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ON NONCOOPERATIVE NONLINEAR
DIFFERENTIAL GAMES1

Tomáš Roub́ıček

Noncooperative games with systems governed by nonlinear differential equations remain,
in general, nonconvex even if continuously extended (i. e. relaxed) in terms of Young
measures. However, if the individual payoff functionals are “enough” uniformly convex and
the controlled system is only “slightly” nonlinear, then the relaxed game enjoys a globally
convex structure, which guarantees existence of its Nash equilibria as well as existence of
approximate Nash equilibria (in a suitable sense) for the original game.

1. INTRODUCTION AND PROBLEM FORMULATION

The concept of Nash equilibria [10] for noncooperative games requires typically a
convex structure both of sets of admissible strategies and of the individual payoff
functionals. This represents a severe restriction on the class of problems investigated.
Considering games involving a controlled system governed by differential equations,
called differential games, a relaxation (i. e. a natural extension by continuity) in
terms of the Young measures [22] (also called relaxed controls or mixed strategies)
as e. g. in Balder [1 – 3], Gamkrelidze [6], Krasovskĭı and Subbotin [8], Nikol’skĭı [12],
Nowak [13], or Warga [21] can help to some extent: it can convexify the originally
nonconvex sets of admissible strategies as well as original payoffs with respect to
the strategies no matter how nonlinear they are. However, the required convexity
structure of the relaxed problem still represents a considerable restriction: in gen-
eral cases, only controlled systems linear with respect to the state can be treated.
Sometimes, a special interplay of the data enables us to admit nonlinear systems,
too; it seems that the only reference to such phenomena is Lenhart et al [9] for the
case of a certain special elliptic game.

In this paper we want to pursue this idea in a more general manner by combination
of the relaxation with the technique used in other occasions to prove sufficiency of
the maximum principle; see Gabasov and Kirillova [5; Section VII.2] or, for the case
of general integral processes, also Schmidt [18]. (Yet, we will use it more carefully
to avoid the discrepancy of requirements of uniform convexity and boundedness

1This research was partly covered by the grant No. 201/96/0228 of the Grant Agency of the
Czech Republic.
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of the first derivative simultaneously, which appeared incidentally in [5].) By this
technique one can show the convex structure for the relaxed problem even if the
controlled system is “slightly” nonlinear with respect to the state on the assumption
that the individual payoff functionals are “enough” uniformly convex with respect
to the state. To reduce technicalities, we confine ourselves to the cases where the
state and the strategies are additively coupled, the nonlinearities in the strategies
being arbitrary.

We want to illustrate here this idea on the simplest case where the controlled sys-
tem is governed by ordinary differential equations, the number of players is only two,
and the sets of admissible strategies are bounded in L∞-norm. Let us only remark
that the generalization to many-player games with partial differential equations or
integral equations and with admissible strategies bounded only in an Lp-norm is
possible; cf. in particular [16] for a game with systems of elliptic equations.

Hence, we will consider the following two-person non-cooperative game for a
system of nonlinear ordinary differential equations, having additively coupled state
and strategy terms, with individual payoffs also additively coupled (except the term
±ϕ(t, u1, u2) which couples the strategies in a general manner):

(G)





Find Nash
equilibrium





∫ T

0

g1(t, y) + h1(t, u1) + ϕ(t, u1, u2) dt (1st player payoff)

∫ T

0

g2(t, y) + h2(t, u2)− ϕ(t, u1, u2) dt (2nd player payoff)

subject to
dy

dt
= G(t, y) + H1(t, u1) + H2(t, u2) (state equation)

y(0) = y0, (initial condition)

u1(t)∈S1(t), (strategy

u2(t)∈S2(t) for a. a. t∈(0, T ), constraints)

y∈W 1,p(0, T ; IRn)

u1∈L∞(0, T ; IRm1), u2∈L∞(0, T ; IRm2).

where gl : (0, T ) × IRn → IR, G : (0, T ) × IRn → IRn, hl : (0, T ) × IRml → IR,
Hl : (0, T )× IRml → IRn and ϕ : (0, T )× IRm1 × IRm2 → IR, y0 ∈ IRn, and moreover
Sl : (0, T ) →→ IRml are multivalued mappings, l = 1, 2. Moreover, the notation for
the Sobolev space W 1,p(0, T ; IRn) = {y ∈ L∞(0, T ; IRn); dy/dt ∈ Lp(0, T ; IRn)} and
for the Lebesgue spaces Lp(0, T ; IRn) and L∞(0, T ; IRml) is standard. Supposing
p ∈ (1, +∞], the basic data qualification we will need are the following:

gl, G, hl, Hl, ϕ are Carathéodory functions, (1.1a)

i. e. measurable in t∈(0, T ) and continuous in the resting variables,

∃ a∈Lp(0, T ) ∃ b∈ IR : |G(t, r)| ≤ a(t) + b|r|, |Hl(t, s)| ≤ a(t), (1.1b)
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∃ `∈L1(0, T ) : |G(t, r1)−G(t, r2)| ≤ `(t)|r1 − r2|, (1.1c)

∃ a∈L1(0, T ) : |gl(t, r)| ≤ a(t), |hl(t, s)| ≤ a(t), |ϕ(t, s1, s2)| ≤ a(t), (1.1d)

Sl is bounded, closed-valued and has a measurable graph, i. e. (1.1e)

{(t, s) ∈ (0, T )×IRml ; s∈Sl(t)} ∈ ΣLebesgue(0, T )⊗ ΣBorel(IRml),

where l = 1, 2 and ΣLebesgue(0, T ) and ΣBorel(IRml) denote respectively the σ-algebra
of Lebesgue measurable subsets of (0, T ) and the Borel σ-algebra on IRml .

The strategies u1 and u2 represent the strategies of the particular players while y
is the state response. The game (G) has got the structure of finding Nash equilibria
of the payoffs Φ1, Φ2 : U1 × U2 → IR, defined by

Φl(u1, u2) :=
∫ T

0

gl(t, y(u1, u2)) + hl(t, u1)− (−1)lϕ(t, u1, u2) dt (1.2)

with y = y(u1, u2) ∈ W 1,p(0, T ; IRn) being the unique solution to the initial-value
problem

dy

dt
= G(t, y) + H1(t, u1) + H2(t, u2) , y(0) = y0 , (1.3)

while the sets of admissible strategies U1 and U2 are defined by

Ul := {u ∈ L∞(0, T ; IRml); ul(t) ∈ Sl(t) for a. a. t ∈ (0, T )}, (1.4)

where l = 1, 2 distinguishes the particular players. Let us recall that the pair of
strategies (u1, u2) ∈ U1 × U2 is called a Nash equilibrium for the game (G) if

Φ1(u1, u2) = min
ũ1∈U1

Φ1(ũ1, u2) & Φ2(u1, u2) = min
ũ2∈U2

Φ2(u1, ũ2). (1.5)

Such equilibria, however, do not exist unless quite strong data qualification are
imposed. Instead of seeking a precise equilibrium, it is practically satisfactory to
find at least an approximate equilibrium. In analogy with minimizing sequences used
standardly in cooperative situations, here it is natural to speak about the so-called
equilibrium sequences introduced in [15]: a sequence of strategies {(uk

1 , uk
2)}k∈IN will

be called an equilibrium sequence if

∃Ψ1 :U1 → IR : lim
k→∞

Φ1(·, uk
2) = Ψ1 point-wise, (1.6a)

∃Ψ2 :U2 → IR : lim
k→∞

Φ2(uk
1 , ·) = Ψ2 point-wise, (1.6b)

lim
k→∞

Ψ1(uk
1) = inf

u∈U1
Ψ1(u) & lim

k→∞
Ψ2(uk

2) = infu∈U2 Ψ2(u). (1.6c)

This definition just means that the sequences {uk
1}k∈IN and {uk

2}k∈IN are minimizing
with respect to limit payoff functions determined by the sequence of opponent’s
strategies. A bit other concept has been invented by Patrone [14]: {(uk

1 , uk
2)}k∈IN is

called an asymptotically Nash equilibrium if
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∃ {(εk
1 , εk

2)}k∈IN ⊂ (0,+∞)× (0, +∞) : lim
k→∞

εk
1 = 0 & lim

k→∞
εk
2 = 0, (1.7a)

Φ1(uk
1 , uk

2) ≤ inf
ũ∈U1

Φ1(ũ, uk
2) + εk

1 & Φ2(uk
1 , uk

2) ≤ inf
ũ∈U2

Φ2(uk
1 , ũ) + εk

2 . (1.7b)

The pair (uk
1 , uk

2) satisfying (1.7b) is also called (εk
1 , εk

2)-equilibrium; see also Kindler
[7], Tan, Yu and Yuan [19] or Tijs [20]. It should be emphasized that, contrary to
minimizing sequences whose existence in cooperative situations is always guaranteed,
the equilibrium sequences or asymptotically Nash equilibria in the sense of Patrone
[14] need not exist in general, cf. also [14; Example 3]. However, we will prove their
existence under a suitable data qualification; cf. Corollaries 3.1 and 3.2. Let us
also note that, in general, one cannot suppose any relation between (1.6) and (1.7).
However, it holds:

Proposition 1.1. Let {(uk
1 , uk

2)}k∈IN be an equilibrium sequence such that (1.6a,b)
hold not only point-wise but even uniformly, i. e. let (1.6) hold together with

lim
k→∞

sup
u∈U1

|Φ1(u, uk
2)−Ψ1(u)| = 0 & lim

k→∞
sup
u∈U2

|Φ2(uk
1 , u)−Ψ2(u)| = 0. (1.8)

Then {(uk
1 , uk

2)}k∈IN is also an asymptotically Nash equilibrium in the sense of Pa-
trone [14].

P r o o f . Put ak
l := Ψl(uk

l )− infu∈Ul
Ψl(u) for l = 1, 2 and bk

1 := supu∈U1
|Φ1(u, uk

2)
−Ψ1(u)| and bk

2 := supu∈U2
|Φ2(uk

1 , u) − Ψ2(u)|. Since, for any u ∈ U1, it holds
Ψ1(u) ≥ Ψ1(uk

1)− ak
1 and |Φ1(u, uk

2)−Ψ1(u)| ≤ bk
1 , we can estimate

Φ1(uk
1 , uk

2) ≤ Ψ1(uk
1) + bk

1 ≤ Ψ1(u) + ak
1 + bk

1 ≤ Φ1(u, uk
2) + ak

1 + 2bk
1 .

Analogously, we get also Φ2(uk
1 , uk

2) ≤ Φ2(uk
1 , u)+ak

2 +2bk
2 for any u ∈ U2. Therefore,

the pair (uk
1 , uk

2) forms an (ak
1 + 2bk

1 , ak
2 + 2bk

2)-equilibrium. By (1.6c), we know that
limk→∞ ak

l = 0 and, by (1.8), we also know that limk→∞ bk
l = 0. This proves

{(uk
1 , uk

2)}k∈IN to be an asymptotically Nash equilibrium. 2

2. A RELAXED GAME AND ITS STRUCTURE

Following ideas by Young [22], for l = 1, 2, we extend the sets of admissible strategies
Ul from (1.4) to the set of admissible relaxed strategies

Ūl := {ν ∈ Y(0, T ; IRml); supp(νt) ⊂ Sl(t) for a. a. t ∈ (0, T )}, (2.1)

where supp(νt) stands for the support of the measure νt and the set of the so-called
Young measures (cf. [22] where however C0(IRml)∗ instead of rca(IRml) is used) is
defined by

Y(0, T ; IRml) := {ν ∈ L∞w (0, T ; rca(IRml)) : (2)
νt := ν(t) is a probability measure for a. a. t ∈ (0, T )}
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where L∞w (0, T ; rca(IRml)) ∼= L1(0, T ;C0(IRml))∗ denotes the linear space of weakly
measurable mappings t 7→ νt : (0, T ) → rca(IRml) and rca(IRml) ∼= C0(IRml)∗ stands
for Radon measures on IRml , and C0(IRml) denotes the Banach space of continuous
functions IRml → IR vanishing at infinity. The natural (norm,weak*)-continuous
imbedding il : L∞(0, T ; IRml) → Y(0, T ; IRml) is defined by il : u 7→ ν with νt = δu(t)

where δs ∈ rca(IRml) denotes the Dirac measure supported at s ∈ IRml . Let us note
that il(Ul) ⊂ Ūl.

The relaxed game is then created by the continuous extension of the original game
(G) from U1 × U2 to Ū1 × Ū2, which gives:

(RG)





Find Nash
equilibrium





J1(ν1, ν2, y) :=
∫ T

0

(
g1(t, y) +

∫

IRm1

h1(t, s1) ν1,t(ds1)

+
∫

IRm1

∫

IRm2

ϕ(t, s1, s2)ν2,t(ds2) ν1,t(ds1)
)

dt

J2(ν1, ν2, y) :=
∫ T

0

(
g2(t, y) +

∫

IRm2

h2(t, s2) ν2,t(ds2)

−
∫

IRm1

∫

IRm2

ϕ(t, s1, s2) ν2,t(ds2)ν1,t(ds1)
)

dt

subject to
dy

dt
= G(t, y) +

∫

IRm1

H1(t, s) ν1,t(ds) +
∫

IRm2

H2(t, s) ν2,t(ds)

y(0) = y0,

supp(ν1,t) ⊂ S1(t) , supp(ν2,t) ⊂ S2(t) for a. a. t∈(0, T ),

y∈W 1,p(0, T ; IRn), ν1 ∈ Y(0, T ; IRm1), ν2 ∈ Y(0, T ; IRm2).

To investigate the structure of the relaxed game (RG) more in detail, let us define
the extended payoffs Φ̄1, Φ̄2 : Ū1 × Ū2 → IR by

Φ̄l(ν1, ν2) := Jl(ν1, ν2, y(ν1, ν2)) , l = 1, 2, (2.3)

where y = y(ν1, ν2) ∈ W 1,p(0, T ; IRn) denotes the unique solution to the initial-value
problem

dy

dt
= G(t, y) +

∫

IRm1

H1(t, s) ν1,t(ds) +
∫

IRm2

H2(t, s) ν2,t(ds), y(0) = y0. (2.4)

Obviously, (RG) just represents a Nash equilibrium search over Ū1 × Ū2 of the
extended payoffs Φ̄1 and Φ̄2; this means we are to find (ν1, ν2) ∈ Ū1 × Ū2 such that

Φ̄1(ν1, ν2) = min
ν̃1∈Ū1

Φ̄1(ν̃1, ν2) and Φ̄2(ν1, ν2) = min
ν̃2∈Ū2

Φ̄2(ν1, ν̃2). (2.5)

The main results about (RG) and relations between (RG) and (G) are supported by
the properties stated in the following four lemmas.

Lemma 2.1. Let (1.1e) be valid. Then, for l = 1, 2, the set of admissible re-
laxed strategies Ūl defined by (2.1) is convex and weakly* compact, and contains
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densely the set of original strategies Ul imbedded into L∞w (0, T ; rca(IRml)) via the
imbedding il.

P r o o f . See Sainte–Beuve [17; Corollary 4] for a general case. For a special Sl

such result can be also found e. g. in Gamkrelidze [6; Theorem II.2] or in Warga [21;
Theorem IV.2.6], or also in [15; Theorem 3.1.6 and Remark 3.1.10]. 2

Lemma 2.2. Let (1.1a – d) be valid. Then, for l = 1, 2, the extended payoff Φ̄l

from (2.3) – (2.4) is a separately (weak*×weak*)-continuous extension of the orig-
inal payoff Φ̄l from (1.2) – (1.3). Moreover, Φ̄1 + Φ̄2 : Ū1 × Ū2 → IR is jointly
(weak*×weak*)-continuous.

P r o o f . The (weak*,weak)-continuity of the mapping Y(0, T ; IRml) → Lp(0, T ;
IRml) : νl 7→

(
t 7→ ∫

IRml
Hl(t, s) νl,t(ds)

)
for l = 1, 2 is obvious. From this one gets by

standard arguments, including also the compactness of the imbedding W 1,p(0, T ; IRn)
⊂ L∞(0, T ; IRn), the (weak*×weak*,weak)-continuity of the mapping Y(0, T ; IRm1)×
Y(0, T ; IRm2) → W 1,p(0, T ; IRn) : (ν1, ν2) 7→ y = y(ν1, ν2) from (2.4). As this map-
ping (ν1, ν2) 7→ y(ν1, ν2) is continuous to the norm topology of L∞(0, T ; IRn) and
also the Nemytskĭı mapping y 7→ [t 7→ gl(t, y(t))] : L∞(0, T ; IRn) → L1(0, T ) is
continuous, the functional

(ν1, ν2) 7→
∫ T

0

gl(t, y(ν1, ν2)) dt (2.6)

is (weak*×weak*)-continuous, too. Also

(ν1, ν2) 7→
∫ T

0

∫

IRml

hl(t, s) νl,t(ds) dt (2.7)

is obviously continuous. The remaining term in the payoff functional, i. e.

(ν1, ν2) 7→
∫ T

0

∫

IRm1

∫

IRm2

ϕ(t, s1, s2) ν2,t(ds2) ν1,t(ds1) dt (2.8)

is, however, not jointly (weak*×weak*)-continuous in a general case, cf. e. g. Warga
[21; Sections IX.2 and X.0.1] or also [15; Example 3.6.18]. On the other hand, by the
Fubini theorem, one can show that the functional (2.8) is separately (weak*×weak*)-
continuous; cf. [15; Lemma 3.6.14]. Altogether, the continuity of (2.6) – (2.8) imply
the separate (weak*×weak*)-continuity of each payoff Φ̄1 and Φ̄2. Moreover, by the
continuity of (2.6) – (2.7), Φ̄1 +Φ̄2 is jointly (weak*×weak*)-continuous because the
critical term (2.8), which is possibly not jointly continuous, disappears in the sum
of payoffs. 2

To investigate the geometrical properties of Φ̄l with l = 1, 2, we will have to
calculate its Gâteaux differential with respect to the geometry coming from the
linear space L∞w (0, T ; rca(IRml)) containing Ūl. This is, in fact, a standard task
undertaken within derivation of the maximum principle for the relaxed strategies.
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The needed Fréchet differentiability with respect to y can be guaranteed by the
following assumptions on the partial derivative of gl and G with respect to the
variable r, denoted respectively by g′l(t, r) and G′(t, r):

∃ a ∈ L1(0, T ) ∃ b : IR → IR continuous : |g′l(t, r)| ≤ a(t) + b(|r|), (2.9a)

|g′l(t, r1)− g′l(t, r2)| ≤ (a(t) + b(|r1|) + b(|r2|))|r1 − r2|,

∃ a ∈ Lp(0, T ) ∃ b : IR → IR continuous : |G′(t, r)| ≤ a(t) + b(|r|), (2.9b)

|G′(t, r1)−G′(t, r2)| ≤ (a(t) + b(|r1|) + b(|r2|))|r1 − r2|,

where l = 1, 2. The maximum principle involves the so-called adjoint terminal-value
problem

dλl

dt
= −λl(t)G′(t, y(t))− g′l(t, y(t)) , λl(T ) = 0. (2.10)

Under the assumption (2.9), the problem (2.10) possesses precisely one solution λl ∈
W 1,1(0, T ; IRn). Following a procedure by Gabasov and Kirillova [5; Section VII.2] or
(for the general integral processes) by Schmidt [18] developed to prove sufficiency of
the maximum principle for optimal control problems, we can establish the following
increment formula. Let us formulate it for Φ̄1(·, ν2), the other needed case Φ̄2(ν1, ·)
being entirely analogous.

Lemma 2.3. Let (1.1a – d) and (2.9) be valid, let ν1, ν̃1 ∈ Ū1 and ν2 ∈ Ū2, let
y = y(ν1, ν2) ∈ W 1,p(0, T ; IRn) be defined by (2.4), and let λ1 ∈ W 1,1(0, T ; IRn)
solve (2.10) with l = 1. Then

Φ̄1(ν̃1, ν2)− Φ̄1(ν1, ν2) =
∫ T

0

∫

IRm1

Hν2,λ1
1 (t, s)[ν̃1,t − ν1,t](ds) dt

+
∫ T

0

[∆g1(t) + λ1(t)∆G(t)]dt

(2.11)

where the “Hamiltonian” Hν2,λ
1 is defined by

Hν2,λ
1 (t, s1) := λ(t)H1(t, s1) + h1(t, s1) +

∫

IRm2

ϕ(t, s1, s2) ν2,t(ds2) , (2.12)

and the second-order correcting terms ∆g1 and ∆G are defined by

∆g1(t) := g1(t, ỹ(t))− g1(t, y(t))− g′1(t, y(t)) (ỹ(t)− y(t)) , (2.13)

∆G(t) := G(t, ỹ(t))−G(t, y(t))−G′(t, y(t)) (ỹ(t)− y(t)) , (2.14)

with ỹ = y(ν̃1, ν2) ∈ W 1,p(0, T ; IRn) being the solution to the initial-value problem
(2.4) with ν̃1 in place of ν1.
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P r o o f . Using successively the formula (2.12), the equation (2.4) both for ν1 and
for ν̃1, the by-parts integration and the adjoint equation (2.10), we can calculate:

Φ̄1(ν̃1, ν2)− Φ̄1(ν1, ν2)−
∫ T

0

∫

IRm1

Hν2,λ1
1 (t, s)[ν̃1,t − ν1,t](ds) dt

=
∫ T

0

g1(t, ỹ(t))−g1(t, y(t))−
∫

IRml

λ1(t) H1(t, s1)[ν̃t − νt](ds1) dt

=
∫ T

0

[
g1(t, ỹ(t))−g1(t, y(t)) + λ1(t)

(
G(t, ỹ(t))−G(t, y(t))− d(ỹ(t)− y(t))

dt

)]
dt

=
∫ T

0

[
g1(t, ỹ(t))−g1(t, y(t)) + λ1(t) (G(t, ỹ(t))−G(t, y(t))) +

dλ1

dt
(ỹ(t)− y(t))

]
dt

=
∫ T

0

[
g1(t, ỹ(t))−g1(t, y(t))−g′1(t, y(t)) (ỹ(t)− y(t))

+ λ1(t) (G(t, ỹ(t))−G(t, y(t))−G′(t, y(t)) (ỹ(t)−y(t)))
]

dt

=:
∫ T

0

∆g1(t) + λ1(t)∆G(t) dt. 2

The formula (2.11) enables us to investigate convexity of the extended cost func-
tional Φ̄1(·, ν2). Of course, analogous considerations apply also to Φ̄2(ν1, ·). Let us
take BR := {r∈ IRn; |r| ≤R} a sufficiently large ball so that [y(u1, u2)](t)∈BR for
any u1∈U1, u2∈U2 and any t∈(0, T ), where y(u1, u2)∈W 1,p(0, T ; IRn) denotes the
unique solution to (1.3); this means we can put R := supu1∈U1

supu2∈U2
‖y(u1, u2)‖

C(0, T ; IRn). Furthermore, let

a1(t) := sup
|r|≤R

|g′1(t, r)| , a2(t) := sup
|r|≤R

|g′2(t, r)| , A(t) := sup
|r|≤R

|G′(t, r)|. (2.15)

Note that (2.9) ensures certainly a1, a2, A ∈ L1(0, T ). Thus we may put

b1(t) :=
∫ T

t

a1(τ) dτ , b2(t) :=
∫ T

t

a2(τ) dτ , B(t) :=
∫ T

t

A(τ) dτ. (2.16)

Lemma 2.4. Let (1.1) and (2.9) be valid, and let G(t, ·) be twice continuously
differentiable, and let gl(t, ·) be uniformly convex on BR in the sense

∀r, r̃ ∈ BR : gl(t, r̃)− gl(t, r)− g′l(t, r) (r̃ − r) ≥ cl(t)|r̃ − r|2 (2.17)

with a modulus cl satisfying

cl(t) ≥ 1
2
bl(t)eB(t) sup

|r|≤R

|G′′(t, r)| (2.18)

for l = 1, 2. Then, for any ν1 ∈ Ū1 and ν2 ∈ Ū2, the extended payoffs Φ̄1(·, ν2) :
Ū1 → IR and Φ̄2(ν1, ·) : Ū2 → IR defined in (2.3) – (2.4) are convex.
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P r o o f . Let us show the case Φ̄1(·, ν2); the opponent’s case Φ̄2(ν1, ·) being anal-
ogous.

From the adjoint equation (2.10) with l = 1, we can estimate d|λ1|/dt ≤ |dλ1/dt|
≤ A(t)|λ1(t)|+ a1(t) so that by the Gronwall inequality one gets

|λ1(t)| ≤
(∫ T

t

a1(τ)e−
R T

t
A(θ) dθdτ

)
e
R T

t
A(τ) dτ . (2.19)

To simplify the notation, using (2.16) we can also (a bit more pessimistically) esti-
mate

|λ1(t)| ≤ b1(t)eB(t). (2.20)

By the Taylor expansion, we can estimate

|G(t, ỹ(t))−G(t, y(t))−G′(t, y(t)) (ỹ(t)− y(t))| ≤ 1
2

sup
|r|≤R

|G′′(t, r)| |ỹ(t)− y(t)|2.

Then (2.17) with (2.18) and (2.20) ensure

∆g1(t) + λ1(t)∆G(t) ≥ c1(t)|ỹ(t)− y(t)|2 − 1
2
|λ1(t)| sup

|r|≤R

|G′′(t, r)| |ỹ(t)− y(t)|2

≥
(

c1(t)− 1
2
b1(t)eB(t) sup

|r|≤R

|G′′(t, r)|
)
|ỹ(t)− y(t)|2 ≥ 0

so that the second right-hand term in (2.11) is non-negative; note that by Lemma 2.1
and by the continuity of the mapping (ν1, ν2) 7→ y(ν1, ν2) we have |[y(ν1, ν2)](t)| ≤ R
for any (ν1, ν2) ∈ Ū1 × Ū2, which makes (2.17) – (2.18) effective. By [15; Sec-
tion 4.3], the first right-hand term in (2.11) represents just the Gâteaux differential
of Φ̄1(·, ν2) : Ū1 → IR, i. e.

[∇ν1Φ̄1(ν1, ν2)](ν̃1 − ν1) := lim
ε↘0

Φ̄1(ν1 + ε(ν̃1 − ν1), ν2)− Φ̄1(ν1, ν2)
ε

=
∫ T

0

∫

IRm1

Hν2,λ1
1 (t, s)[ν̃1,t − ν1,t](ds) dt

with ν1, ν̃1 ∈ Ū1 arbitrary and with the adjoint state λ1 and the Hamiltonian Hν2,λ
1

defined respectively by (2.10) and (2.12). Therefore we obtained

Φ̄1(ν̃1, ν2)− Φ̄1(ν1, ν2)− [∇ν1Φ̄1(ν1, ν2)](ν̃1 − ν1) ≥ 0 , (2.21)

for all ν1, ν̃1 ∈ Ū1, which just says that Φ̄1(·, ν2) is convex on Ū1. 2

3. MAIN RESULTS

We are now ready to formulate the main achievements: existence of the Nash equi-
libria for the relaxed game (RG), relations between (RG) and the original game
(G), as well as existence of equilibrium sequences for (G). We will use the Nikaidô
and Isoda generalization [11] of the classical Nash theorem [10]; this generaliza-
tion admits only separately continuous payoffs and is equivalent with the Brouwer
fixed-point theorem, as pointed out by Kindler [7; Remark 1.2].
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Theorem 3.1. Let (1.1), (2.9) and (2.17) –(̇2.18) for l = 1, 2 be valid. Then:

(i) The relaxed game (RG) possesses at least one Nash equilibrium.

(ii) Every Nash equilibrium of the relaxed game (RG) can be attained by an
equilibrium sequence for the original game (G) imbedded via i1 × i2 into
L∞w (0, T ; rca(IRm1))× L∞w (0, T ; rca(IRm2)).

(iii) Conversely, every equilibrium sequence for the original game (G) (imbedded
via i1 × i2) has a weakly* convergent subsequence and the limit of every such
a subsequence is a Nash equilibrium for the relaxed game (RG).

P r o o f . By Lemmas 2.1, 2.2 and 2.4, we can see that the relaxed problem (RG)
represents a game over the convex compact sets Ū1 and Ū2 for the separately con-
tinuous payoffs Φ̄1 and Φ̄2 whose sum is jointly continuous and such that Φ̄1(·, ν2)
and Φ̄2(ν1, ·) are convex. This just guarantees, by Nikaidô and Isoda [11], that (RG)
has got at least one Nash equilibrium, as claimed in (i).

The points (ii) and (iii) follow by Lemmas 2.1 and 2.2. In fact, Ψ1 : U1 → IR and
Ψ2 : U2 → IR in (1.6) are defined by

Ψ1 = Φ̄1(·, ν2) ◦ i1 & Ψ2 = Φ̄2(ν1, ·) ◦ i2 , (3.1)

for details see [15; Proposition 7.1.1] and realize the metrizability of the weak*
topology on Ū1 and Ū2, which allows us to work in terms of sequences instead of
nets. 2

Corollary 3.1. Under the assumptions of Theorem 3.1, the original game (G)
possesses an equilibrium sequence, i. e. a sequence {(uk

1 , uk
2)}k∈IN satisfying (1.6).

P r o o f . It follows straightforwardly by the points (i) and (ii) of Theorem 3.1. 2

Corollary 3.2. Let the assumptions of Theorem 3.1 be satisfied and let ϕ ≡ 0.
Then the original game (G) possesses an asymptotically Nash equilibrium, i. e. a
sequence {(uk

1 , uk
2)}k∈IN satisfying (1.7).

P r o o f . Take ν1 ∈ Ū1 and ν2 ∈ Ū2 arbitrary. Furthermore, take a sequence
{uk

2}k∈IN ⊂ U2 generating ν2 ∈ Ū2 in the sense i2(uk
2) → ν2 weakly* in L∞w (0, T ;

rca(IRm2)) and put y = y(ν1, ν2) and yk = y(ν1, i2(uk
2)). In view of (2.4), we can

estimate

d
dt
|yk − y| ≤

∣∣∣∣
d
dt

(yk − y)
∣∣∣∣ ≤

∣∣G(t, yk(t))−G(t, y(t))
∣∣

+
∣∣∣∣H2(t, uk

2(t))−
∫

IRm2

H2(t, s) ν2,t(ds)
∣∣∣∣ ≤ a(t)|yk(t)− y(t)|+ ck(t) ,

where a ∈ L1(0, T ) comes from (1.1c) and ck ∈ Lp(0, T ) abbreviates ck(t) :=
|H2(t, uk

2(t)) − ∫
IRm2 H2(t, s) ν2,t(ds)|. Likewise (2.19) – (2.20), we can estimate by
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means of the Gronwall inequality

|yk(t)− y(t)| ≤
(∫ t

0

ck(τ)e−
R t
0 a(θ) dθdτ

)
e
R t
0 a(τ) dτ ≤

(∫ t

0

ck(τ) dτ

)
e
R t
0 a(τ) dτ .

(3.2)
Since i2(uk

2) → ν2 weakly*, we have ck → 0 weakly in Lp(0, T ) and therefore,
using also the compactness of the imbedding W 1,p(0, T ) ⊂ L∞(0, T ), we have got
supt∈(0,T )

∫ t

0
ck(τ) dτ → 0. In view of (3.2), this shows that yk → y in L∞(0, T ; IRn)

and this convergence is uniform with respect to ν1 ∈ Ū1. This also imply the
convergence

∫ T

0
g1(t, yk(t)) dt → ∫ T

0
g1(t, y(t)) dt uniformly with respect to ν1 ∈ Ū1.

Assuming ϕ = 0, this shows (1.6a) uniformly, i. e.

lim
k∈N

sup
u1∈U1

|Φ1(u1, u
k
2)−Ψ1(u1)| = 0 (3.3)

with Ψ1 defined in (3.1).
Just analogously, we can also show that (1.6b) holds uniformly provided {uk

1}k∈IN

is such a sequence that {i1(uk
1)}k∈IN weakly* converges.

In view of Theorem 3.1(i–ii), there is an equilibrium sequence {(uk
1 , uk

2)}k∈IN for
(G) such that both {i1(uk

1)}k∈IN and {i2(uk
2)}k∈IN weakly* converges. Then, by the

above arguments, (1.8) holds so that by Proposition 1.1 the sequence {(uk
1 , uk

2)}k∈IN

represents an asymptotically Nash equilibrium. 2

Remark 3.1. If the controlled system is linear with respect to the state, i. e. G(t, ·)
is affine, then obviously G′′ ≡ 0 and one can take cl ≡ 0 in (2.17) which then just
requires g1(t, ·) and g2(t, ·) to be merely convex; cf. e. g. Balder [1], Bensoussan [4]
or Nowak [13], or also [15; Section 7.3].

Remark 3.2. The assumption ϕ = 0 in Corollary 3.2 is inevitable because oth-
erwise the uniform convergence (3.3) cannot be expected. Indeed, one can use
the example ϕ(t, s1, s2) = s1s2 which induces by the formula (2.8) a separately
(weak*×weak*)-continuous functional Ū1 × Ū2 → IR which is, however, not jointly
(weak*×weak*)-continuous; cf. [15; Example 3.6.18].

Remark 3.3. If the multivalued mapping Sl : (0, T ) →→ IRml acting as strategy
constraints in (G) is not bounded, several sophisticated approaches based on Cha-
con’s biting lemma and the Dunford–Pettis theorem must be still incorporated. For
details we refer to [15; Section 7.3] where only systems linear with respect to the
state are considered, however.

(Received March 2, 1998.)
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de Varsovie, Classe III 30 (1937), 212–234.
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