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George Klir, Ivan Kramosil, Friedrich Liese,
Jean-Jacques Loiseau, Frantǐsek Matúš,
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INTERPRETABILITY OF LINGUISTIC VARIABLES:
A FORMAL ACCOUNT

Ulrich Bodenhofer and Peter Bauer

This contribution is concerned with the interpretability of fuzzy rule-based systems.
While this property is widely considered to be a crucial one in fuzzy rule-based modeling, a
more detailed formal investigation of what “interpretability” actually means is not available.
So far, interpretability has most often been associated with rather heuristic assumptions
about shape and mutual overlapping of fuzzy membership functions. In this paper, we
attempt to approach this problem from a more general and formal point of view. First, we
clarify what the different aspects of interpretability are in our opinion. Consequently, we
propose an axiomatic framework for dealing with the interpretability of linguistic variables
(in Zadeh’s original sense) which is underlined by examples and application aspects, such
as, fuzzy systems design aid, data-driven learning and tuning, and rule base simplification.

Keywords: fuzzy modeling, interpretability, linguistic variable, machine learning

AMS Subject Classification: 94D05, 68T05, 68T35

1. INTRODUCTION

The epoch-making idea of L. A. Zadeh’s early work was to utilize what he called
“fuzzy sets” as mathematical models of linguistic expressions which cannot be rep-
resented in the framework of classical binary logic and set theory in a natural way.
The introduction of his seminal article on fuzzy sets [42] contains the following re-
markable words:

“More often than not, the classes of objects encountered in the real phys-
ical world do not have precisely defined criteria of membership. [. . . ]
Yet, the fact remains that such imprecisely defined “classes” play an im-
portant role in human thinking, particularly in the domains of pattern
recognition, communication of information, and abstraction.”

Fuzzy systems became a tremendously successful paradigm – a remarkable tri-
umph which started with well-selling applications in consumer goods implemented
by Japanese engineers. The reasons for this development are manifold; however, we
are often confronted with the following arguments:

1. The main difference between fuzzy systems and other control or decision sup-
port systems is that they are parameterized in an interpretable way – by means
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of rules consisting of linguistic expressions. Fuzzy systems, therefore, allow
rapid prototyping as well as easy maintenance and adaptation.

2. Fuzzy systems offer completely new opportunities to deal with processes for
which only a linguistic description is available. Thereby, they allow to achieve
a robust, secure, and reproducible automation of such tasks.

3. Even if conventional control or decision support strategies can be employed,
re-formulating a system’s actions by means of linguistic rules can lead to a
deeper qualitative understanding of its behavior.

We would like to raise the question whether fuzzy systems, as they appear in daily
practice, really reflect these undoubtedly nice advantages. One may observe that
the possibility to estimate the system’s behavior by reading and understanding the
rule base only is a basic requirement for the validity of the above points. If we adopt
the usual wide understanding of fuzzy systems (rule-based systems incorporating
vague linguistic expressions), we can see, however, that this property – let us call it
interpretability – is not guaranteed by definition.

In our opinion, interpretability should be the key property of fuzzy systems. If it
is neglected, one ends up in nothing else than black-box descriptions of input-output
relationships and any advantage over neural networks or conventional interpolation
methods is lost completely.

The more fuzzy systems became standard tools for engineering applications, the
more Zadeh’s initial mission became forgotten. In recent years, however, after a
relatively long period of ignorance, an increasing awareness of the crucial property
of interpretability has emerged [1, 2, 6, 12, 21, 39, 40, 41]. A recent book [11]
bundles these forces by presenting a comprehensive overview of research on this
topic. So far, the following questions have been identified to have a close connection
to interpretability:

1. Does the inference mechanism produce results that are technically and intu-
itively correct?

2. Is the number of rules still small enough to be comprehensible by a human
expert?

3. Is the rule set complete and consistent?

4. Do the fuzzy sets associated to the linguistic expressions really correspond to
the human understanding of these expressions?

This paper is solely devoted to the fourth question. So far, there is a kind of
shallow understanding that this question is related to shape, ordering, and mutual
overlapping of fuzzy membership functions. We intend to approach this question
more formally. This is accomplished making the inherent relationships between the
linguistic labels explicit by formulating them as (fuzzy) relations. In order to provide
a framework that is as general as possible, we consider linguistic variables in their
most general form.

Note that the given paper is a revised and extended version of a previously pub-
lished book chapter [7].
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2. PRELIMINARIES

Throughout the whole paper, we do not explicitly distinguish between fuzzy sets
and their corresponding membership functions. Consequently, uppercase letters are
used for both synonymously. For a given non-empty set X, we denote the set of
fuzzy sets on X with F(X). As usual, a fuzzy set A ∈ F(X) is called normalized if
there exists an x ∈ X such that A(x) = 1.

Triangular norms and conorms [28] are common standard models for fuzzy con-
junctions and disjunctions, respectively. In this paper, we will mainly need these
two concepts for intersections and unions of fuzzy sets. It is known that couples
consisting of a nilpotent t-norm and its dual t-conorm [22, 28] are most appropri-
ate choices as soon as fuzzy partitions are concerned [14, 30]. The most important
representatives of such operations are the so-called ÃLukasiewicz operations:

TL(x, y) = max(x + y − 1, 0)
SL(x, y) = min(x + y, 1)

The intersection and union of two arbitrary fuzzy sets A,B ∈ F(X) with respect to
the ÃLukasiewicz operations can then be defined as

(
A ∩L B

)
(x) = TL

(
A(x), B(x)

)

and (
A ∪L B

)
(x) = SL

(
A(x), B(x)

)
,

respectively. We restrict to these two standard operations in the following – for
the reason of simplicity and the fact that they perfectly fit to the concept of fuzzy
partitions due to Ruspini [38]; recall that a family of fuzzy sets (Ai)i∈I ⊆ F(X) is
called Ruspini partition if the following equality holds for all x ∈ X:

∑

i∈I

Ai(x) = 13.

Furthermore, recall that a fuzzy set A ∈ F(X) is called convex if the property

x ≤ y ≤ z =⇒ A(y) ≥ min
(
A(x), A(z)

)

holds for all x, y, z ∈ X (given a crisp linear ordering ≤ on the domain X) [4, 8, 31,
42].

Lemma 1. [4] Let X be linearly ordered. Then an arbitrary fuzzy set A ∈ F(X)
is convex if and only if there exists a partition of X into two connected subsets X1

and X2 such that, for all x1 ∈ X1 and all x2 ∈ X2, x1 ≤ x2 holds and such that the
membership function of A is non-decreasing over X1 and non-increasing over X2.

As a trivial consequence of the previous lemma, a fuzzy set whose membership
function is either non-decreasing or non-increasing is convex.
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3. FORMAL DEFINITION

Since it has more or less become standard and offers much freedom, in particular
with respect to integration of linguistic modifiers and connectives, we closely follow
Zadeh’s original definition of linguistic variables [43, 44, 45].

Definition 2. A linguistic variable V is a quintuple of the form

V = (N, G, T,X, S),

where N , T , X, G, and S are defined as follows:

1. N is the name of the linguistic variable V ;

2. G is a grammar;

3. T is the so-called term set, i. e. the set linguistic expressions resulting from G;

4. X is the universe of discourse;

5. S is a T → F(X) mapping which defines the semantics – a fuzzy set on X –
of each linguistic expression in T .

In this paper, let us assume that the grammar G is always given in Backus–Naur
Form (BNF) [37].

In our point of view, the ability to interpret the meaning of a rule base quali-
tatively relies deeply upon an intuitive understanding of the linguistic expressions.
Of course, this requires knowledge about inherent relationships between these ex-
pressions. Therefore, if qualitative estimations are desired, these relationships need
to transfer to the underlying semantics, i. e. the fuzzy sets modeling the labels. In
other words, interpretability is strongly connected to the preservation of inherent
relationships by the mapping S (according to Definition 2).

The following definition gives an exact mathematical formulation of this property.

Definition 3. Consider a linguistic variable V = (N, T, X, G, S) and an index set
I. Let R = (Ri)i∈I be a family of relations on the set of verbal values T , where each
relation Ri has a finite arity ai. Assume that, for every relation Ri, there exists a
relation Qi on the fuzzy power set F(X) with the same arity.1 Correspondingly, we
abbreviate the family (Qi)i∈I with Q. Then the linguistic variable V is called R-Q-
interpretable if and only if the following holds for all i ∈ I and all x1, . . . , xai ∈ T :

Ri

(
x1, . . . , xai

)
=⇒ Qi

(
S(x1), . . . , S(xai)

)
. (1)

1Qi is associated with the “semantic counterpart” of Ri, i. e. the relation that models Ri on the
semantic level.
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Remark 4. The generalization of Definition 3 to fuzzy relations is straightforward.
If we admit fuzziness of the relations Ri and Qi, the implication in (1) has to be
replaced by the inequality

Ri

(
x1, . . . , xai

) ≤ Qi

(
S(x1), . . . , S(xai

)
)
.

4. A DETAILED STUDY BY MEANS OF PRACTICAL EXAMPLES

In almost all fuzzy control applications, the domains of the system variables are
divided into a certain number of fuzzy sets by means of the underlying ordering –
a fact which is typically reflected in expressions like “small”, “medium”, or “large”.
We will now discuss a simple example involving orderings to illustrate the concrete
meaning of Definition 3.

Let us consider the following linguistic variable:

V = (“v1”, G, T,X, S).

The grammatical definition G is given as follows:

⊥ := 〈atomic〉;
〈atomic〉 := 〈adjective〉 | 〈adverb〉 〈adjective〉;
〈adjective〉 := “small” | “medium” | “large”;

〈adverb〉 := “at least” | “at most”.

Obviously, the following nine-element term set can be derived from G:

T = {“small”, “medium”, “large”,

“at least small”, “at least medium”,

“at least large”, “at most small”,

“at most medium”, “at most large”.}

The universe of discourse is the real interval X = [0, 100].
Taking the “background” or “context” of the variable into account, almost every

human has an intuitive understanding of the qualitative meaning of each of the above
linguistic expressions, even if absolutely nothing about the quantitative meaning, i. e.
the corresponding fuzzy sets, is known. This understanding, to a major part, can be
attributed to elementary relationships between the linguistic values. According to
Definition 3, let us assume that these inherent relationships are modeled by a family
of relations R = (Ri)i∈I .

In our opinion, the most obvious relationships in the example term set T are
orderings and inclusions. Therefore, we consider the following two binary relations
(for convenience, we switch to infix notations here):

R = (¹,v). (2)
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atm. small atm. med. atm. large

small med. large

atl. small atl. med. atl. large

6 6 6

6 6 6

- -

- -

- -

Fig. 1. Hasse diagram of ordering relation ¹.

The first relation ¹ stands for the ordering of the labels, while the second one
corresponds to an inclusion relation, e. g. u v v means that v is a more general term
than u.

First of all, one would intuitively expect a proper ordering of the adjectives, i. e.

“small” ¹ “medium” ¹ “large”. (3)

Moreover, the following conditions of monotonicity seem reasonable for all adjectives
u, v (atomic expressions from the set {“small”, “medium”, “large”}):

u v “at least” u

v v “at most” v

u ¹ v =⇒ “at least” u ¹ “at least” v

u ¹ v =⇒ “at most” u ¹ “at most” v

u ¹ v =⇒ “at least” v v “at least” u

u ¹ v =⇒ “at most” u v “at most” v.

Figures 1 and 2 show Hasse diagrams which fully describe the two relations ¹ and
v (note that both relations are supposed to be reflexive, a fact which, for the sake
of simplicity, is not made explicit in the diagrams).

Now we have to define meaningful counterparts of the relations in R on the
semantic level, i. e. on F(X). We start with the usual inclusion of fuzzy sets according
to Zadeh [42].

Definition 5. Consider two fuzzy sets of A,B ∈ F(X). A is called a subset of B,
short A ⊆ B, if and only if, for all x ∈ X, A(x) ≤ B(x). Consequently, in this case,
B is called a superset of A.

For defining a meaningful counterpart of the ordering relation ¹, we adopt a sim-
ple variant of the general framework for ordering fuzzy sets proposed in [4, 5], which
includes well-known orderings of fuzzy numbers based on the extension principle
[27, 29].
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Fig. 2. Hasse diagram of inclusion relation v.

Definition 6. Suppose that a universe X is equipped with a crisp linear ordering
≤. Then a preordering . of fuzzy sets can be defined by

A . B ⇐⇒ (
ATL(B) ⊆ ATL(A) and ATM(A) ⊆ ATM(B)

)
,

where the operators ATL and ATM are defined as follows:

ATL(A)(x) = sup{A(y) | y ≤ x}
ATM(A)(x) = sup{A(y) | y ≥ x}.

Figure 3 shows an example what the operators ATL and ATM give for a non-
trivial fuzzy set. It is easy to see that ATL always yields the smallest superset
with non-decreasing membership function, while ATM yields the smallest superset
with non-increasing membership function. For more details about the particular
properties of the ordering relation . and the two operators ATL and ATM, see
[4, 5].

Summarizing, the set of counterpart relations Q looks as follows (with the rela-
tions from Definitions 5 and 6):

Q = (.,⊆). (4)

Now R-Q-interpretability of linguistic variable V (with definitions of R and Q accord-
ing to (2) and (4), respectively) specifically means that the following two implications
hold for all u, v ∈ T :

u ¹ v =⇒ S(u) . S(v) (5)
u v v =⇒ S(u) ⊆ S(v). (6)

This means that the mapping S plays the crucial role in terms of interpretability. In
this particular case, R-Q-interpretability is the property that an ordering or inclusion
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A

1 2 3 4 5

0.2

0.4

0.6

0.8

1

ATL(A)

1 2 3 4 5
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0.8

1

ATM(A)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

Fig. 3. A fuzzy set A ∈ F(R) and the results

which are obtained when applying the operators ATL and ATM.

relationship between two linguistic terms is never violated by the two corresponding
fuzzy sets. From (3) and (5), we can deduce the first basic necessary condition for
the fulfillment of R-Q-interpretability – that the fuzzy sets associated with the three
adjectives must be in proper order:

S(“small”) . S(“medium”) . S(“large”). (7)

It is easy to observe that this basic ordering requirement is violated by the example
shown in Figure 4, while it is fulfilled by the fuzzy sets in Figure 5.

In order to fully check R-Q-interpretability of V , the semantics of linguistic ex-
pressions containing an adverb (“at least” or “at most”) have to be considered as
well. The definition of linguistic variables does not explicitly contain any hint how
to deal with the semantics of such expressions. From a pragmatic viewpoint, two
different ways are possible: one simple variant is to define a separate fuzzy set for
each expression, regardless whether they contain an adverb or not. As a second
traditional variant, we could use fuzzy modifiers – F(X) → F(X) functions – for
modeling the semantics of adverbs. In this example, it is straightforward to use the
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S(“medium”)S(“small”)S(“large”)
HHj ? ª

0.2

0.4

0.6

0.8

1

Fig. 4. A non-interpretable setting.

S(“small”)S(“medium”) S(“large”)
? ? ?

0.2

0.4

0.6

0.8

1

Fig. 5. An example of an interpretable setting.

fuzzy modifiers introduced in Definition 6 (see [4, 3, 15] for a detailed justification):

S(“at least”A) = ATL
(
S(A)

)

S(“at most”A) = ATM
(
S(A)

)
.

Since it is by far simpler and easier to handle with respect to interpretability, we
strongly suggest the second variant.

In case that we use the above fuzzy modifiers for modeling the two adverbs “at
least” and “at most”, we are now able to formulate a necessary condition for the
fulfillment of R-Q-interpretability in our example.

Theorem 7. Consider the linguistic variable V and the two relation families R
and Q as defined above. Provided that the mapping S always yields a normalized
fuzzy set, the following two statements are equivalent:

(i) V is R-Q-interpretable

(ii) S(“small”) . S(“medium”) . S(“large”).

P r o o f .

(i) ⇒ (ii): Trivial (see above).
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(ii) ⇒ (i): The following basic properties hold for all normalized fuzzy sets A,B ∈
F(X) [4, 8]:

A ⊆ ATL(A) (8)
A ⊆ ATM(A) (9)

ATL
(
ATL(A)

)
= ATL(A) (10)

ATM
(
ATM(A)

)
= ATM(A) (11)

ATL
(
ATM(A)

)
= ATM

(
ATL(A)

)
= X (12)

A ⊆ B =⇒ ATL(A) ⊆ ATL(B) (13)
A ⊆ B =⇒ ATM(A) ⊆ ATM(B). (14)

Since the relations ⊆ and . are reflexive and transitive [4, 5], it is sufficient
to prove the relations indicated by arrows in the two Hasse diagrams (see
Figures 1 and 2).

Let us start with the ordering relation. The validity of the relations in the
middle row is exactly assumption (ii). The relations in the two other rows
follow directly from the following two relationships which can be proved easily
using (10), (11), and (12):

A . B =⇒ ATL(A) . ATL(B)
A . B =⇒ ATM(A) . ATM(B).

The three vertical relationships in Figure 1 follow directly from

ATM(A) . A . ATL(A)

which can be shown using (8), (9), (13), and (14).

The relations in the Hasse diagram in Figure 2 follow from (8), (9), and the
definition of the preordering . (cf. Definition 6). ¤

Obviously, interpretability of V in this example (with respect to the families R and
Q) does not fully correspond to an intuitive human understanding of interpretability.
For instance, all three expressions “small”, “medium”, and “large” could be mapped
to the same fuzzy set without violating R-Q-interpretability. The intention was to
give an example which is just expressive enough to illustrate the concrete meaning
and practical relevance of Definition 3.

In order to formulate an example in which R-Q-interpretability is much closer to a
human-like understanding of interpretability (e. g. including separation constraints),
we have to consider an extended linguistic variable

V ′ = (“v2”, G′, T ′, X ′, S′).

The extended grammar G′ is given as follows:
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⊥ := 〈exp〉 | 〈bounds〉;
〈exp〉 := 〈atomic〉 | 〈atomic〉 〈binary〉 〈atomic〉;
〈atomic〉 := 〈adjective〉 | 〈adverb〉 〈adjective〉;
〈adjective〉 := “small” | “medium” | “large”;

〈adverb〉 := “at least” | “at most”;

〈binary〉 := “and” | “or”;

〈bounds〉 := “empty” | “anything”.

It is easy to see that the corresponding term set T ′ has the following elements: the
grammar admits nine atomic expressions (three adjectives plus two adverbs times
three adjectives; note that this subset coincides with T from the previous example).
Hence, there are 9 + 2 · 92 = 171 expressions of type 〈exp〉. Finally adding the two
expressions of type 〈bounds〉, the term set T ′ has a total number of 173 elements.

As in the previous example, we would like to use an inclusion and an ordering
relation. Since the two relations . and ⊆ are defined for arbitrary fuzzy sets,
we can keep the relation family Q as it is. If we took R as defined above, R-
Q-interpretability would be satisfied under the same conditions as in Theorem 7.
This example, however, is intended to demonstrate that partition and convexity
constraints can be formulated level of linguistic expressions, too. Therefore, we
extend the inclusion relation v as follows. Let us consider a binary relation v· on
T ′. First of all, we require that v· coincides with v on the set of atomic expressions
(u, v ∈ T ):

(u v v) =⇒ (u v· v). (15)

Of course, we assume that the two binary connectives are non-decreasing with respect
to inclusion, commutative, and that the “and” connective yields subsets and the “or”
connective yields supersets (for all u, v, w ∈ T ):

(v v· w) =⇒ (u “and” v) v· (u “and” w) (16)
(v v· w) =⇒ (u “or” v) v· (u “or” w) (17)

(u “and” v) v· (v “and” u) (18)
(u “or” v) v· (v “or” u) (19)

(u “and” v) v· u (20)
u v· (u “or” v). (21)

Next, let us suppose that “anything” is the most general and that “empty” is the
least general expression, i. e., for all u ∈ T ′,

u v· “anything” and “empty” v· u. (22)

Now we can impose reasonable disjointness constraints like

“small and at least medium” v· “empty” (23)
“at most medium and large” v· “empty” (24)
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and coverage properties:

“small or medium” v· “at most medium” (25)
“at most medium” v· “small or medium” (26)

“anything” v· “at most medium or large” (27)
“medium or large” v· “at least medium” (28)
“at least medium” v· “medium or large” (29)

“small or at least medium” v· “anything”. (30)

Finally, let us assume that “small” and “large” are the two boundaries with respect
to the ordering of the labels:

“at most small” v· “small” (31)
“anything” v· “at least small” (32)

“at least large” v· “large” (33)
“anything” v· “at most large”. (34)

If we denote the reflexive and transitive closure of v· with v′, we can finally write
down the desired family of relations:

R′ = (¹,v′). (35)

In order to study the R′-Q-interpretability of V ′, we need to define the semantics
of those expressions that have not been contained in T . Of course, for the expressions
in T , we use the same semantics as in the previous example, i. e., for all u ∈ T ,
S′(u) = S(u). Further, let us make the convention that the two expressions of type
〈bounds〉 are always mapped to the empty set and the whole universe, respectively:

S′(“empty”) = ∅ S′(“anything”) = X.

The “and” and the “or” connective are supposed to be “implemented” by the inter-
section and union with respect to the ÃLukasiewicz t-norm and its dual t-conorm (for
all u, v ∈ T ):

S′(u “and” v) = S′(u) ∩L S′(v)
S′(u “or” v) = S′(u) ∪L S′(v).

Now we are able to fully characterize R′-Q-interpretability for the given example
(the linguistic variable V ′).

Theorem 8. Provided that S′ yields a normalized fuzzy set for each adjective, V ′

is R′-Q-interpretable if and only if the following three properties hold together:

1. S′(“small”) . S′(“medium”) . S′(“large”);

2. S′(“small”), S′(“medium”), and S′(“large”) are convex;

3. S′(“small”), S′(“medium”), and S′(“large”) form a Ruspini partition.
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P r o o f . First of all, let us assume that V ′ is R′-Q-interpretable. The first prop-
erty follows trivially as in the proof of Theorem 7. Now, taking (23) into account,
we obtain from R′-Q-interpretability that

0 ≥ TL

(
S′(“small”)(x), S′(“at least medium”)(x)

)

= TL

(
S′(“small”)(x), ATL(S′(“medium”))(x)

)

≥ TL

(
S′(“small”)(x), S′(“medium”)(x)

)
,

i. e. that the TL-intersection of S′(“small”) and S′(“medium”) is empty. Analogously,
we are able to show that the TL-intersection of S′(“medium”) and S′(“large”) is
empty, too. Since S′(“medium”) . S′(“large”) implies that

ATL
(
S′(“large”)

) ⊆ ATL
(
S′(“medium”)

)
,

it follows that, by the same argument as above, that the TL-intersection of S′(“small”)
and S′(“large”) is empty as well. Now consider (25) and (26). R′-Q-interpretability
then implies the following (for all x ∈ X):

SL

(
S′(“small”)(x), S′(“medium”)(x)

)
= S′(“at most medium”)(x)

= ATL
(
S′(“medium”)

)
(x).

Taking (27) into account as well, we finally obtain

1 ≤ SL

(
S′(“at most medium”)(x), S′(“large”)(x)

)

= SL

(
S′(“small”)(x), S′(“medium”)(x), S′(“large”)(x)

)

which proves that the SL-union of all fuzzy sets associated to the three adjectives
yields the whole universe X. Since all three fuzzy sets are normalized and properly
ordered, not more than two can have a membership degree greater than zero at a
given point x ∈ X. This implies that the three fuzzy sets form a Ruspini partition
[30].

From (31) and (33) and R′-Q-interpretability, we can infer that

ATM
(
S′(“small”)

)
= S′(“small”),

ATL
(
S′(“large”)

)
= S′(“large”),

hence, S′(“small”) has a non-increasing membership function and S′(“large”) has a
non-decreasing membership function. Both fuzzy sets, therefore, are convex. Since
the three fuzzy sets S′(“small”), S′(“medium”), and S′(“large”) form a Ruspini
partition, while only two can overlap to a positive degree, we have that S′(“medium”)
is non-decreasing to the left of any value x for which S′(“medium”)(x) = 1 and non-
increasing to the right. Therefore, by Lemma 1, S′(“medium”) is convex, too.

Now let us prove the reverse direction, i. e. we assume all three properties and
show that R′-Q-interpretability must hold. By (15) and the first property from The-
orem 8, we can rely on the fact that all correspondences remain preserved for cases
that are already covered by Theorem 7. Therefore, it is sufficient to show that S′
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preserves all relationships (16) – (34). Clearly, the preservation of (16) – (21) follows
directly from elementary properties of t-norms and t-conorms [28]. The inclusions
(22) are trivially maintained, since S′ is supposed to map “empty” to the empty
set and “anything” to the universe X. The preservation of the two disjointness
conditions (23) and (24) follows from the fact that S′(“small”), S′(“medium”), and
S′(“large”) form a Ruspini partition and that the first property holds. The same is
true for the six coverage properties (25) – (30). Since all three fuzzy sets are convex
and form a Ruspini partition, S′(“small”) must have a non-increasing membership
function and S′(“large”) must have a non-decreasing membership function. There-
fore, the following needs to hold:

ATM
(
S′(“small”)

)
= S′(“small”)

ATL
(
S′(“large”)

)
= S′(“large”).

This is a sufficient condition for the preservation of inclusions (31) and (33). Then
the preservation of (32) and (34) follows from the fact, that ATL(ATM(A)) = X
for any normalized fuzzy set A (cf. (12)). Since v′ and ⊆ are both supposed to
be transitive (v′ being the transitive closure of the intermediate relation v· ), the
preservation of all other relationships follows instantly. ¤

At first glance, this example might seem unnecessarily complicated, since the fi-
nal result is nothing else than exactly those common sense assumptions – proper
ordering, convexity, partition constraints – that have been identified as crucial for
interpretability before in several recent publications (see [10] for an overview). How-
ever, we must take into account that they are not just heuristic assumptions here,
but necessary conditions that are enforced by intuitive requirements on the level
of linguistic expressions. From this point of view, this example provides a sound
justification for exactly those three crucial assumptions.

Now the question arises how the three properties can be satisfied in practice. In
particular, it is desirable to have a constructive characterization of the constraints
implied by requiring R′-Q-interpretability. The following theorem provides a unique
characterization of R′-Q-interpretability under the assumption that we are consid-
ering real numbers and fuzzy sets with continuous membership functions – both
are no serious restrictions from the practical point of view. Fortunately, we obtain a
parameterized representation of all mappings S′ that maintain R′-Q-interpretability.

Theorem 9. Assume that X is a connected subset of the real line and that S′, for
each adjective, yields a normalized fuzzy set with continuous membership function.
Then the three properties from Theorem 8 are fulfilled if and only if there exist four
values a, b, c, d ∈ X satisfying a < b ≤ c < d and two continuous non-decreasing
[0, 1] → [0, 1] functions f1, f2 fulfilling f1(0) = f2(0) = 0 and f1(1) = f2(1) = 1 such
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that the semantics of the three adjectives are defined as follows:

S′(“small”)(x) =





1 if x ≤ a
1− f1

(
x−a
b−a

)
if a < x < b

0 if x ≥ b
(36)

(37)

S′(“medium”)(x) =





0 if x ≤ a
f1

(
x−a
b−a

)
if a < x < b

1 if b ≤ x ≤ c
1− f2

(
x−c
d−c

)
if c < x < d

0 if x ≥ d

(38)

S′(“large”)(x) =





0 if x ≤ c
f2

(
x−c
d−c

)
if c < x < d

1 if x ≥ d.
(39)

P r o o f . It is a straightforward, yet tedious, task to show that the fuzzy sets
defined as above fulfill the three properties from Theorem 8. Under the assumption
that these three properties are satisfied, we make the following definitions:

a = sup{x | S′(“small”)(x) = 1}
b = inf{x | S′(“medium”)(x) = 1}
c = sup{x | S′(“medium”)(x) = 1}
d = inf{x | S′(“large’)(x) = 1}.

The two functions f1, f2 can be defined as follows:

f1(x) = S′(“medium”)
(
a + x · (b− a)

)

f2(x) = S′(“large”)
(
c + x · (d− c)

)
.

Since all membership functions associated with adjectives are continuous, the func-
tions f1 and f2 are continuous. Taking the continuity and the fact that the three
fuzzy sets associated to the adjectives form a Ruspini partition into account, it is
clear that the following holds:

S′(“small”)(a) = 1
S′(“small”)(b) = S′(“small”)(c) = S′(“small”)(d) = 0

S′(“medium”)(b) = S′(“medium”)(c) = 1
S′(“medium”)(a) = S′(“medium”)(d) = 0

S′(“large”)(d) = 1
S′(“large”)(a) = S′(“large”)(b) = S′(“large”)(c) = 0.
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These equalities particularly imply that f1(0) = f2(0) = 0 and f1(1) = f2(1) = 1
holds. As a consequence of convexity and Lemma 1, we know that the membership
function of S′(“medium”) to the left of b is non-decreasing. Analogously, we can
infer that the same is true for S′(“large”) to the left of d. Therefore, f1 and f2 are
non-decreasing. To show that the three representations (36) – (39) hold is a routine
matter. ¤

5. APPLICATIONS

5.1. Design aid

As long as the top-down construction of small fuzzy systems (e. g. two-input single-
output fuzzy controllers) is concerned, interpretability is usually not such an impor-
tant issue, since the system is simple enough that a conscious user will refrain from
making settings which contradict his/her intuition.

In the design of complex fuzzy systems with a large number of variables and rules,
however, interpretability is a most crucial point. Integrating tools which guide the
user through the design of a large fuzzy system by preventing him/her from making
non-interpretable settings accidentally are extremely helpful. As a matter of fact,
debugging of large fuzzy systems becomes a tedious task if it is not guaranteed
that the intuitive meanings of the labels used in the rule base are reflected in their
corresponding semantics.

To be more precise, our goal is not to bother the user with additional theoret-
ical aspects. Instead, the idea is to integrate these aspects into software tools for
fuzzy systems design, but not necessarily transparent for the user, with the aim
that he/she can build interpretable fuzzy systems in an even easier way than with
today’s software tools. Theorem 9 gives a clue how this could be accomplished.
This result, for one particular example, clearly identifies how much freedom one has
in choosing interpretable settings. The example is not quite representative, since
three linguistic expressions are a quite restrictive assumption. However, the exten-
sion to an arbitrary finite number of such expressions is straightforward, no matter
whether we consider such a typical “small”-“medium”-“large” example or a kind of
symmetric setting (e. g. “neg. large”, “neg. medium”, “neg. small”, “approx. zero”,
“pos. small”, “pos. medium”, “pos. large”) as it is common in many fuzzy control
applications. In all these cases, the requirements for interpretability are similar and,
by Theorem 9, the resulting set of degrees of freedom is an increasing chain of values
that mark the beginning/ending of the kernels of the fuzzy sets and a set of contin-
uous non-decreasing functions that control the shape of the transitions between two
neighboring fuzzy sets. While linear transitions are common and easy to handle,
smooth transitions by means of polynomial functions with higher degree may be
beneficial in some applications as well.

As simple examples, the following three polynomial [0, 1] → [0, 1] functions of
degrees 1, 3, and 5 perfectly serve as transition functions in the sense of Theorem 9.
They produce membership functions that are continuous (p1), differentiable (p3),
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Fig. 6. Three interpretable fuzzy partitions

with polynomial transitions of degree 1 (top), 3 (middle), and 5 (bottom).

and twice differentiable (p5), respectively:

p1(x) = x

p3(x) = −2x3 + 3x2

p5(x) = 6x5 − 15x4 + 10x3.

Figure 6 shows examples of interpretable fuzzy partitions with three fuzzy sets using
the transition functions p1, p3, and p5.

5.2. Data–driven learning and tuning

Automatic design and tuning of fuzzy systems has become a central issue in machine
learning, data analysis, and the identification of functional dependencies in the anal-
ysis of complex systems. In the last years, a vast number of scientific publications
dealt with this problem. Most of them, however, disregarded the importance of
interpretability – leading to results which are actually black-box functions that do
not provide any meaningful linguistic information (typical pictures like in Figure 4
can be found in an enormous number of papers).

One may argue that proper input-output behavior is the central goal of automatic
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tuning. To some extent, this is true; however, as stated already in Section 1, this is
not the primary mission of fuzzy systems.

Again, Theorem 9 gives a clear indication how the space of possible solutions
among interpretable settings may be parameterized – by an ascending chain of tran-
sition points (given a set of transition functions). Note that this kind of parametriza-
tion even leads to a reduction of the search space. Parameterizing three trapezoid
fuzzy sets independently requires a total number of twelve parameters and most
probably leads to difficulty interpretable results. Requiring interpretability (as de-
scribed in the previous section) leads to a set of only four parameters. It is true
that such a setting is much more restrictive. However, in our opinion, it is not nec-
essarily the case that requiring interpretability automatically leads to a painful loss
of accuracy. The requirement of interpretability implies more constraints that have
to be taken into account and, therefore, is more difficult to handle for many tuning
algorithms, no matter whether we consider genetic algorithms, fuzzy-neuro methods,
or numerical optimization. As a recent investigation has shown, it is indeed possible
to require interpretability while, at the same time, maintaining high accuracy and
robustness [26]. Many other studies have also come up with tuning algorithms that
produce interpretable and accurate results [2, 9, 16, 17, 21, 34, 40].

5.3. Rule base simplification

The examples in Section 4 used an inclusion relation v and its counterpart on the
semantic side – the inclusion relation ⊆. Both relations are preorderings which
particularly implies that their symmetric kernels are equivalence relations. As easy
to see, the relation ⊆ is even an ordering on F(X), which implies that the symmetric
kernel is the crisp equality relation, i. e. A ⊆ B and B ⊆ A hold together if and only
if the two membership functions coincide exactly.

Now let us assume that we are given a linguistic variable V and two relation
families R and Q, where R contains an inclusion relation v and Q contains its
counterpart ⊆. If we have two linguistic labels u and v for which u v v and v v v
hold, R-Q-interpretability guarantees that the inclusions S(u) ⊆ S(v) and S(v) ⊆
S(u) hold, i. e. u v v and v v v are sufficient conditions that the membership
functions of S(u) and S(v) are equal. This means that the equivalence relation
defined as (for two u, v ∈ T )

(u ≡ v) ⇐⇒ (u v v and v v u)

may be considered as a set of simplification rules, while R-Q-interpretability corre-
sponds to the validity of these rules on the semantic side.

Let us recall the second example (linguistic variable V ′ defined as in Section 4).
The two inequalities (25) and (26) together imply

“small or medium” ≡ “at most medium”.

This could be read as a replacement rule

“small or medium” −→ “at most medium”,
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with the meaning that, in any linguistic expression, “small or medium” can be
replaced by “at most medium”. If we assume interpretability, we can be sure that
this replacement is also semantically correct. If we incorporate as many reasonable
relationships in the relation v as possible such that interpretability can still be
fulfilled, we are able to provide a powerful set of simplification rules.

Of course, very simple grammars do not necessitate any simplification. However,
if we have to consider very complex rule bases like they appear in grammar-based
rule base optimization methods (e. g. inductive learning [32, 33, 35, 36] or fuzzy
genetic programming [23, 24]), simplification is a highly important concern. The
methodology presented here allows to deal with simplification in a symbolic fashion
– assuming interpretability – without the need to consider the concrete semantics of
the expressions anymore.

6. CONCLUSION

This paper has been devoted to the interpretability of linguistic variables. In order
to approach this key property in a systematic and mathematically exact way, we
have proposed to make implicit relationships between the linguistic labels explicit
by formulating them as (fuzzy) relations. Then interpretability corresponds to the
preservation of this relationships by the associated meaning. This idea has been il-
lustrated by means of two extensive examples. These case studies have demonstrated
that well-known common sense assumptions about the membership functions, such
as, ordering, convexity, or partition constraints, have a sound justification also from
a formal linguistic point of view. In contrast to other investigations, the model
proposed in this paper cannot just be applied to simple fuzzy sets, but also allows
smooth integration of connectives and ordering-based modifiers.

By characterizing parameterizations which ensure interpretability, we have been
able to provide hints for the design and tuning of fuzzy systems with interpretable
linguistic variables. Finally, we have seen that interpretability even corresponds to
the fact that symbolic simplification rules on the side of linguistic expressions still
remain valid on the semantic side.

Looking back on the questions posed in Section 1, this paper has been con-
cerned with the fourth one. However, the ideas presented in this paper also have
strong influence on the way the Questions 1 – 3 can be handled. Partitions con-
straints, as we derived them, enforce semantic properties of the expressions used in
the rule antecedents that ease to investigate/guarantee completeness and/or consis-
tency (cf. Question 3). As we use linguistic variables in their most general form,
high-level language elements, such as linguistic modifiers or more advanced connec-
tives, can smoothly be integrated, which directly lead to more compact rule sets
(cf. Question 2). The ideas stated in Subsection 5.3. strongly support this view-
point, too. The first question is a slightly different matter which should rather be
approached from the side of approximate reasoning [18, 19, 20] and relational equa-
tions [13, 25, 30]. However, even following these lines, partition constraints play a
crucial role. Therefore, we dare to conclude that interpretability of linguistic vari-
ables is a most basic requirement for any study of aspects of interpretability of fuzzy
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systems.
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