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PORTFOLIO CHOICE BASED ON
THE EMPIRICAL DISTRIBUTION

GuUszZTAV MORVAI

It is shown that a slightly modified version of the empirical log-optimal portfolio selector achieves
the asymptotically optimal growth rate of capital on independent and identically distributed ran-
dom stock market return vectors.

1. INTRODUCTION

Let X € R™ denote a random stock market return vector, where X; is the value
of a one unit investment in stock j at the end of the trading day. We require that
X; >0for j =1,2,...,m, that is, an investor cannot lose more than the invested
capital. Let b, b; > O,Z;"Zl b; = 1, denote a portfolio, that is, an allocation of
investor’s capital across the investment alternatives. Let B denote the set of such
portfolios. Thus b; is the proportion of current capital invested in stock j. The
resulting wealth is S = Z;"Zl b;X; = bX. This is the wealth resulting from a unit
investment allocated to the m stocks according to portfolio b. If the current capital
is reallocated according to portfolio b, at time ¢ in repeated investments against
stock vectors X, X,,... then the wealth S,, at time n is given by

Sn = f[lbzXz

Suppose the stock market return vectors X, X,,... are independent and identically
distributed. A portfolio b is called log-optimal if EInb*X = supEInbX. Let B*
beB

denote the set of log-optimal portfolios. Since the portfolio selection may depend on
the past outcomes, an investment scheme can be described as a portfolio selector

oo

{bn (X0, Xo, o X )}

that is, a series of measurable functions b, (X;,X,,...,X, _;) mapping from the

past outcomes of the stock market return vectors to the set of portfolios. It can be
shown that

1 1
limsup—In S, < lim —InS; =Elnd*X a.s.,

n—oo N n—oo N *
where S, = [] b;(X1,X,,..., X, 1)X, and S} = [] b"X, denote capitals achieved
i=1 i=1

'y L2n—1
portfolio ™ in n repeated games, respectively. (That is, sup ElnbX is the highest
beEB
asymptotic growth rate of capital a portfolio selector may achieve. See Algoet and

Cover [1].) For more about the log-optimal portfolio see [1], [3]-[11], and [13].

by an arbitrary portfolio selector {b,, (K TP. O, ¢ )}ZO:1 and the log-optimal
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If the probability distribution of the stocks is not known in advance, consider as
~ o0
a goal to find a portfolio selector {b, (X;,X,,... ,Xn_l)}nzl which achieves the
asymptotically optimal growth rate of capital, that is,

lim lhl S, =Elnb*X a.s.,

n—oo n

where S, ﬁ(Xng,---aX' )X,

11— T

H
ﬁ,’:|:

2. THE PROPOSED PORTFOLIO SELECTOR

Let {b, (X;,X,,...,X, ;)} _, beameasurable selector of the empirical log-optimal
portfolios, that is,

=(1/m,1/m,.. 1/m)
Qn(ﬁl,iz,...,gn )Eargmax—Zlan ifn>2.

The proposed portfolio selector {b,, (X, Xy, ... 7Xn71)}zo:1 is defined by

én (K17l2; e 7&77,71) = (1 - )\n)bn (&13&27 e aln71> + )\ngv

where lim A\, =0, A, € (0,1) for all n, and e = (1/m,1/m,...,1/m). That is, the

n—oo

empirical log-optimal portfolio is combined with the uniform one.

The following theorem says that the asymptotically optimal growth rate of cap-
ital is achieved by the proposed portfolio selector if the random stock market re-
turn vectors are independent and identically distributed. The portfolio selector
proposed in Cover [8] achieves this goal also but our selector is simpler. It has
been shown in Morvai [13] that even the pure empirical log-optimal portfolio se-
lector {b, (X1, X5,..., X,,_1) }OO achieves the asymptotically optimal growth rate
of capital if the random stock market return vectors are independent, identically

distributed, and none of the stocks X;, j = 1,2,...,m, may take on the value of
zero.
Theorem 1. Suppose the random stock market return vectors X,,X,,... are
independent, identically distributed, and —oo < sup EInbX < oo. (Note EInd*X =
beB
sup EInbX.) Then
beB
N X

lim —InS, =EInbd* X a.s.,

n—oo n
where Hé(ilvzw--wiwﬁir

3.PERFORMANCE ANALYSIS OF THE PROPOSED PORTFOLIO SELEC-
TOR

Here we prove several lemmas in order to be able to prove Theorem 1.

Definition. Consider a function A (-) : R — RU {oo}. epih (-) denotes the set
{(y,a) eR* xR:h(y) <a}.
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Lemma 1. Let (E,U,P) be a probability space, where Z = R™, and U denotes
the Borel o-algebra completed with respect to P. Let © denote the set {z € R™:
;20 for i=1,2,...,m}. Consider the function

—Inbxr :b€ B, andz €O
00 : otherwise

fbz) = { :
that is, f(-, ) : R™ x 2 = RU{oo}. Then

a) for each z € Z the set epi f (-, z) = {(b,@) € R™ x R: f(b,z) < a} is convex,

b) the set epi f (-,x) is closed, and

c){z€Z:epif(-,2)NF # (0} €U for all closed subsets FF C R™+1L.

d) Consider the product probability space (E(”),Z/{("), P(")).

Then for each (z,,2,,...,z,) € Z™ the set epiL S0 | f(-,z;) is closed, and

e) {(zy,29,...,2,) €EEM repit 30 | f (-, z,)NF # 0} € U™ for all closed subsets
F C R+

Proof. a) If z ¢ © then epi f (-, z) is empty, hence it is trivially convex.
Suppose z € O. If (by, 1), (by, a2) € epi f (-, z) then by,b, € B, and o; > —Inb;z,
ag > —Inbyz. Furthermore,

Aar+ (1 =X ag > —Alnbjz — (1 =) Inbyx =
—(Alnbjz+ (1= A)Inbyz) > —In((Aby + (1 = A) by) z)

by Jensen’s inequality. Thus the set epi f (-, z) is convex.
b) If x ¢ © then epi f (-,z) is empty.
Suppose z € O. If (@', 0/) is from the boundary of the set epi f (-, z) then let (b;, ;)
converge to (b',a’) such that (b;,a;) € epi f (-, z). (Thus b;,b’ € B, oj,0/ €R.)
Let € > 0 be arbitrary. Since o’ is finite, a; < o’ + ¢ for large 7. Thus
—Inbz < a; <o + ¢ for large i.
The function — In bz is continuous in b € B, hence
—InVz = lim —Ind,z < o +e.

17— 00

Since € was arbitrary, —Inbd'z < o/, that is, (Q’,o/) €epif(-,x).

¢) Suppose G is a bounded and closed set from R™*1.

Let g¢ (z) = (g,a)reng)x{RmG —f(bz)+a= (Q,SQI;ED —f (b, z)+a, where D is a countable

dense subset of B x RN G. (We used the continuity of the function ln bz, and the
compactness of the set B x RN G.) Since for each b € B, o € R, the function

f (b, ) + « is measurable thus the function sup f (b, z)+ « is measurable as well.
(b,a)€D

(The supremum is taken over a countable set.)

Let F denote a closed set from R™*1. The following statements are equivalent:

{zeZ tepif(-,x)NF #0}€lU.
{z€® : {(ba)eBxR: —Inbz<a}NF#0}clU.

(Jize®: {(ba) e BxR: —Inbz <a}NF; #0} €U,

K3

where F; are bounded and closed sets (countable many) such that |J F; = F.

U{QE@: max  Inbzx+a>0}eU.
- (b,a)E BXRNF;

(3
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(We used the continuity of the function Inbz + «, and the compactness of the set
B xRNF,.)

= - > .
L1J{§ < @,a)glﬁfmm fbz)+az0eld

Ufz€Z:grn (@ >0} e

We have already proved that {z € E : gp, () > 0} € U. (The function gp, (z) is
measurable.) Thus

Utz = : gr, (2) 2 0} e .

?

d) Similar argument works as in b. e) Similar argument works as in c. O

Lemma 2. Suppose X; > 0 as. fori=1,2,...,m and —oco < supEInbdX < oo.
beB

Let b= (1/m,1/m,...,1/m). Then Ef @, X) < 00, and there exists a measurable
function w (-) : £ — R™ such that
f(b,&)Zf(E,&)Jrg(g) (b—é) for all b € R™, z € E,and
E | w(X) [[< oo

Proof. Since

m m 1 N
ﬂx<mmEmh¥§Em§:Xp:HnGn2:.&)zEth+mOm,
m

beB i=1 i=1

hence E (—lnl;l) < 0o. Thus Ef (E,K) < 00.

fg/i)ix cifz#A0and x € ©
0 : otherwise
Ifx=0o0r z ¢ O then co > oo+ 0.
If@gﬁB,g;«éQandgE@thenoozlnl;ix—i——g/i)ix(b—ﬁ)sinceln@isﬁnite.
Ifbe B, z# 0 and z € O then

Let u(z) = . Obviously, u (X)) is measurable.

—Inbz +Inbx=—-In=—=-In| —%—— | =
bx bz

~In @Jﬂ zWﬂ(bé).

bx bx

Furthermore, E || —X/bX [|< m? < oo. m

Lemma 3. (A.J.King and R.J.-B. Wets [12]) Let Y be a directly given random
variable on the probability space (T, A, Q), where A denotes a o-algebra completed
with respect to Q. Consider the following assumptions:
Assumption A. g(-,-) : R¥ xT'— RU{co} is a convex normal integrand, that is,
(i) the set epig ( . ,g) is closed for each y € T,
(ii) the set valued mapping y — epig ( . g) is measurable, that is, for all closed
subsets ' C RFFL {y € T :epig (-,y) NF #0} € A,
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(iii) the set epig ( ,g) is convex for each y € I', and it is not empty a.s.
Assumption B. There exist a ¢ € R* such that fg (é, g) Q (dy) is finite, and a
measurable function u (-) : I' — R¥ such that

(i) g(cy)=29(@y) +u(y) (c—¢c) forallceRF, yeT, and

(i) 'l u(y) | Q(dy) is finite.

Assumption C. The random variables Y, are independent and identically distributed.

Under assumptions A, B, and C if ¢ is a cluster point of any sequence {c,,} with
c, € arggrrelgl % ;::1 g(c,Y,) then ¢ € arggnelar)} Eg(c,Y) as.

Proof. See King and Wets [12] Theorem 2.3 and Proposition 2.1, or Wets [15]
Theorem 3.4. O

Lemma 4. Suppose that the random stock market return vectors X, are independent,

identically distributed and —oo < sup EInbX < co. Then there exists a measurable
beB

selector {b,, (X, X,,... 7171—1)};0:1 such that

n—1

b, (X1, Xy,..., X, _ )Eargmaxn Zlan

and the cluster points of {b, (X;,X,,... ,Xn_l)}zoz are log-optimal a.s.

1

Proof. The existence of the measurable selector {b,, (X, X,,... 7Xn_1)}zo=1 fol-
lows from Lemma 1, Rockafellar [14] Theorems 1C and 2K, and the fact that

n

1
— InbX, = — —InbX, = - (b, X))
arg Igleaéc - Z n = arg gélg - Z n = arg bIéléI’}L Z I

=1

n n

Since & = > —InbX; = 1 ~ > f(b,X,) for all b € B a.s., the log-optimality of the
i=1 i=1

cluster points follows immediately from Lemmas 1,2 and 3. O

Lemma 5. Suppose that the random stock market return vectors X, X,,... are
independent and identically distributed. Then the cluster points of the empirical log-
optimal portfolio selector {b,, (Kl,i% . ,anl)}zozl and the proposed portfolio

selector {b,, (X, X, .. ,anl)}f;l
sequence
{b, (X1,X,,... 757171)}71:1 are log-optimal with probability one.

Proof. Suppose lim bin (X, (W), Xy (w),.... X, 4 (w))=1b" Since

g, —1
b;, (X

in

coincide and hence the cluster points of the

( ) (w)w"’xin—l (w)):
(X (W), Xy (W),..., X, (W))"‘)\i

(1 - Aln)b y g, —1 n€

and A;, — 0, hence

lim éin (Kl (W), X5 (W), viinfl (W)) =

n—oo

lim b; (X; (w),X,(w),....X; (w)=0"

n— o0

The other direction follows similarly.
Suppose lim b, (Kl (W), X5 W),..., X, (w)) =7.
n—oo

Ly —1
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lim b, (X, (@), X5 (@),..., X; 1 (w)) =

nooo tn 1L g, —1

. » )‘2 /

lim b;, (Xl (W), Xo (W), Xy, 4 (w))* 1 ;\ e="0.
Now the log-optimality follows from Lemma 4. O
Lemma 6. Let the random stock market return vectors X, X,, ... be independent,
identically distributed, and —oo < sup ElnbX < oo. Suppose {b,, (Xl, X, ... ,Xn_l) }:O_l

beB =

is a measurable selector of portfolios such that b, (X, X,,...,X, ;) € intB for all

1 £2n—1

int B denotes the interior of the set B.) Then

n, and the cluster points of {b,, (X, X5, X )}Zo:l are log-optimal a.s. (Here

R .
nh_)rréogglnbi (gl,gz,...,&;l)gizmn@g a.s.

Proof. Let b* be a log-optimal portfolio such that b;f/ = 0 implies b7 = 0 for all
b € B*, j =1,2,...,m, where B* denotes the set of log-optimal portfolios. Such
a portfolio exists, since suppose by ; = 0 and b3 ; # 0 for some j. Then for any
A € (0,1), Aby + (1 — A\)b5 € B* and contains less number of zeros than b} does.
(Note that the set of log-optimum portfolios form a convex set. See Cover [7].) If
this new portfolio does not satisfy the condition we can repeat this prucedure. After
at most m steps we get a proper portfolio.

Since there exists a set L such that P(X € L) = 1 and bjz = bz if z € L, b7,
b5 € B* (see Cover [7]),

1 zn:ln b, (X, X, X, )X, 1 iln b, (X1, Xo, o X ) Xy

b*X; o bX,

i=1 I i=1

liln é’f (XUXQ,-'WX'L'—l)Xi_’_
i 9.€
éi (leiw s ’Xifl) Kz B é;‘k(glax% ce 7Ki71)ii
b*lzi

where E (X;,X5,...,X, 1) denotes the closest log-optimal portfolio to
b, (Kl,XQ, e 711—1) in Euclidean distance. (Such a portfolio exists since the set of
log-optimal portfolios B* C B is closed by the continuity of the function ElnbX.)
Thus

- Ei (Kl,XQ,...,XFl)X

1 A A
a2l VX, -

i=1
1 (B (X0 Xy X)) = by (X Xy, X)) X,
— Zln 1+ */ 2
[t bm X,
k(w) > n
1 In b; (Xl(w)aXQ(WB; X (W)X (W) n 1 Z In (1 _ Ein(w)) ’
[ b X;(w) i=k(w)+1 b7 X (w)
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Where aj = 1if by ;é 0, aJ 0 fb*’ 0 and k(w) is an integer such that

I15; (X3 (w), X5 (), w)) = b (X3 (@), Xy (@), Xy (W) [|< & for i >
k(w), where0<5<1mlnb*’ and T = {j b*’;«éO}
j€
Thus
EZIH bi (Kl)&Qa;"v&ifl)Ki Z
=1
k(w Pl
1Y 0 G @) K @), Xy @) X4 (@)
*/
n i=1 b XZ (w)
1 caX;(w caX;(w)
—Zln(l— caX(w) ) Zln( caX(w) )
n VX, (w) VX, (w)
Thus

b (X, X X ) X, caX

i=1

Expanding the function In (1 —yaX /b X ) into Taylor series around 0 in the interval

[0, €], we have,
X —yaX
In(1-22=)| = |m@1) + ,L
b X b X —taX

for some t € [0,¢]. Thus

eaX eaX eaX eaX 2eaX
In|1- 7 < < < *7 = ¥+
X V"X —taX 7 0" X —eaX T 050X bUX

Since EX;/b*X < 1 for j = 1,2,...,m by log-optimality (see Bell and Cover [4]),
hence

2eaX

E—— X < 2em < oo.
Since € was arbitrary,
X
lim EIn (1 - E“,) —Elnl=0
e—0 X

by Lebesgue’s dominated convergence theorem. The upper bound follows similarly,

1 n b (X17X27 X 1)X
lim sup — In =2 i _
n—o0 ; e
| L (B (X0 Koo X 0) = b (X, Xy X)) X, )
l’ﬂbogpiz T VX, <
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where e = (1,1,...,1). Since ¢ was arbitrary,

. eeX
214{11 Eln <1 + b*l)(> = 0 a.s.,

by Lebesgue’s dominated convergence theorem. Hence
R
lim — "Inb; (X, X,,....X, ) X

n—oo N
i=1

=Elnbd*X a.s. U

o0

Proof of Theorem 1. The cluster points of {én (KDXQ,...,X,ZA)}n:l are

log-optimal by Lemma 5. Since én (lp&z, e ,Xn_l) € int B for all n, hence the
theorem follows from Lemma 6. (Here int B denotes the interior of the set B.) Note
that we could not have used the pure empirical log-optimal portfolio selector since
it might lead us to ultimate ruin. That is why it was necessary to combine the pure
empirical log-optimal portfolio with the uniform one. In order to force the cluster
points of the proposed portfolio selector into the set of log-optimal portfolios B* we
made the uniform portfolio vanish asymptotically. O

(Received December 10, 1991.)
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