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EXACT DECOMPOSITION OF LINEAR SINGULARLY
PERTURBED H∞-OPTIMAL CONTROL PROBLEM

Emilia Fridman

We consider the singularly perturbed H∞-optimal control problem under perfect state
measurements, for both finite and infinite horizons. We get the exact decomposition of the
full-order Riccati equations to the reduced-order pure-slow and pure-fast equations. As a
result, the H∞-optimum performance and suboptimal controllers can be exactly determined
from these reduced-order equations. The suggested decomposition allows the development
of new effective algorithms of high-order accuracy.

1. INTRODUCTION

Consider the linear time-varying singularly perturbed system

ẋ1 = A11x1 + A12x2 + B1u + D1w, εẋ2 = A21x1 + A22x2 + B2u + D2w, x(0) = 0
(1.1)

and the quadratic functional

J = x′(tf ) Fx(tf ) +
∫ tf

0

[x′(t)Q(t)x(t) + u′(t) u(t)] dt, (1.2)

where x = col{x1, x2} is the state vector with x1(t) ∈ IRn1 and x2(t) ∈ IRn2 ,
u(t) ∈ IRp is the control input, w ∈ IRq is the disturbance. The matrices Aij =
Aij(t), Bi = Bi(t), Di = Di(t) (i = 1, 2, j = 1, 2) are continuously differentiable
functions of t ≥ 0, and ε is a small positive parameter. The symbol (·)′ denotes the
transpose of a matrix,

Q = Q′ =
(

Q11 Q12

Q21 Q22

)
≥ 0, F = F ′ =

(
F11 εF12

εF21 εF22

)
≥ 0.

Denote by | · | the Euclidean norm of a vector. Let Sij = BiB
′
j − γ−2DiD

′
j , i =

1, 2, j = 1, 2, Bε = col{B1, ε
−1B2}, Dε = col{D1, ε

−1D2},

Aε =
(

A11 A12

ε−1A21 ε−1A22

)
, Sε =

(
S11 ε−1S12

ε−1S21 ε−2S22

)
.
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With (1.1), (1.2) we associate the Riccati differential equation (RDE)

Ż + A′εZ + ZAε − ZSεZ + Q = 0; Z(tf ) = F (1.3)

for the matrix function

Z = Z ′ = Z(t, ε) =
(

Z11(t, ε) εZ12(t, ε)
εZ21(t, ε) εZ22(t, ε)

)
. (1.4)

For each ε > 0 the H∞-optimum performance γ∗(ε) is computed by the formula [1],
[10]

γ∗(ε) = inf{γ > 0 | (1.3) has a bounded solution on [0; tf ]}.
A controller that guarantees the performance level γ > γ∗(ε) is determined by the
relation

u(t) = −[B′
1; ε−1B′

2] Z(t, ε)x(t), t ∈ [0; tf ] , (1.5)

where Z(t, ε) = Z(t, ε, γ) is the solution of (1.3).
In the infinite horizon case we take Aε, Bε, Dε and Q = C ′C to be time invariant,

F = 0 and assume:

A1. The triple {Aε, Bε, C} is stabilizable and detectable for ε ∈ (0, ε0] (ε0 > 0).

The H∞-optimum performance is determined from the full-order generalized al-
gebraic Riccati equation (ARE) of the form (1.3), where Ż = 0 as follows [1, 10]:

γ∗(ε) = inf{γ > 0 | the full− order ARE has a nonnegative definite solution such
that the matrix Aε − SεZ is Hurwitz}.

Computation of γ∗(ε), and the corresponding suboptimal controller (1.5) for small
values of ε > 0 presents serious difficulties due to high dimension and numerical stiff-
ness, resulting from the interaction of slow and fast modes. In [10] an upper bound
γ for γ∗(ε) has been found on the basis of a slow and a fast control subproblems.
For each γ > γ a composite controller has been designed that gives the zero-order
approximation to the controller of (1.5) and achieves the performance γ for the full-
order system for all small enough ε (see also [3] for a composite controller in the
case tf = ∞). In [7] and [9] the frequency domain decomposition of H∞ control
problems has been obtained, however the issue of optimal controller design has not
been addressed.

The main objective of the paper is getting the exact decomposition of the problem.

2. MAIN RESULTS

We will develop the method of exact decomposition of the full-order Riccati equations
initiated with the works [4, 12], to H∞-optimal control problem. We begin with the
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finite horizon case. Consider the Hamiltonian system corresponding to (1.3) with
the adjoint variables y1, εy2:




ẋ1

ẏ1

εẋ2

εẏ2


 =

(
R11 R12

R21 R22

)



x1

y1

x2

y2


, Rij =

(
Aij −Sij

−Qij −A′ji

)
, (2.1a)

x1(tf ) = x0
1, y1(tf ) = F11x

0
1 + εF12x

0
2, x2(tf ) = x0

2, y2(tf ) = F21x
0
1 + F22x

0
2.

(2.1b)

Lemma 1. For each ε > 0, (1.3) has a bounded on [0, tf ] solution iff there exists
the matrix function of the form (1.4) such that for all x

(0)
1 ∈ IRn1 , x

(0)
2 ∈ IRn2 a

solution of (2.1) can be represented as follows:

col{y1, εy2} = Zx, t ∈ [0, tf ]. (2.2)

For p r o o f of Lemma 1 and the other Lemmas of the paper see Appendix.

Let C ′2C2 = Q22. Consider the following ARE

A′22M
(0) + M (0)A22 + Q22 −M (0)S22M

(0) = 0, t ∈ [0, tf ], (2.3)

which corresponds, for each t ∈ [0, tf ], to the fast infinite horizon subproblem.
Assume

A2. The triple {A22, B2, C2} is stabilizable and detectable for all t ∈ [0, tf ].

Let γt
f = inf{γ′|ARE (2.3) has a solution M (0) ≥ 0 such that Λ0 = A22−S22M

(0)

is Hurwitz}. We choose γf = supt∈[0,tf ] γ
t
f . Under A2 γf < ∞ [10]. We shall further

consider only γ ≥ γf+δ with δ > 0 fixed. From [2, Lemma 4] and from the continuous
dependence of R22 on t ∈ [0, tf ] and 1/γ ∈ [0, (γf + δ)−1] it follows that for all
γ ≥ γf + δ and t ∈ [0, tf ] the matrix R22 has n2 stable eigenvalues λ, Reλ < −α < 0
(corresponding to Λ0) and n2 unstable ones, Reλ > α. This implies [11] the existence
of εγ > 0 such that for each γ ≥ γf +δ and ε ∈ [0, εγ) there are the matrix functions
H = −R−1

22 R21 + εH̄(t, ε), P = R12R
−1
22 + εP̄ (t, ε), M = M (0) + εM̄(t, ε) and

L = L(0) + εL̄(t, ε) that satisfy the equations

εḢ + εH(R11 + R12H) = R21 + R22H, (2.4a)

εṖ + P (R22 − εHR12) = ε(R11 + R12H)P + R12, (2.4b)

εṀ + M [A22 + εK1 + (εK2 − S22) M ] = −Q22 + εK3 + (−A′22 + εK4)M, (2.4c)

εL̇−L[A′22−εK4+M(εK2−S22)] = [A22+εK1+(εK2−S22)M ]L+εK2−S22, (2.4d)

where (
K1 K2

K3 K4

)
= −HR12, H =

(
H1 H2

H3 H4

)
, P =

(
P1 P2

P3 P4

)
. (2.5)
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The matrix M (0) is a solution of (2.3) and L(0) satisfies the Lyapunov equation,
that results from (2.4d) by setting ε = 0. If the coefficients of (1.1) and (1.2) are
smooth, the functions H, P, M and L can be easily found in the form of asymptotic
expansions. The terms of these expansions can be determined from linear algebraic
equations [11]. In the time-invariant case, H, P, M and L can be also computed
numerically [6].

For γ ≥ γf + δ and ε ∈ [0, εγ) the nonsingular transformation [11]



x1

y1

x2

y2


 =




I 0 εG1 εG2

0 I εG3 εG4

H1 H2 E1 E2

H3 H4 E3 E4







u1

v1

u2

v2


, (2.6)

where
(

E1 E2

E3 E4

)
= (I + εHP )

(
I L
M I + ML

)
,

(
G1 G2

G3 G4

)
= P

(
I L
M I + ML

)
,

decomposes (2.1) into the slow system for u1 ∈ IRn1 and v1 ∈ IRn1

(
u̇1

v̇1

)
= W

(
u1

v1

)
, W =

(
W1 W2

W3 W4

)
= R11 + R12H, (2.7a)

and the two fast decoupled equations for u2 ∈ IRn2 and v2 ∈ IRn2

εu̇2 = (A22 + εK1 + (−S22 + εK2)M)u2, εv̇2 = (−A′22 + εK4 + M(S22 − εK2)) v2.
(2.7b)

In all previous derivations εγ can be chosen independent of γ. Really, the matrix
functions H, P,M,L define integral manifold of (2.1) and some auxiliary singularly
perturbed systems [11]. Due to the inequality Reλ < −α for the eigenvalues of Λ0

and since the coefficients of (2.1) are uniformly bounded on γ−1 ∈ [0, (γf + δ)−1],
these integral manifolds exist for all small enough ε and γ ≥ γf + δ. Thus we get:

Proposition. There is ε0 > 0, such that for all ε ∈ (0, ε0] and γ ≥ γf + δ the
transformation (2.14) exists and decomposes (2.1) into the systems of (2.7).

Substituting (2.6) into the terminal conditions of (2.1) and further eliminating
x0

1 and x0
2, we obtain the following terminal conditions for u1, v1, u2, v2:

(
u1

u2

)∣∣∣∣
t=tf

=
(

u0
1

u0
2

)
,

(
v1

v2

)∣∣∣∣
t=tf

=
(

U11 εU12

U21 U22

)(
u0

1

u0
2

)
, (2.8)

where

(
U11 εU12

U21 U22

)
=

(
Y2

Y4

)(
Y1

Y3

)−1

∣∣∣
t=tf

,




Y1

Y2

Y3

Y4


 =




Φ1 Φ2 −εP1 −εP2

Φ3 Φ4 −εP3 −εP4

Ψ1 Ψ2 Ξ1 Ξ2

Ψ3 Ψ4 Ξ3 Ξ4







I 0
F11 εF12

0 I
F21 F22




(2.9)
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(
Φ1 Φ2

Φ3 Φ4

)
= I + εPH,

(
Ξ1 Ξ2

Ξ3 Ξ4

)
=

(
I + LM −L
−M I

)
,

(
Ψ1 Ψ2

Ψ3 Ψ4

)
= −

(
Ξ1 Ξ2

Ξ3 Ξ4

)
H.

By straightforward computations we get
(

Y1

Y3

)
=

(
I 0
... I + L(0)(M (0) − F22)

)
+ O(ε). (2.10)

To assure the existence of the inverse matrix in (2.9) we assume

A3. The matrix I + L(0)(M (0) − F22) is invertible at t = tf for all γ ≥ γf + δ.

Consider the pure-slow RDE for the n1 × n1-matrix function N = N(t, ε)

Ṅ + N(W1 + W2N) = W3 + W4N, N(tf ) = U11, (2.10)

and the pure-fast linear equations for the ni × nj-matrix functions Nij = Nij(t, ε):

εṄ12 = −N12(Λ + ε(K1 + K2M + W2)) + εW4N12, N12(tf ) = U12, (2.11)

εṄ21 = −(Λ′ − ε(K4 −MK2))N21 − εN21(W1 + W2N), N21(tf ) = U21, (2.12)

εṄ22 = −N22(Λ+ε(K1+K2M))−(Λ′−ε(K4−MK2)) N22, N22(tf ) = U22, (2.13)

where Λ = A22 − S22M . Similarly to Lemma 1, equations (2.10) – (2.13) have
bounded solutions on [0, tf ] iff a solution of (2.7) can be represented in the form

v1 = Nu1 + εN12u2, v2 = N21u1 + N22u2, t ∈ [0, tf ] (2.14)

for every u0
1 ∈ IRn1 , u0

2 ∈ IRn2 . Finally, substituting (2.14), (2.6) into (2.2), and
equating separately terms with u1 and u2, we get

Z

(
I + εG2N21 εG1 + εG2N22

H1 + H2N + E2N21 E1 + E2N22 + εH2N12

)
=

(
N + εG4N21 εN12 + εG3 + εG4N22

ε(H3 + H4N + E4N21) εE3 + εE4N22 + ε2H4N12

)
.

(2.15)

If for γ ≥ γf + δ and small ε RDE (2.10) has a uniformly bounded solution on
[0, tf ] then the linear equations (2.11) – (2.13) have solutions, exponentially decaying
on [0, tf ]:

|Nij(t, ε)| ≤ Keα(t−tf )/ε, t ∈ [0, tf ], K > 0. (2.16)

Lemma 2. Under A2 and A3 for any δ > 0 there exists εδ > 0 such that for all
0 < ε ≤ εδ and γ ≥ γf + δ the following holds:

(i) The full-order RDE (1.3) has a bounded solution on [0, tf ] iff the slow RDE
(2.10) has a bounded solution on [0, tf ];

(ii) If (1.3) has a bounded solution on [0, tf ], then this solution can be uniquely
defined from the equations (2.4), the decoupled pure-slow and pure-fast differ-
ential equations (2.10) – (2.13) and the linear algebraic equation (2.15).

From Lemma 2 it follows immediately:
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Theorem 1 (finite horizon case). Under A2 and A3 the following holds:

i) For a prechosen δ > 0 and all small enough ε, the suboptimal controller (1.5),
that guarantees a γ > max{γ∗(ε), γf +δ} performance level, can be determined
from (2.4), the decoupled reduced-order pure-slow and pure-fast differential
equations (2.10) – (2.13), and the linear algebraic equation (2.15) instead of
(1.3);

(ii) If γ∗(ε) ≥ γf + δ0 for 0 < ε < ε0, then for all small enough ε, the value of
γ∗(ε) can be found from (2.4a) and the slow RDE (2.10) by the formula:

γ∗(ε) = inf{γ > 0 | RDE (2.10) has a bounded on [0, tf ] solution}. (2.17)

In the infinite-horizon case we take A, B, D, Q to be constant and F = 0. In
this case (2.4) are algebraic equations and H, P, M and L are constant.

Lemma 3. Under A1 and A2 for any δ > 0 there exists εδ > 0 such that for all
0 < ε ≤ εδ and γ ≥ γf + δ the full-order ARE of (1.3), where Ż = 0, has a unique
solution Z, such that the matrix Aε − SεZ is Hurwitz, iff the slow ARE of (2.10),
where Ṅ = 0, has a unique solution such that ∆1 = W1 + W2N is Hurwitz. The
solutions of ARE (1.3) and of ARE (2.10) are related by formula:

Z =
(

N εG3

ε(H3 + H4N) εE3

)(
I εG1

H1 + H2N E1

)−1

, (2.18)

where the inverse matrix exists.

Note that A1, imposed on the full-order problem (1.1), (1.2) can be decomposed
into corresponding conditions for the slow and fast subproblems [8]. From Lemma 3
it follows

Theorem 2 (infinite horizon case). Under A1 and A2 the following holds:

(i) For a pechosen δ > 0 and all small enough ε, the suboptimal controller, that
guarantees a γ > max{γ∗(ε), γf + δ} performance level, can be determined
from (2.4), (1.5) and (2.18), where N is the solution of ARE (2.10) with the
Hurwitz matrix ∆1 and Z ≥ 0;

(ii) If γ∗(ε) ≥ γf + δ0 for 0 < ε < ε0, then for all small enough ε

γ∗(ε) = inf{γ > 0 |ARE (2.10) has a solution such that ∆1 is Hurwitz and
Z, defined by (2.18), is nonnegative definite}.
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3. CONCLUSIONS

Solutions to the ε-dependent reduced-order equations (2.10) – (2.13) can be found
without difficulty by standard numerical and asymptotic methods. This would lead
to effective reduced-order algorithms for H∞-Riccati equations. For a nonlinear
counterpart of the infinite horizon results see [5], where an asymptotic approximation
to the suboptimal controller is constructed on the basis of exact decomposition, and
it is shown that the high-order accuracy controller improves the performance.

APPENDIX

P r o o f of Lemma 1. Let RDE (1.3) has a bounded solution on [0, tf ]. Consider
the equation

ẋ = (Aε + BεZ)x, t ∈ [0, tf ]. (A.1)

Let x(t) be a solution of (A.1) with x(tf ) = x0, and y1(t), y2(t) be defined by (2.2).
Then y1(tf ), y2(tf ) satisfy the terminal condition of (2.1). Differentiating (2.2) and
applying (1.3) and (A.1) we shall see that the functions x1(t), x2(t), y1(t), y2(t)
satisfy (2.1).

Conversely, let there exists Z(t), satisfying (2.2), where {x1(t), x2(t), y1(t), y2(t)}
is a solution of (2.1). Then x(t) satisfies (A.1). Let (t0, x0), t0 ∈ [0, tf ] be an
arbitrary initial value for (A.1). Then (A.1) has a unique solution x(t) on [0, tf ],
satisfying x(t0) = x0. Differentiating (2.2) on t, at t = t0, we shall get (1.3) multi-
plied by x0. This implies (1.3) since t0 and x0 are arbitrary. 2

P r o o f of Lemma 2. Let (1.3) has a bounded on [0, tf ] solution. Since Lemma 1
for any x0

1, x0
2 the Hamiltonian system (2.1) has a solution, represented in the form

(2.2). Consider the system of (2.7), (2.8) with arbitrary terminal values u0
1 and

u0
2. This system has a solution represented in the form of (2.14) iff the following

algebraic system, that is obtained by substituting (2.6) into (2.2),
(

v1 + εG3u2 + εG4v2

H3u1 + H4v1 + E3u2 + E4v2

)
=

(
Z11 εZ12

Z21 Z22

)(
u1 + εG1u2 + εG2v2

H1u1 + H2v1 + E1u2 + E2v2

)

(A.2)
is solvable with respect to v1 and v2.

The linear algebraic system (A.2) is solvable with respect to v1, v2 iff the equations
(2.10),– (2.13) have bounded on [0, tf ] solutions. The uniqueness off the solutions
of (2.10) – (2.13) implies that the linear algebraic system (A.2) can possess only one
solution. It means that the latter system has the unique solution (2.14) and N
obtained is the bounded on [0, tf ] solution of (2.10).

Conversely, let (2.10) and, hence, (2.11) – (2.13) have bounded on [0, tf ] solutions.
Then the terminal value problem of (2.1) has a solution related in the form of (2.2)
iff the linear algebraic equation (2.15) is solvable with respect to components of Z
or iff (1.3) has a bounded on [0, tf ] solution. The uniqueness of the solution of (1.3)
implies the existence and the uniqueness of solution of (2.15) and, therefore, the
existence of the bounded on [0, tf ] solution of (1.3). This completes the proof of (i)
and (ii). 2
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P r o o f of Lemma 3. Let ARE of (1.3) has a solution Z, such that the matrix
Aε − SεZ is Hurwitz. It means [2], that the set

X− = {(x1, x2, y1, y2) | (2.2) is valid} (A.3)

is the stable eigenspace of the matrix Hamγ of the Hamiltonian system (2.1). More-
over, Hamγ has n1 + n2 stable and n1 + n2 unstable eigenvalues and such Z is
unique. Applying to X− the nonsingular transformation of (2.6), we get the stable
eigenspace M− of the matrix V of the system of (2.7). The latter stable manifold
can be represented in the form

M− = {(u1, v1, u2, v2) | (2.14) is valid} (A.4)

iff (A.2) is solvable with respect to v1, v2. Eigenvalues of the matrix V coincide
with those of Hamγ . Therefore the matrices N, N12, N21, N22 in (A.4) are uniquely
defined. This implies the existence and the uniqueness of the solution (2.14) of (A.2)
and, hence, the existence of M− given as (A.4). The matrices N, N12, N21, N22 in
(A.4) satisfy ARE of (2.10) and algebraic equations of (2.11) – (2.13), where Ṅij = 0.
The linear homogeneous algebraic equations (2.11) and (2.13) have the unique solu-
tions Ni2 = 0, i = 1, 2 due to the nonsingularity of Λ0.Then the equation v1 = Nu1

defines the stable eigenspace of the matrix W , that has no eigenvalues on the imagi-
nary axis, and ∆1 is Hurwitz. The uniqueness of the solution of ARE (2.10) with the
Hurwitz matrix ∆1 follows from the uniqueness of the stable eigenspace of W . Note,
that N21 = 0 since it is the solution of the linear homogeneous algebraic equation
(2.12), the matrix of which is nonsingular.

Conversely, let there exist a unique N satisfying (2.10) and such that ∆1 is
Hurwitz. Then the system of (2.7) has the unique stable manifold given as (A.4) with
the zero matrices N12, N21 and N22. By means of the inverse to (2.6) transformation
this stable eigenspace of the matrix V is mapped to the eigenspace of Hamγ . The
latter manifold can be represented as (A.3) iff the linear algebraic equation (2.15) has
a unique solution. Due to the uniqueness of the stable manifold of X−, the linear
algebraic equation (2.15) has a unique solution of the form (2.18). This implies
existence and uniqueness of the function Z satisfying ARE of (1.3) and such that
Aε −BεZ is Hurwitz. 2
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