(s)

(7)

where

A(s) =
m∑

i=0

ais
i , B(s) =

∑̀

j=0

bjs
j (8.1)

ai ≤ ai ≤ ai (i = 0, . . . , m) , bj ≤ bj ≤ bj (j = 0, . . . , `). (8.2)

The first stability condition is to ensure the stability of the family of linear systems
(7), (8). To this end, it is only necessary (and sufficient) to check that the following
four Kharitonov [6] polynomials with fixed coefficients have all their zeros in the
open left half complex plane:

B1(s) = b0 + b1s + b2s
2 + b3s

3 + b4s
4 + · · · (9)

B2(s) = b0 + b1s + b2s
2 + b3s

3 + b4s
4 + · · ·

B3(s) = b0 + b1s + b2s
2 + b3s

3 + b4s
4 + · · ·

B4(s) = b0 + b1s + b2s
2 + b3s

3 + b4s
4 + · · ·
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Turn now to the second stability condition, namely (6). It can be verified that
its geometrical interpretation is that there is no intersection between the locus of
G(jω) and a circle whose center is at (d, 0) and whose radius is r, where

d = −1
2

(
1

K1
+

1
K2

)
, r =

1
2

(
1

K1
− 1

K2

)
. (10)

Thus, condition (6) can be re-written as

| − d + G(jω)| > r ∀ ω ≥ 0. (11)

Substituting (7) in (11) yields

|A(jω)− dB(jω)|
|B(jω)| > r ∀ ω ≥ 0 (12)

where the coefficients of A(jω) and B(jω) take on values in the intervals (8.2).
Let

ci = ai − dbi , i = 0, 1, . . . , max(`,m) (13)

where it is understood that ai = 0 for i > m or bi = 0 for i > `.
Then, a sufficient condition to ensure (12) is that at each frequency ω0 ≥ 0, the ratio
between

Min

∣∣∣∣∣∣

max(`,m)∑

i=0

ci(jω0)i

∣∣∣∣∣∣
over ai − dbi ≤ ci ≤ ai − dbi (14)

and

Max

∣∣∣∣∣
∑̀

i=0

bi(jω0)i

∣∣∣∣∣ over bi ≤ bi ≤ bi (15)

is greater than r.

Remark 1. This condition is sufficient but not necessary, since bi and ci were
assumed to be independent interval coefficients, even though there is a dependency
of the value of ci on the value of bi.

Remark 2. The intervals of ci in (14) were determined taking into account the
fact that d < 0.

The results in [7] are particularly applicable to carry out (14) and (15). It is
shown in [7] that (14) must coincide, at each frequency ω0 ≥ 0, with one of the
following nine possibilities:

{|C1(jω)|, |C2(jω)|, |C3(jω)|, |C4(jω)|, |Re [C1(jω)]|, |Re [C4(jω)]|,
|Im [C2(jω)]|, |Im [C3(jω)]|, 0} (16)
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where Ci(s), i = 1, . . . , 4 are the four Kharitonov polynomials associated with the
family

C(s) =
max(`,m)∑

i=0

cis
i. (17)

Moreover, the frequencies where the minimum in (14) “jumps” from one expression
in (16) to another expression in (16) are given by the real roots with odd multiplicity,
of the following four equations:

Re [C1(jω)] = 0 (18.1)
Re [C4(jω)] = 0 (18.2)

1
ω

Im [C2(jω)] = 0 (18.3)

1
ω

Im [C3(jω)] = 0. (18.4)

It can be readily verified that the various expressions in (16) which coincide with
(14) can be chosen according to the following Table.

Table 1. “Sign rule” to choose the pertinent expression for (14).

Re [C1(jω)] Re [C4(jω)] Im [C3(jω)] Im [C2(jω)] (14)

+ + or 0 + + or 0 |C4(jω)|
+ – + + or 0 |Im [C2(jω)]|

– or 0 – + + or 0 |C2(jω)|
– or 0 – + – |Re [C1(jω)]|
– or 0 – – or 0 – |C1(jω)|

+ – – or 0 – |Im [C3(jω)]|
+ + or 0 – or 0 – |C3(jω)|
+ + or 0 + – |Re [C4(jω)]|
+ – + – 0

This is due to the special structure of the polynomials Ci(s) (i = 1, . . . , 4) e. g.

Re [C1(jω)] ≥ Re [C4(jω)]
Im [C3(jω)] ≥ Im [C2(jω)]

and the special shape of the value set of the family C(jω). (See Figure 2).
Also, (15) must coincide, at each frequency ω0 ≥ 0, with one of the following four

possibilities
{|B1(jω)|, |B2(jω)|, |B3(jω)|, |B4(jω)|} (19)

where Bi(s), i = 1, . . . , 4, are defined in (9). Moreover, the frequencies where the
maximum in (15) “jumps” from one expression in (19) to another expression in (19)
are given by the real roots with odd multiplicity, of the following two equations:

b0
0 − b0

2ω
2 + b0

4ω
4 − b0

6ω
6 + · · · = 0 (20.1)

b0
1 − b0

3ω
2 + b0

5ω
4 − b0

7ω
6 + · · · = 0 (20.2)
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where
b0
i = bi + bi , i = 0, . . . , `. (21)

Furthermore, since the polynomials Bi(s), i = 1, . . . , 4 are required to be Hurwitz
polynomials by the first stability condition, so is the polynomial

B0(s) =
∑̀

i=0

b0
i s

i (22)
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Fig. 2. The minimum amplitude of an interval polynomial.

However, for this special case, it is shown in [7] that (19) can be more explicit:
In the interval between ω = 0 to the next “change frequency” (the smallest positive
ω which is an odd multiplicity root of (20)), (15) coincides with |B1(jω)|. At each
consecutive frequency interval, created by the “change frequencies”, the order of
expressions coinciding with (15) is given by the cycle:

|B1(jω)| ⇒ |B3(jω)| ⇒ |B4(jω)| ⇒ |B2(jω)| ⇒ |B1(jω)| ⇒ . . . (23)

To conclude this section, it is clear from the above discussion that to ensure
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stability of a system as described in Figure 1, with uncertainty in the linear part as
formulated in (8), it is sufficient to:

1. Check Bi(s), i = 1, . . . , 4, in (9), to be Hurwitz polynomials.

2. Solve Eqns. (18) and (20) to find their real positive roots with odd multiplicity.
It can be shown that the maximal number of such roots is (n−1) for Eqns. (20)
and 2(n− 1) for Eqns. (18).

3. Divide the positive frequency axis into a finite number of intervals created by
the roots found in Step 2, and choose an arbitrary frequency ωi in the interior
of each of these intervals.

4. Determine which of the expressions in (19) coincides with (15) at each ωi (and
hence, at each interval associated with ωi) by the sequence (23). Determine
which of the expressions in (16) coincides with (14) at each ωi (and hence, at
each interval associated with ωi) by Table 1.
Note that the intervals associated with ωi may be different for (14) than for
(15).

5. For each interval created in Step 3, check if the fixed coefficient expressions
determined in Step 4 satisfy,

(14)
(15)

> r. (24)

4. EXAMPLES

Consider the following nominal plant studied in [1]:

G(s) =
a0 + a1s

b0 + b1s + b2s2
=

1− s

1 + 2s + s2
(25)

and let
K1 = 1/2, K2 = 1, (26)

so that the circle defined in (10) is given by

d = −3/2, r = 1/2. (27)

Example 1.

Suppose the coefficients of the nominal plant are subject to 40 % tolerance, namely:

0.6 ≤ a0 ≤ 1.4, −1.4 ≤ a1 ≤ −0.6 (28.1)

0.6 ≤ b0 ≤ 1.4, 1.2 ≤ b1 ≤ 2.8, 0.6 ≤ b2 ≤ 1.4. (28.2)

Using (28) and (27) we have for the coefficients ci defined in (13), the following
intervals (needed in (14)):

1.5 ≤ c0 ≤ 3.5 , 0.4 ≤ c1 ≤ 3.6 , 0.9 ≤ c2 ≤ 2.1 (29)
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so that the four Kharitonov polynomials associated with the family (17) are

C1(s) = 3.5 + 3.6s + 0.9s2 (30.1)
C2(s) = 3.5 + 0.4s + 0.9s2 (30.2)
C3(s) = 1.5 + 3.6s + 2.1s2 (30.3)
C4(s) = 1.5 + 0.4s + 2.1s2. (30.4)

Refer now to the steps numbered in the summary of the test algorithm at the end
of Section 3.

1. Bi(s), i = 1, . . . , 4 are obviously Hurwitz polynomials, since their coefficients
bi and bi are all positive and the degree of the polynomials is 2.

2. Solving Eqns. (18) we obtain:

Re[C1(jω)] = 3.5− 0.9ω2 = 0 ⇒ ω = 1.972
Re[C4(jω)] = 1.5− 2.1ω2 = 0 ⇒ ω = 0.845
Im[C2(jω)] = 0.4ω

Im[C3(jω)] = 3.6ω.

Therefore, the “jump” frequencies of the Min expression in (14) are

ω = 0.845 and ω = 1.972 . (31)

Solving Eqns. (20) we obtain

b0
0 = b0

2 = 2, b0
1 = 4

and 2− 2ω2 = 0 ⇒ ω = 1.

Therefore, there is only one “jump” frequency of the Max expression in (15):

ω = 1. (32)

3. Let the arbitrary frequencies ωi in the interior of each interval be chosen as
(see Figure 3):

ω1 = 0.5 , ω2 = 1.3 , ω3 = 3. (33)

Fig. 3. Divison of the frequency axis into a finite number of intervals (Example 1).
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4. In the interval
0 ≤ ω ≤ 1 (34.1)

expression (15) coincides with

|B1(jω)| =
∣∣b0 + b1jω − b2ω

2
∣∣ (34.2)

=
[(

1.4− 0.6ω2
)2

+ (2.8ω)2
]1/2

In the interval
1 ≤ ω < ∞ (35.1)

expression (15) coincides with

|B3(jω)| =
∣∣b0 + b1jω − b2ω

2
∣∣ (35.2)

=
[(

0.6− 1.4ω2
)2

+ (2.8ω)2
]1/2

.

For ω1 = 0.5 we readily obtain

Re[C1(j0.5)] = 3.275 > 0, Re[C4(j0.5)] = 0.975 > 0,

Im[C2(j0.5)] = 0.2 > 0, Im[C3(j0.5)] = 1.8 > 0.

Hence, by Table 1, in the interval

0 ≤ ω ≤ 0.845 (36.1)

expression (14) coincides with

|C4(jω)| =
[(

1.5− 2.1ω2
)2

+ (0.4ω)2
]1/2

. (36.2)

For ω2 = 1.3 we readily obtain

Re[C1(j1.3)] = 1.979 > 0, Re[C4(j1.3)] = −2.049 < 0,

Im[C2(j1.3)] = 0.52 > 0, Im[C3(j1.3)] = 4.68 > 0.

Hence, by Table 1, in the interval

0.845 ≤ ω ≤ 1.972 (37.1)

expression (14) coincides with

|Im [C2(jω)]| = 0.4ω. (37.2)

For ω3 = 3 we readily obtain

Re[C1(j3)] = −4.6 < 0, Re[C4(j3)] = −17.4 < 0,

Im[C2(j3)] = 1.2 > 0, Im[C3(j3)] = 10.8 > 0.

Hence, by Table 1, in the interval

1.972 ≤ ω < ∞ (38.1)

expression (14) coincides with

|C2(jω)| =
[(

3.5− 0.9ω2
)2

+ (0.4ω)2
]1/2

. (38.2)
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5. Using the results in Step 4, stability is ensured by the following four condi-
tions:

(36.2)
(34.2)

> r =
1
2

for 0 ≤ ω ≤ 0.845 (39.1)

(37.2)
(34.2)

> r =
1
2

for 0.845 ≤ ω ≤ 1 (39.2)

(37.2)
(35.2)

> r =
1
2

for 1 ≤ ω ≤ 1.972 (39.3)

(38.2)
(35.2)

> r =
1
2

for 1.972 ≤ ω < ∞. (39.4)

It is readily verified that, say (39.1), is not satisfied. Hence, we cannot determine
that the system is robustly stable with the uncertainty of 40 % tolerance. Note,
however, that the nonlinear nominal system (25) – (26) is stable. Therefore, it is
reasonable to assume that the system is stable for a smaller tolerance. To this end,
consider

Example 2.

Suppose the coefficients of the nominal plant (25) are subject to 10 % tolerance,
namely:

0.9 ≤ a0 ≤ 1.1 − 1.1 ≤ a1 ≤ −0.9 (40.1)

0.9 ≤ b0 ≤ 1.1 1.8 ≤ b1 ≤ 2.2 0.9 ≤ b2 ≤ 1.1 (40.2)

and
2.25 ≤ c0 ≤ 2.75 1.6 ≤ c1 ≤ 2.4 1.35 ≤ c2 ≤ 1.65 (41)

so that the four Kharitonov polynomials associated with the family (17) are:

C1(s) = 2.75 + 2.4s + 1.35s2 (42.1)
C2(s) = 2.75 + 1.6s + 1.35s2 (42.2)
C3(s) = 2.25 + 2.4s + 1.65s2 (42.3)
C4(s) = 2.25 + 1.6s + 1.65s2. (42.4)

The test algorithm is thus:

1. Bi(s) , i = 1, . . . , 4 are obviously Hurwitz polynomials, as in Example 1.

2. Solving Eqns. (18) we obtain:

Re[C1(jω)] = 0 ⇒ ω = 1.427 (43.1)
Re[C4(jω)] = 0 ⇒ ω = 1.168. (43.2)

Solving Eqns. (20) we obtain
ω = 1. (43.3)
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3. Let the arbitrary frequencies ωi in the interior of each interval be chosen as
(see Figure 4):

ω1 = 0.5 , ω2 = 1.3 , ω3 = 2. (44)

Fig. 4. Divison of the frequency axis into a finite number of intervals (Example 2).

4. In the interval
0 ≤ ω ≤ 1 (45.1)

expression (15) coincides with

|B1(jω)| =
[(

1.1− 0.9ω2
)2

+ (2.2ω)2
]1/2

. (45.2)

In the interval
1 ≤ ω < ∞ (46.1)

expression (15) coincides with

|B3(jω)| =
[(

0.9− 1.1ω2
)2

+ (2.2ω)2
]1/2

. (46.2)

For ω1 = 0.5 we readily obtain

Re C1 > 0, Re C4 > 0, Im C2 > 0, Im C3 > 0.

Hence, by Table 1, in the interval

0 ≤ ω ≤ 1.168 (47.1)

expression (14) coincides with

|C4(jω)| =
[(

2.25− 1.65ω2
)2

+ (1.6ω)2
]1/2

. (47.2)

For ω2 = 1.3 we readily obtain

Re C1 > 0, Re C4 < 0, Im C2 > 0, Im C3 > 0.

Hence, by Table 1, in the interval

1.168 ≤ ω ≤ 1.427 (48.1)

expression (14) coincides with

Im [C2(jω)] = 1.6ω. (48.2)



Robust Stability of Non Linear Time Varying Systems 427

For ω3 = 2 we readily obtain

Re C1 < 0, Re C4 < 0,

Im C2 > 0, Im C3 > 0.

Hence, by Table 1, in the interval

1.427 ≤ ω < ∞ (49.1)

expression (14) coincides with

|C2(jω)| =
[(

2.75− 1.35ω2
)2

+ (1.6ω)2
]1/2

. (49.2)

5. Using the results in Step 4, stability is ensured by the following four condi-
tions:

(47.2)
(45.2)

> r =
1
2

for 0 ≤ ω ≤ 1 (50.1)

(47.2)
(46.2)

> r =
1
2

for 1 ≤ ω ≤ 1.168 (50.2)

(48.2)
(46.2)

> r =
1
2

for 1.168 ≤ ω ≤ 1.427 (50.3)

(49.2)
(46.2)

> r =
1
2

for 1.427 ≤ ω < ∞. (50.4)

It is readily verified that all four conditions are satisfied, hence we conclude
that the nonlinear system (25) – (26) is robustly stable with the uncertainty of
10 % tolerance.

5. CONCLUSION

A non-linear time-varying system is considered, where both the non-linear part and
the linear part are only partially known. There is a lot of uncertainty about the
behaviour of the system which, presumably, makes it very difficult to analyze the
system, even just for stability. Nevertheless, sufficient conditions, for the paramet-
ric type uncertainty of the linear part and Luré type uncertainty of the nonlinear
part, which ensure stability of the system and which are computationally tractable,
are presented here. These conditions are based on some recently derived results
on the frequency response of continuous-time systems with uncertainties formulated
by interval transfer functions. Using these results, we are able to reduce the ne-
cessity to check the Popov condition for an infinite set of systems, to checking the
Popov condition for a finite number of fixed coefficients systems, each in a prescribed
(calculated) frequency interval.

A final remark concerns the sufficiency of the conditions. Since necessary and
sufficient conditions for stability of a Luré type non-linear system do not exist even
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for the standard case of a completely specified and exact linear part and time-
invariant non linear part, it would be too ambitious and non-realistic to expect such
for the case with uncertainty.

(Received April 8, 1998.)
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