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Editorial Board:
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Managing Editors:

Karel Sladký
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DISCUSSION OF THE STRUCTURE OF UNINORMS

PaweÃl Drygaś

The paper deals with binary operations in the unit interval. We investigate connections
between families of triangular norms, triangular conorms, uninorms and some decreasing
functions. It is well known, that every uninorm is build by using some triangular norm and
some triangular conorm. If we assume, that uninorm fulfils additional assumptions, then
this triangular norm and this triangular conorm have to be ordinal sums. The intervals in
ordinal sum are depending on the set of values of a decreasing function.

Keywords: uninorm, triangular norm, triangular conorm, binary operation, increasing op-
eration, idempotent operation, associative operation

AMS Subject Classification: 06F05, 03E72, 03B52

1. INTRODUCTION

Binary operations in the unit interval have many applications in fuzzy set theory
as multivalued logical connectives (cf. [7]). On the other hand, they are examples of
aggregation operators in the unit interval (cf. [11]). For that reason it is important
to examine and characterize such operations.

We discuss the structure of associative operations U : [0, 1]2 → [0, 1].

Definition 1. ([11]) Operation U is called a uninorm if it is commutative, associa-
tive, increasing with respect to both variables and has the neutral element e ∈ [0, 1].

Uninorms are the generalization of triangular norms (case e = 1) and triangular
conorms (case e = 0). In the case e ∈ (0, 1) we obtain operations considered in
[2] – [5], [8] – [11].

2. PRELIMINARY NOTES

First we start with basic definitions and some properties of triangular norms.

Definition 2. ([7]) Operation T (S) is called a triangular norm (triangular conorm)
if it is commutative, associative, increasing with respect to both variables and has
the neutral element e = 1 (e = 0).
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Definition 3. ([7]) Operation T (S) is called a triangular subnorm (triangular
superconorm) if it is commutative, associative, increasing with respect to both vari-
ables and fulfils the condition T ≤ min (S ≥ max).

Example 1. (cf. [7]) There are the basic triangular norms:

TM (x, y) = min(x, y), x, y ∈ [0, 1], (minimum)

TP (x, y) = x · y, x, y ∈ [0, 1], (product)

TL(x, y) = max(x+ y − 1, 0), x, y ∈ [0, 1]. (ÃLukasiewicz triangular norm)

Of course every triangular norms are triangular subnorms. Operations

T1(x, y) = 0, x, y ∈ [0, 1],

T2(x, y) = 1
2x · y, x, y ∈ [0, 1],

are triangular subnorms, but not triangular norms.

These operations we can use to construct new triangular norms.

Lemma 1. (cf. [6]) Let {[ak, bk]}k∈T be a countable family of nonoverlapping,
closed, proper subintervals of [0, 1]. Let T be an operation in [0, 1] defined by

T (x, y) =





ak + (bk − ak)Tk

(
x−ak

bk−ak
, y−ak

bk−ak

)
, if x, y ∈ (ak, bk],

min(x, y) otherwise,
(1)

where Ti are triangular subnorms. Moreover, assume that operation Tk have neutral
element e = 1 if bk = al and Tl is with zero divisor, or bk = 1. Then T is a triangular
norm.

Operation given by (1) is called the ordinal sum of {([ai, bi], Ti)}i∈T and each Ti

is called a summand.

Example 2. Operation

T (x, y) =





0, if x, y ∈ (0, 1
2 ],

2xy − x− y + 1, if x, y ∈ ( 1
2 , 1],

min(x, y), otherwise,

is an ordinal sum of operations T1 = 0 and T2 = TP .

In this example we can see, that operation T2 has no zero divisors and interval
(1
2 , 1] is closed with respect to operation T , but interval [ 12 , 1] is not closed with

respect to operation T .
Operation T1 has zero divisors and [0, 1

2 ] is closed with respect to operation T .
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Example 3. Operation

T (x, y) =





0, if x, y ∈ (0, 1
2 ],

max(x+ y − 1, 1
2 ), if x, y ∈ ( 1

2 , 1],

min(x, y), otherwise,

is build by using (1), where T1 = 0 and T2 = TL, but it is non-associative, be-
cause T1 has no neutral element and TL has zero divisors. E. g. for x = 1

2 ,
y = z = 3

4 , T ( 1
2 , T ( 3

4 ,
3
4 )) = T ( 1

2 ,
1
2 ) = 0, T (T ( 1

2 ,
3
4 ), 3

4 ) = T ( 1
2 ,

3
4 ) = 1

2 . There-
fore T (T (x, y), z) 6= T (x, T (y, z)).

3. STRUCTURE OF UNINORMS

In general a uninorm is composed by using a triangular norm and a triangular
conorm.

Theorem 1. (cf. [5]) If a uninorm U has the neutral element e ∈ (0, 1), then there
exist a triangular norm T and a triangular conorm S such that

U =

{
T ∗ in [0, e]2

S∗ in [e, 1]2,
(2)

where
{

T ∗(x, y) = ϕ−1 (T (ϕ(x), ϕ(y))) , ϕ(x) = x/e, x, y ∈ [0, e]

S∗(x, y) = ψ−1 (S (ψ(x), ψ(y))) , ψ(x) = (x− e)/(1− e), x, y ∈ [e, 1].
(3)

Conversely, directly by formula (3) we get triangular norm T and triangular
conorm S associated with given uninorm U :

T (x, y) = ϕ
(
U

(
ϕ−1(x), ϕ−1(y)

))
, S(x, y) = ψ

(
U

(
ψ−1(x), ψ−1(y)

))
, x, y ∈ [0, 1].

(4)
We ask about additional properties of operations given by (4). The answer es-

sentially depends on the domain complementary to that used in (2):

A(e) = [0, e)× (e, 1] ∪ (e, 1]× [0, e). (5)

Theorem 2. (cf. [8]) Let e ∈ (0, 1). If T is an arbitrary triangular norm and S is
an arbitrary triangular conorm, then formula (2) with U = min (or U = max) in
A(e) gives a uninorm.
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Example 4. (cf. [5]) Formula

U(x, y) =

{
0, x = 0 or y = 0,

xy
(1−x)(1−y)+xy , x > 0 and y > 0,

gives uninorm with e = 1
2 , T (x, y) = xy

2−(x+y−xy) , S(x, y) = x+y
1+xy , x, y ∈ [0, 1]. T

and S are arbitrary in Theorem 2, but here, T and S are dual (cf. [7], p. 223).

The most general observation on uninorms in the domain A(e) given by (5) was
presented in [5].

Lemma 2. (cf. [5]) If U is increasing and has the neutral element e ∈ (0, 1), then

min ≤ U ≤ max in A(e). (6)

Furthermore U(0, 1) ∈ {0, 1}.

The frame structure of uninorms after Theorem 1 and Lemma 2 can be depicted
in Figure 1.

T ∗

S∗min≤U≤max

min≤U≤max

0 e

e

1

1

Fig. 1. Structure of uninorm.

Using additional assumption on U in A(e) we get a representation of U by certain
formula.

Lemma 3. (cf. [3]) If operation U is increasing with neutral element e ∈ (0, 1) and
U(x, y) ∈ {x, y} in A(e), then the formula

gU (x) =

{
sup{y : U(x, y) = x}, if x ≤ e

inf{y : U(x, y) = x}, if x > e,
(7)



Discussion of the Structure of Uninorms 217

gives a decreasing function gU : [0, 1] → [0, 1] with fixed point e, such that

U(x, y) =





min(x, y), if y < gU (x)

max(x, y), if y > gU (x)

x or y, if y = gU (x)

in A(e). (8)

Example 5. Let e ∈ (0, 1). For the uninorm U given in Theorem 2 which is given
by minimum in A(e), the corresponding function is of the form

gU (x) =

{
1, if x ∈ [0, e)

e, if x ∈ [e, 1].

4. MAIN RESULTS

We ask about the structure of an operation which belong to the class

U(e) = {U : U is increasing, associative, binary operation in the unit interval,

with the neutral element e ∈ (0, 1), and U(x, y) ∈ {x, y} in A(e)}.
(9)

Problem 1. What can we say about properties of the function gU given by formula
(7), if U ∈ U(e)?

The partial answer to the Problem 1 we describe in the next lemmas.

Lemma 4. (cf. [3, 10]) If U ∈ U(e), then function g = gU fulfils

inf{y : g(y) = g(x)} ≤ g2(x) ≤ sup{y : g(y) = g(x)} for x ∈ [0, 1] (10)

and

U(x, g(x)) =

{
min(x, g(x)), if x < g2(x)

max(x, g(x)), if x > g2(x),
(11)

where g2(x) = g(g(x)) for x ∈ [0, 1].
Moreover, U is commutative in A(e), beyond the points (x, g(x)), such that x =

g2(x).

P r o o f . Let U ∈ U(e). By Lemma 3 function g = gU is decreasing, with fixed
point e and U is given by (8). First we show commutativity of the function U in
A(e), beyond the points belonging to the graph of the function g. Let x < e < y,
y 6= g(x). By monotonicity of g and U we have:
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If x < e < y < g(x), then by (8) U(x, y) = min(x, y) = x and g(x) > e ≥ g(y).
Suppose, that U(y, x) = y and let c ∈ (y, g(x)) ⊂ [e, 1]. By (8) U(x, c) = min(x, c) =
x, and by associativity we have

y = U(y, x) = U(y, U(x, c)) = U(U(y, x), c) = U(y, c) ≥ U(e, c) = c > y,

which is contradictory. So, U(y, x) = x = U(x, y).
If x < e < y, g(x) < y, g(y) < g(x), then by (8) we have U(x, y) = y. Suppose,

that U(y, x) = x. By (8) x ≤ g(y). Let c ∈ (g(x), y) ⊂ [e, 1]. Again by (8) and
associativity we have

c = U(x, c) = U(U(y, x), c) = U(y, U(x, c)) = U(y, c) ≥ U(y, e) = y > c,

which gives a contradiction. So, U(y, x) = y = U(x, y).
If x < e < y and g(x) = g(y), then by the monotonicity of the function g we

have g(x) = g(y) = g(e) = e. Take c, d, such that x < c < e < d < y we have
g(c) = g(d) = e, it means that c < g(d) and d > g(c), thus U(d, c) = c, U(c, d) = d.
By associativity we obtain

d = U(c, d) = U(U(y, c), d) = U(y, U(c, d)) = U(y, d) ≥ U(y, e) = y > d,

which leads to a contradiction, so this case is impossible.

The proof of the commutativity U on A(e) in the case x > e > y is similar.
Therefore U is commutative on A(e) beyond the points (x, g(x)).

Now we prove, that (10) holds. Let x ∈ [0, 1] and

a = inf{y : g(y) = g(x)}, b = sup{y : g(y) = g(x)}.

Of course a ≤ x ≤ b and g(a) ≥ g(x) ≥ g(b). Suppose, that g2(x) < a. Taking
c ∈ (g2(x), a), we have c < x, thus g(c) ≥ g(x), and g2(x) < c, so (g(x), c) ∈ A(e)
and does not belong to the graph of the function g. According to (8) we obtain,
that U(g(x), c) = max(g(x), c). By the proved commutativity of the operation U we
have U(c, g(x)) = max(c, g(x)), and again by (8) g(c) ≤ g(x), therefore g(c) = g(x).
Which gives a contradiction with the assumption that a is the greatest lower bound
of the set {y : g(x) = g(y)}. Suppose, that g2(x) > b and let c ∈ (b, g2(x)). In a
similar way we obtain a contradiction, which means, that (10) holds.

Now we show (11). Suppose, that x < g2(x). Obviously x 6= e and (g(x), x) /∈
{(y, g(y)) : y ∈ [0, 1]}, but (g(x), x) ∈ A(e), so, by the proved commutativity of U
we have U(x, g(x)) = U(g(x), x) = min(x, g(x)).

In a similar way, if x > g2(x), then we obtain U(x, g(x)) = max(x, g(x)).

Now we show, that U(x, g(x)) = U(g(x), x) for all x ∈ [0, 1], such that x 6= g2(x).
By (11) we have:
if x < g2(x), then U(g(x), x) = min(g(x), x) and U(x, g(x)) = min(x, g(x)),
if x > g2(x), then U(g(x), x) = max(g(x), x) and U(x, g(x)) = max(x, g(x)).

So, U is commutative in A(e) beyond the points (x, g(x)), such that x = g2(x).¤



Discussion of the Structure of Uninorms 219

Lemma 5. Let e ∈ (0, 1), U ∈ U(e) and g = gU .
If g is strictly decreasing and continuous function on (a, b) ⊂ [0, 1] and g((a, b)) =

(c, d), then g is strictly decreasing and continuous function on (c, d), and g2(x) = x
for x ∈ (a, b) ∪ (c, d).

If s ∈ [0, 1] is a point of discontinuity of the function g and

p :=





lim
x→s+

g(x), if s < 1

0, if s = 1,
q :=





lim
x→s−

g(x), if s > 0

1, if s = 0,
(12)

then g(x) = s for x ∈ (p, q).
Let s ∈ [0, 1] and B = {x : g(x) = s}. If card B ≥ 2 and p = inf B < supB = q,

then s is a point of discontinuity of the function g, p ≤ g(s) ≤ q and (12) holds.

0 e

e

1

1

p

p

q

q

s

s

Fig. 2. The point of discontinuity of the function g.

P r o o f . We use results of Lemmas 3 and 4. Let (a, b) ⊂ [0, 1] be an interval, such
that function g is strictly decreasing and continuous in (a, b). It means, that g is a
bijection from (a, b) into g((a, b)) = (c, d). By (10) g2(x) = x for x ∈ (a, b), therefore
g((c, d)) = (a, b), and g is strictly decreasing and continuous in (c, d), moreover
g2(x) = x in (c, d).

Let now s be a point of discontinuity of the function g, limx→s− g(x) = q,
limx→s+ g(x) = p (cf. Figure 2).

For s > e we have:
If x ∈ (p, q), e ≤ y < s, then g(y) ≥ q > x and by (8) U(y, x) = min(x, y) = U(x, y).
It means, that g(x) ≥ y for all y < s. Thus g(x) ≥ s for x ∈ (p, q). If x ∈ (p, q),
y > s, then g(y) ≤ p < x and by (8) U(y, x) = max(y, x) = U(x, y). Thus g(x) ≤ y
for all y > s. Therefore g(x) ≤ s for x ∈ (p, q). It means, that g(x) = s in (p, q).

For s < e we can use the same arguments.
For s = e we have (p, q) ⊂ [0, e] or (p, q) ⊂ [e, 1] and g(x) ≥ e for x ∈ (p, q) or

g(x) ≤ e for x ∈ (p, q) respectively. Using arguments from two previous cases we
have proved first part of the Lemma.
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Let s ∈ [0, 1] be a point, such that cardB ≥ 2 and p = inf B < supB = q.
The condition p ≤ g(s) ≤ q we obtain by the monotonicity of the function g. Let
x ∈ (p, q), y < s. Then by (8) U(x, y) = min(x, y) and by commutativity of U we
obtain U(y, x) = min(y, x). Again by (8) we obtain that g(y) ≥ x for x ∈ (p, q),
which means, that g(y) ≥ q. Since y < s, thus limx→s− g(x) ≥ q. Supposing
r = limx→s− g(x) > q, then by previous part of lemma we have g(x) = s for
x ∈ (p, r) ) (p, q), which gives a contradiction.

In the same way we show, that limx→s+ g(x) = p. Since p < q, then s is a point
of discontinuity of the function g. ¤

Problem 2. What can we say about the influence of the properties of function gU

on the structure of operation U (and operations T , S given by formula (4))?

Example 6. (cf. [3]) Let g(x) = 1 − x, x ∈ [0, 1]. Operation U : [0, 1]2 → [0, 1]
given by

U(x, y) =





2xy, if x, y ∈ [0, 1
2 ],

max(x, y), if y > g(x),

min(x, y), otherwise,

is not associative. E. g. for x = y = 1
4 , z = 13

16 . U
(
U

(
1
4 ,

1
4

)
, 13

16

)
= U

(
1
8 ,

13
16

)
= 1

8 ,

U
(

1
4 , U

(
1
4 ,

13
16

))
= U

(
1
4 ,

13
16

)
= 13

16 . Therefore U(U(x, y), z) 6= U(x,U(y, z)). This
shows, that triangular norm and conorm in (2) cannot be arbitrary, if we want to
construct a uninorm.

The partial answer to the Problem 2 gives the next theorem.

Theorem 3. (cf. [3]) Let g : [0, 1] → [0, 1] be a decreasing involution (g2 = id).
Formula

U(x, y) =





T ∗(x, y), x, y ∈ [0, e]

S∗(x, y), x, y ∈ [e, 1]

min(x, y), x < e < y ≤ g(x) or y ≤ g(x) < e < x

max(x, y), x < e < g(x) < y or g(x) < y < e < x,

(13)

gives a uninorm, iff T = min and S = max.

Lemma 6. Let U ∈ U(e), If g = gU is strictly decreasing and continuous function
on (a, b) ⊂ [0, e] and g((a, b)) = (c, d), then (cf. Figure 3)

U = min on [0, b]× (a, e] ∪ (a, e]× [0, b], (14)

U = max on [e, d)× [c, 1] ∪ [c, 1]× [e, d). (15)
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0 e

e

1

1

HH
AA

a

a

b

b

c

c

d

d

min

min

max

max

Fig. 3. Subinterval (a, b) with strictly decreasing g.

P r o o f . First we show, that all elements in (a, b] are idempotent. Let a < x ≤ b,
then U(x, x) ≤ U(x, e) = x. Suppose, that U(x, x) < x. Since g(x) ≥ e for x ∈ [0, e]
and g(x) ≤ e for x ∈ [e, 1], then by strict monotonicity of g we have c ≤ g(x) <
g(U(x, x)). Let z ∈ [e, 1], such that g(x) < z < g(U(x, x)). By associativity and
(8) we obtain U(x, x) = U(U(x, x), z) = U(x, U(x, z)) = U(x, z) = z > e. This is
contradictory, therefore we have U(x, x) = x.

To prove (14) we divide set [0, b]× (a, e] ∪ (a, e]× [0, b] into six parts.
If a < x ≤ y ≤ e, x ≤ b, then x = U(x, x) ≤ U(x, y) ≤ U(x, e) = x, thus

U(x, y) = x = min(x, y).
If a < y ≤ x ≤ e, y ≤ b, then y = U(y, y) ≤ U(x, y) ≤ U(e, y) = y, thus

U(x, y) = y = min(x, y).
If x ≤ a < y < b, then U(x, y) ≤ min(x, y) and let z ∈ [e, 1], such that g(x) >

z > g(y). We have

U(U(x, y), z) = min(U(x, y), z) = U(x, y),

U(x,U(y, z)) = U(x,max(y, z)) = U(x, z) = min(x, z) = x.

By associativity of U we have U(x, y) = x = min(x, y).
If x ≤ a < b ≤ y ≤ e, then for z ∈ (a, b) we have x = U(x, z) ≤ U(x, y) ≤

U(x, e) = x. Therefore U(x, y) = min(x, y).
If y ≤ a < x < b, then U(x, y) ≤ min(x, y). If we fix z ∈ (c, d), such that

x > g(z) > y, then we have

U(z, U(x, y)) = min(z, U(x, y)) = U(x, y),

U(U(z, x), y) = U(max(z, x), y) = U(z, y) = min(z, y) = y.

By associativity of U we obtain U(x, y) = y = min(x, y).
If y ≤ a < b ≤ x ≤ e, then for z ∈ (a, b) we have y = U(z, y) ≤ U(x, y) ≤

U(e, y) = y. It means, that U(x, y) = min(x, y).
This proves (14). The proof of the formula (15) is similar. ¤
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Lemma 7. Let U ∈ U(e) and s be a point of discontinuity of the function g = gU .
If s ∈ [0, e], then

U = min on [0, s]× (s, e] ∪ (s, e]× [0, s]. (16)

If s ∈ [e, 1], then

U = max on [e, s)× [s, 1] ∪ [s, 1]× [e, s). (17)

P r o o f . Let s be a point of discontinuity of the function g and p, q be given by
(12).

Now we prove (16). If s = 0, then the domain in condition (16) reduces to
the set, in which one of variables is equal zero, and second is less than e. Since
e is neutral element, then U(x, 0) ≤ U(e, 0) = 0 and U(0, x) ≤ U(0, e) = 0. So
U(0, x) = U(x, 0) = 0 = min(x, 0). Similar argument we can use for s = e.

Let s ∈ (0, e) (see Figure 4).

0 e

e

1

1

s

s

p

p

q

q

min

min

0 e

e

1

1

p

p

q

q

s

s
max

max

Fig. 4. Dependence of the points of operation U under discontinuity points of the

function gU .

If 0 ≤ x < s < y ≤ e and z ∈ (p, q), then g(x) > z > g(y), U(x, y) ≤ min(x, y) < s
and g(U(x, y)) ≥ q > z. By (8) we have

U(U(x, y), z) = min(U(x, y), z) = U(x, y),

U(x,U(y, z)) = U(x,max(y, z)) = U(x, z) = min(x, z) = x.

Now, by associativity of U we obtain U(x, y) = x = min(x, y).
If 0 ≤ y < s < x ≤ e and z ∈ (p, q), then

U(z, U(x, y)) = min(z, U(x, y)) = U(x, y),
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U(U(z, x), y) = U(max(z, x), y) = U(z, y) = min(z, y) = y.

Therefore U(x, y) = min(x, y).
If x = s and y ∈ (s, e], then by above part of proof we have U(x, y) ≤ min(x, y) =

x and for all z < x we have U(z, y) = min(z, y) = z. Since U is increasing, then
U(x, y) ≥ limz→x− U(z, y) = x. So, U(x, y) = x = min(x, y). Case y = s and
x ∈ (s, e] follows similarly. It shows (16).

The proof of the formula (17) is similar. ¤

Lemma 8. Let U ∈ U(e) and s be a point of discontinuity of the function g = gU ,
p, q be given by (12) and g(s) = r, p < r < q.

If s ∈ [0, e), then r > e and (cf. Figure 5, left)

U = max on (p, r)× [r, q) ∪ [r, q)× (p, r). (18)

If s ∈ (e, 1], then r < e and (cf. Figure 5, right)

U = min on (p, r]× (r, q) ∪ (r, q)× (p, r]. (19)

P r o o f . Let s ∈ (e, 1], 0 ≤ p < x < r < y < q ≤ e. By (8) and commutativity
of U in A(e) beyond the graph of the function g we have U(U(x, y), s) = U(x, y),
U(x,U(y, s)) = U(x, s) = x, U(U(s, y), x) = U(s, x) = x, U(s, U(y, x)) = U(y, x).
By associativity of U we obtain U(x, y) = x = min(x, y).

If x = r, y ∈ (r, q), then U(x, y) ≤ min(x, y) = x and U(z, y) = min(z, y) for all
z ∈ (p, r). Since U is increasing, then U(x, y) = x = min(x, y). It shows (19).

In a similar way we can prove (18). ¤

0 e

e

1

1

q

q

m
a
x

max

s

s

p

p

q

q

r

r

0 e

e

1

1

p

p

q

q

s

s

q

q

r

r
min

min

Fig. 5. The values of the function g in the points of discontinuity of the function g.
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By this observation we obtain the fact that operation U on [0, e]2 is an ordinal sum
of {([ai, bi], Ti)}i∈T , (see Lemma 1), such that function g is constant on (ai, bi) ⊂
[0, e] for all i ∈ T . The operation U on [e, 1]2 is an ordinal sum of {([cj , dj ], Sj)}j∈S ,
such that function g is constant on (cj , dj) ⊂ [e, 1] for all j ∈ S.

The next theorem gives the characterization uninorm belonging to the set U(e).

Theorem 4. Let e ∈ (0, 1). If uninorm U ∈ U(e), then

• there exists a decreasing function g : [0, 1] → [0, 1] with fixed point e, such
that (10) holds and U is given by formula

U(x, y) =





min(x, y) if y < g(x) or y = g(x) and x < g2(x)

max(x, y) if y > g(x) or y = g(x) and x > g2(x)

x or y if y = g(x) and x = g2(x)

inA(e),

(20)

• U |[0,e]2 is an ordinal sum of {([ai, bi], Ti)}i∈T , such that (ai, bi) ⊂ [0, e]\{g(x) :
x ∈ [e, 1]} for all i ∈ T ,

• U |[e,1]2 is an ordinal sum of {([cj , dj ], Sj)}j∈S , such that (cj , dj) ⊂ [e, 1]\{g(x) :
x ∈ [0, e]} for all j ∈ S.
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Fig. 6. Structure of uninorm belonging to the class U(e).

P r o o f . Let e ∈ (0, 1) and U ∈ U(e) be a uninorm. Directly by Lemma 3 the
function g = gU is decreasing, with fixed point e. By Lemma 4 we obtain, that
g fulfils condition (10). Mixing the formulas (8) and (11) we obtain, that U is
given by (20) in A(e). By Lemmas 6, 7, 8 operation U may differ from min only on
the intervals (ai, bi], such that (ai, bi) ⊂ [0, e] \ {g(x) : x ∈ [e, 1]} (see Figure 6).
Moreover, by Lemma 5 we have g(x) = const for x ∈ (ai, bi).
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First we prove, that interval (ai, bi] or [ai, bi] is closed with respect to operation
U . By Lemmas 6, 7, 8 we have U(ai, x) = U(x, ai) = ai for x ∈ (ai, bi].

If U(x, y) > ai for x, y ∈ (ai, bi], then (ai, bi] is stable under operation U .
If exist x, y ∈ (ai, bi], such that U(x, y) = ai, then by associativity of U we have

U(ai, ai) = U(U(x, y), ai) = U(x, U(y, ai)) = U(x, ai) = ai. It means, that [ai, bi] is
a subset stable under operation U .

So, U |[0,e]2 is an ordinal sum of operations Ti which are isomorphic to the U |(ai,bi],
where

Ti(x, y) =

{
0, if x = 0 or y = 0

1
bi−ai

(U((bi − ai)x+ ai, (bi − ai)y + ai)− ai) , otherwise,

In a similar way we can obtain, that U |[e,1]2 is an ordinal sum of operations Si.¤

5. CONCLUSION

In this paper we characterize uninorms with neutral element e ∈ (0, 1), such that
U(x, y) ∈ {x, y} in A(e).

We obtain, that triangular norm and conorm from Theorem 1 have the form of
ordinal sum. The open problem is to characterize all uninorms, without assumption,
that U(x, y) ∈ {x, y} in A(e). If triangular norm and triangular conorm given by
(4) are continuous, then characterization we can find in [4]. The next problem is to
characterize all uninorms such that all element of the set of values of the function
gU are idempotent.

(Received June 7, 2004.)
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