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PORTFOLIO CHOICE BASED ON
THE EMPIRICAL DISTRIBUTION

Gusztáv Morvai

It is shown that a slightly modified version of the empirical log-optimal portfolio selector achieves
the asymptotically optimal growth rate of capital on independent and identically distributed ran-
dom stock market return vectors.

1. INTRODUCTION

Let X ∈ Rm denote a random stock market return vector, where Xj is the value
of a one unit investment in stock j at the end of the trading day. We require that
Xj ≥ 0 for j = 1, 2, . . . , m, that is, an investor cannot lose more than the invested
capital. Let b, bj ≥ 0,

∑m
j=1 bj = 1, denote a portfolio, that is, an allocation of

investor’s capital across the investment alternatives. Let B denote the set of such
portfolios. Thus bj is the proportion of current capital invested in stock j. The
resulting wealth is S =

∑m
j=1 bjXj = bX. This is the wealth resulting from a unit

investment allocated to the m stocks according to portfolio b. If the current capital
is reallocated according to portfolio bi at time i in repeated investments against
stock vectors X1, X2, . . . then the wealth Sn at time n is given by

Sn =
n∏

i=1

biXi.

Suppose the stock market return vectors X1, X2, . . . are independent and identically
distributed. A portfolio b∗ is called log-optimal if E ln b∗X = sup

b∈B
E ln bX. Let B∗

denote the set of log-optimal portfolios. Since the portfolio selection may depend on
the past outcomes, an investment scheme can be described as a portfolio selector

{bn

(
X1, X2, . . . , Xn−1

)}∞
n=1

,

that is, a series of measurable functions bn

(
X1, X2, . . . , Xn−1

)
mapping from the

past outcomes of the stock market return vectors to the set of portfolios. It can be
shown that

lim sup
n→∞

1
n

ln Sn ≤ lim
n→∞

1
n

ln S∗n = E ln b∗X a.s.,

where Sn =
n∏

i=1

bi(X1, X2, . . . , Xi−1)Xi and S∗n =
n∏

i=1

b∗Xi denote capitals achieved

by an arbitrary portfolio selector {bn

(
X1, X2, . . . , Xn−1

)}∞
n=1

and the log-optimal
portfolio b∗ in n repeated games, respectively. (That is, sup

b∈B
E ln bX is the highest

asymptotic growth rate of capital a portfolio selector may achieve. See Algoet and
Cover [1].) For more about the log-optimal portfolio see [1], [3]–[11], and [13].
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If the probability distribution of the stocks is not known in advance, consider as
a goal to find a portfolio selector {b̂n

(
X1, X2, . . . , Xn−1

)}∞
n=1

which achieves the
asymptotically optimal growth rate of capital, that is,

lim
n→∞

1
n

ln Ŝn = E ln b∗X a.s.,

where Ŝn =
n∏

i=1

b̂i(X1, X2, . . . , Xi−1)Xi.

2. THE PROPOSED PORTFOLIO SELECTOR

Let {bn

(
X1, X2, . . . , Xn−1

)}∞
n=1

be a measurable selector of the empirical log-optimal
portfolios, that is,

b1 = (1/m, 1/m, . . . , 1/m)

bn

(
X1, X2, . . . , Xn−1

) ∈ arg max
b∈B

1
n−1

n−1∑
i=1

ln bXi if n ≥ 2.

The proposed portfolio selector {b̂n

(
X1, X2, . . . , Xn−1

)}∞
n=1

is defined by

b̂n

(
X1, X2, . . . , Xn−1

)
= (1− λn)bn

(
X1, X2, . . . , Xn−1

)
+ λne,

where lim
n→∞

λn = 0, λn ∈ (0, 1) for all n, and e = (1/m, 1/m, . . . , 1/m). That is, the
empirical log-optimal portfolio is combined with the uniform one.

The following theorem says that the asymptotically optimal growth rate of cap-
ital is achieved by the proposed portfolio selector if the random stock market re-
turn vectors are independent and identically distributed. The portfolio selector
proposed in Cover [8] achieves this goal also but our selector is simpler. It has
been shown in Morvai [13] that even the pure empirical log-optimal portfolio se-
lector {bn

(
X1, X2, . . . , Xn−1

)}∞
n=1

achieves the asymptotically optimal growth rate
of capital if the random stock market return vectors are independent, identically
distributed, and none of the stocks Xj , j = 1, 2, . . . ,m, may take on the value of
zero.

Theorem 1. Suppose the random stock market return vectors X1, X2, . . . are
independent, identically distributed, and −∞ < sup

b∈B
E ln bX < ∞. (Note E ln b∗X =

sup
b∈B

E ln bX.) Then

lim
n→∞

1
n

ln Ŝn = E ln b∗X a.s.,

where Ŝn =
n∏

i=1

b̂i(X1, X2, . . . , Xi−1)Xi.

3. PERFORMANCE ANALYSIS OF THE PROPOSED PORTFOLIO SELEC-
TOR

Here we prove several lemmas in order to be able to prove Theorem 1.

Definition. Consider a function h (·) : Rn → R ∪ {∞}. epi h (·) denotes the set
{(y, α

) ∈ Rn × R : h
(
y
) ≤ α}.
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Lemma 1. Let (Ξ,U ,P) be a probability space, where Ξ = Rm, and U denotes
the Borel σ-algebra completed with respect to P. Let Θ denote the set {x ∈ Rm :
xi≥0 for i = 1, 2, . . . ,m}. Consider the function

f (b, x) =

{
− ln bx : b ∈ B, and x ∈ Θ
∞ : otherwise

,

that is, f ( · , · ) : Rm × Ξ → R ∪ {∞}. Then
a) for each x ∈ Ξ the set epi f ( · , x) = {(b, α) ∈ Rm × R : f (b, x) ≤ α} is convex,
b) the set epi f ( · , x) is closed, and
c) {x ∈ Ξ : epi f ( · , x) ∩ F 6= ∅} ∈ U for all closed subsets F ⊆ Rm+1.
d) Consider the product probability space

(
Ξ(n),U (n),P(n)

)
.

Then for each (x1, x2, . . . , xn) ∈ Ξ(n) the set epi 1
n

∑n
i=1 f ( · , xi) is closed, and

e) {(x1, x2, . . . , xn) ∈ Ξ(n) : epi 1
n

∑n
i=1 f ( · , xi)∩F 6= ∅} ∈ U (n) for all closed subsets

F ⊆ Rm+1.

P r o o f. a) If x /∈ Θ then epi f ( · , x) is empty, hence it is trivially convex.
Suppose x ∈ Θ. If (b1, α1), (b2, α2) ∈ epi f ( · , x) then b1, b2 ∈ B, and α1 ≥ − ln b1x,
α2 ≥ − ln b2x. Furthermore,

λα1 + (1− λ)α2 ≥ −λ ln b1x− (1− λ) ln b2x =

− (λ ln b1x + (1− λ) ln b2x) ≥ − ln ((λb1 + (1− λ) b2)x)

by Jensen’s inequality. Thus the set epi f ( · , x) is convex.
b) If x /∈ Θ then epi f ( · , x) is empty.
Suppose x ∈ Θ. If

(
b′, α′

)
is from the boundary of the set epi f ( · , x) then let (bi, αi)

converge to
(
b′, α′

)
such that (bi, αi) ∈ epi f ( · , x). (Thus bi, b

′ ∈ B, αi, α
′ ∈ R.)

Let ε > 0 be arbitrary. Since α′ is finite, αi ≤ α′ + ε for large i. Thus
− ln bix ≤ αi ≤ α′ + ε for large i.
The function − ln bx is continuous in b ∈ B, hence

− ln b′x = lim
i→∞

− ln bix ≤ α′ + ε.

Since ε was arbitrary, − ln b′x ≤ α′, that is,
(
b′, α′

) ∈ epi f ( · , x).

c) Suppose G is a bounded and closed set from Rm+1.
Let gG (x) = max

(b,α)∈B×R∩G
−f (b, x)+α = sup

(b,α)∈D

−f (b, x)+α, where D is a countable

dense subset of B × R ∩ G. (We used the continuity of the function ln bx, and the
compactness of the set B × R ∩ G.) Since for each b ∈ B, α ∈ R, the function
f (b, x)+α is measurable thus the function sup

(b,α)∈D

f (b, x)+α is measurable as well.

(The supremum is taken over a countable set.)
Let F denote a closed set from Rm+1. The following statements are equivalent:

{x ∈ Ξ : epi f ( · , x) ∩ F 6= ∅} ∈ U .

{x ∈ Θ : {(b, α) ∈ B × R : − ln bx ≤ α} ∩ F 6= ∅} ∈ U .

⋃

i

{x ∈ Θ : {(b, α) ∈ B × R : − ln bx ≤ α} ∩ Fi 6= ∅} ∈ U ,

where Fi are bounded and closed sets (countable many) such that
⋃
i

Fi = F .

⋃

i

{x ∈ Θ : max
(b,α)∈B×R∩Fi

ln bx + α ≥ 0} ∈ U .
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(We used the continuity of the function ln bx + α, and the compactness of the set
B × R ∩ Fi.)

⋃

i

{x ∈ Ξ : max
(b,α)∈B×R∩Fi

−f (b, x) + α ≥ 0} ∈ U .

⋃

i

{x ∈ Ξ : gFi
(x) ≥ 0} ∈ U .

We have already proved that {x ∈ Ξ : gFi
(x) ≥ 0} ∈ U . (The function gFi

(x) is
measurable.) Thus

⋃

i

{x ∈ Ξ : gFi (x) ≥ 0} ∈ U .

d) Similar argument works as in b. e) Similar argument works as in c. 2

Lemma 2. Suppose Xi ≥ 0 a.s. for i = 1, 2, . . . ,m and −∞ < sup
b∈B

E ln bX < ∞.

Let b̃ = (1/m, 1/m, . . . , 1/m). Then Ef
(
b̃, X

)
< ∞, and there exists a measurable

function u ( · ) : Ξ → Rm such that
f (b, x) ≥ f

(
b̃, x

)
+ u (x)

(
b− b̃

)
for all b ∈ Rm, x ∈ Ξ, and

E ‖ u (X) ‖< ∞.

P r o o f . Since

−∞ < sup
b∈B

E ln bX ≤ E ln
m∑

i=1

Xi = E ln

(
m

m∑

i=1

1
m

Xi

)
= E ln b̃X + ln (m) ,

hence E
(
− ln b̃X

)
< ∞. Thus Ef

(
b̃, X

)
< ∞.

Let u (x) =

{
−x/b̃x : if x 6= 0 and x ∈ Θ
0 : otherwise

. Obviously, u (X) is measurable.

If x = 0 or x /∈ Θ then ∞ ≥∞+ 0.
If b /∈ B, x 6= 0 and x ∈ Θ then ∞ ≥ ln b̃x +−x/b̃x

(
b− b̃

)
, since ln b̃x is finite.

If b ∈ B, x 6= 0 and x ∈ Θ then

− ln bx + ln b̃x = − ln
bx

b̃x
= − ln




(
b− b̃

)
x + b̃x

b̃x


 =

− ln




(
b− b̃

)
x

b̃x
+ 1


 ≥ −

(
b− b̃

)
x

b̃x
=
−x

b̃x

(
b− b̃

)
.

Furthermore, E ‖ −X/b̃X ‖≤ m3 < ∞. 2

Lemma 3. (A.J.King and R.J.-B. Wets [12]) Let Y be a directly given random
variable on the probability space (Γ,A,Q), where A denotes a σ-algebra completed
with respect to Q. Consider the following assumptions:
Assumption A. g ( · , · ) : Rk × Γ → R ∪ {∞} is a convex normal integrand, that is,

(i) the set epi g
( · , y)

is closed for each y ∈ Γ,
(ii) the set valued mapping y → epi g

( · , y)
is measurable, that is, for all closed

subsets F ⊆ Rk+1, {y ∈ Γ : epi g
( · , y) ∩ F 6= ∅} ∈ A,
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(iii) the set epi g
( · , y)

is convex for each y ∈ Γ, and it is not empty a.s.

Assumption B. There exist a c̃ ∈ Rk such that
∫

g
(
c̃, y

)Q (
dy

)
is finite, and a

measurable function u ( · ) : Γ → Rk such that

(i) g
(
c, y

) ≥ g
(
c̃, y

)
+ u

(
y
)
(c− c̃) for all c ∈ Rk, y ∈ Γ, and

(ii)
∫ ‖ u

(
y
) ‖ Q (

dy
)

is finite.

Assumption C. The random variables Y i are independent and identically distributed.

Under assumptions A, B, and C if ĉ is a cluster point of any sequence {cn} with

cn ∈ arg min
c∈Rk

1
n

n∑
i=1

g (c, Y i) then ĉ ∈ arg min
c∈Rk

Eg (c, Y ) a.s.

P r o o f . See King and Wets [12] Theorem 2.3 and Proposition 2.1, or Wets [15]
Theorem 3.4. 2

Lemma 4. Suppose that the random stock market return vectors Xi are independent,
identically distributed and −∞ < sup

b∈B
E ln bX < ∞. Then there exists a measurable

selector {bn

(
X1, X2, . . . , Xn−1

)}∞
n=1

such that

bn

(
X1, X2, . . . , Xn−1

) ∈ arg max
b∈B

1
n− 1

n−1∑

i=1

ln bXi

and the cluster points of {bn

(
X1, X2, . . . , Xn−1

)}∞
n=1

are log-optimal a.s.

P r o o f . The existence of the measurable selector {bn

(
X1, X2, . . . , Xn−1

)}∞
n=1

fol-
lows from Lemma 1, Rockafellar [14] Theorems 1C and 2K, and the fact that

arg max
b∈B

1
n

n∑

i=1

ln bXi = arg min
b∈B

1
n

n∑

i=1

− ln bXi = arg min
b∈Rm

1
n

n∑

i=1

f (b,Xi) a.s.

Since 1
n

n∑
i=1

− ln bXi = 1
n

n∑
i=1

f (b,Xi) for all b ∈ B a.s., the log-optimality of the

cluster points follows immediately from Lemmas 1,2 and 3. 2

Lemma 5. Suppose that the random stock market return vectors X1, X2, . . . are
independent and identically distributed. Then the cluster points of the empirical log-
optimal portfolio selector {bn

(
X1, X2, . . . , Xn−1

)}∞
n=1

and the proposed portfolio
selector {b̂n

(
X1, X2, . . . , Xn−1

)}∞
n=1

coincide and hence the cluster points of the
sequence
{b̂n

(
X1, X2, . . . , Xn−1

)}∞
n=1

are log-optimal with probability one.

P r o o f . Suppose lim
n→∞

bin

(
X1 (ω) , X2 (ω) , . . . , Xin−1 (ω)

)
= b′. Since

b̂in

(
X1 (ω) , X2 (ω) , . . . , Xin−1 (ω)

)
=

(1− λin) bin

(
X1 (ω) , X2 (ω) , . . . , Xin−1 (ω)

)
+ λine

and λin → 0, hence

lim
n→∞

b̂in

(
X1 (ω) , X2 (ω) , . . . , Xin−1 (ω)

)
=

lim
n→∞

bin

(
X1 (ω) , X2 (ω) , . . . , Xin−1 (ω)

)
= b′.

The other direction follows similarly.
Suppose lim

n→∞
b̂in

(
X1 (ω) , X2 (ω) , . . . , Xin−1 (ω)

)
= b′.
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lim
n→∞

bin

(
X1 (ω) , X2 (ω) , . . . , Xin−1 (ω)

)
=

lim
n→∞

1
1− λin

b̂in

(
X1 (ω) , X2 (ω) , . . . , Xin−1 (ω)

)− λin

1− λin

e = b′.

Now the log-optimality follows from Lemma 4. 2

Lemma 6. Let the random stock market return vectors X1, X2, . . . be independent,
identically distributed, and−∞ < sup

b∈B
E ln bX < ∞. Suppose {b̃n

(
X1, X2, . . . , Xn−1

)}∞
n=1

is a measurable selector of portfolios such that b̃n(X1, X2, . . . , Xn−1) ∈ intB for all
n, and the cluster points of {b̃n

(
X1, X2, . . . , Xn−1

)}∞
n=1

are log-optimal a.s. (Here
intB denotes the interior of the set B.) Then

lim
n→∞

1
n

n∑

i=1

ln b̃i

(
X1, X2, . . . , Xi−1

)
Xi = E ln b∗X a.s.

P r o o f . Let b∗′ be a log-optimal portfolio such that b∗
′

j = 0 implies b∗j = 0 for all
b∗ ∈ B∗, j = 1, 2, . . . ,m, where B∗ denotes the set of log-optimal portfolios. Such
a portfolio exists, since suppose b∗1,j = 0 and b∗2,j 6= 0 for some j. Then for any
λ ∈ (0, 1), λb∗1 + (1 − λ)b∗2 ∈ B∗ and contains less number of zeros than b∗1 does.
(Note that the set of log-optimum portfolios form a convex set. See Cover [7].) If
this new portfolio does not satisfy the condition we can repeat this prucedure. After
at most m steps we get a proper portfolio.

Since there exists a set L such that P (X ∈ L) = 1 and b∗1x = b∗2x if x ∈ L, b∗1,
b∗2 ∈ B∗ (see Cover [7]),

1
n

n∑

i=1

ln
b̃i

(
X1, X2, . . . , Xi−1

)
Xi

b∗Xi

=
1
n

n∑

i=1

ln
b̃i

(
X1, X2, . . . , Xi−1

)
Xi

b∗′Xi

=

1
n

n∑

i=1

ln

(
b̃
∗
i

(
X1, X2, . . . , Xi−1

)
Xi

b∗′Xi

+

b̃i

(
X1, X2, . . . , Xi−1

)
Xi − b̃

∗
i (X1, X2, . . . , Xi−1)Xi

b∗′Xi

)

where b̃
∗
i (X1, X2, . . . , Xi−1) denotes the closest log-optimal portfolio to

b̃i

(
X1, X2, . . . , Xi−1

)
in Euclidean distance. (Such a portfolio exists since the set of

log-optimal portfolios B∗ ⊆ B is closed by the continuity of the function E ln bX.)
Thus

1
n

n∑

i=1

ln
b̃i

(
X1, X2, . . . , Xi−1

)
Xi

b∗Xi

=

1
n

n∑

i=1

ln


1 +

(
b̃i

(
X1, X2, . . . , Xi−1

)− b̃
∗
i

(
X1, X2, . . . , Xi−1

))
Xi

b∗′Xi


 ≥

1
n

k(ω)∑

i=1

ln
b̃i

(
X1(ω), X2(ω), . . . , Xi−1

(
ω))Xi(ω)

b∗′Xi(ω)
+

1
n

n∑

i=k(ω)+1

ln
(

1− εaXi(ω)
b∗′Xi(ω)

)
,
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where aj = 1 if b∗′j 6= 0, aj = 0 if b∗′j = 0 and k(ω) is an integer such that
‖ b̃i

(
X1(ω), X2(ω), . . . , Xi−1 (ω)

)− b̃
∗
i

(
X1 (ω) , X2 (ω) , . . . , Xi−1 (ω)

) ‖< ε for i >
k (ω), where 0 < ε < 1

2 min
j∈I

b∗′j , and I = {j : b∗′j 6= 0}.
Thus

1
n

n∑

i=1

ln
b̃i

(
X1, X2, . . . , Xi−1

)
Xi

b∗Xi

≥

1
n

k(ω)∑

i=1

ln
b̃i

(
X1 (ω) , X2 (ω) , . . . , Xi−1 (ω)

)
Xi (ω)

b∗′Xi (ω)

− 1
n

k(ω)∑

i=1

ln
(

1− εaXi(ω)
b∗′Xi(ω)

)
+

1
n

n∑

i=1

ln
(

1− εaXi(ω)
b∗′Xi(ω)

)
.

Thus

lim inf
n→∞

1
n

n∑

i=1

ln
b̃i

(
X1, X2, . . . , Xi−1

)
Xi

b∗Xi

≥ E ln
(

1− εaX

b∗′X

)
a.s.

Expanding the function ln
(
1− yaX/b∗′X

)
into Taylor series around 0 in the interval

[0, ε], we have,
∣∣∣∣ln

(
1− yaX

b∗′X

)∣∣∣∣ =
∣∣∣∣ln(1) +

−yaX

b∗′X − taX

∣∣∣∣

for some t ∈ [0, ε]. Thus
∣∣∣∣ln

(
1− εaX

b∗′X

)∣∣∣∣ ≤
εaX

b∗′X − taX
≤ εaX

b∗′X − εaX
≤ εaX

0.5b∗′X
=

2εaX

b∗′X
.

Since EXj/b∗X ≤ 1 for j = 1, 2, . . . , m by log-optimality (see Bell and Cover [4]),
hence

E
2εaX

b∗′X
≤ 2εm < ∞.

Since ε was arbitrary,

lim
ε→0

E ln
(

1− εaX

b∗′X

)
= E ln 1 = 0

by Lebesgue’s dominated convergence theorem. The upper bound follows similarly,

lim sup
n→∞

1
n

n∑

i=1

ln
b̃i

(
X1, X2, . . . , Xi−1

)
Xi

b∗Xi

=

lim sup
n→∞

1
n

n∑

i=1

ln


1 +

(
b̃i

(
X1, X2, . . . , Xi−1

)− b̃
∗
i

(
X1, X2, . . . , Xi−1

))
Xi

b∗′Xi


 ≤

lim sup
n→∞

1
n

n∑

i=1

ln
(

1 +
εeXi

b∗′Xi

)
= E ln

(
1 +

εeX

b∗′X

)
,
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where e = (1, 1, . . . , 1). Since ε was arbitrary,

lim
ε→0

E ln
(

1 +
εeX

b∗′X

)
= 0 a.s.,

by Lebesgue’s dominated convergence theorem. Hence

lim
n→∞

1
n

n∑

i=1

ln b̃i

(
X1, X2, . . . , Xi−1

)
Xi = E ln b∗X a.s. 2

Proof of Theorem 1. The cluster points of {b̂n

(
X1, X2, . . . , Xn−1

)}∞
n=1

are
log-optimal by Lemma 5. Since b̂n

(
X1, X2, . . . , Xn−1

) ∈ int B for all n, hence the
theorem follows from Lemma 6. (Here int B denotes the interior of the set B.) Note
that we could not have used the pure empirical log-optimal portfolio selector since
it might lead us to ultimate ruin. That is why it was necessary to combine the pure
empirical log-optimal portfolio with the uniform one. In order to force the cluster
points of the proposed portfolio selector into the set of log-optimal portfolios B∗ we
made the uniform portfolio vanish asymptotically. 2

(Received December 10, 1991.)
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