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A METHOD OF TREND RECOGNITION
IN TIME SERIES

Jiř́ı Michálek and Jiř́ı Skřivánek

The paper describes a method for detecting changes in the behaviour of a trend in time series.
Simultaneously a method for distinguishing types of possible trends of time series is presented too.

1. INTRODUCTION

The problem of change detection in the behaviour of time series has been very inten-
sively studied in last fifteen years. There is a lot of papers dealing with this problem
but we refer only to some of them, which consider changes of mean value of time
series. There is a publication [1], whose first chapter is devoted to the detection of
jumps in the mean of a signal. The analysis of the most used methods is presented
there. We can also mention a comparative study [2] of some sequential jump de-
tection procedures. Usually the assumption about mutual stochastic independence
among observations is accepted. A jump detection is equivalent to the acceptance
of the hypothesis H1 of a change against the hypothesis H0 of no change during the
observation. The detection of a change in the mean value can be understood as a
hypothesis testing problem where one wishes to minimize the error of the first and
second kind. Here, the first kind error is the false alarm and the detection delay
presents the second kind error. If we knew the probability density function of ob-
servations the likelihood ratio test would be in a certain sense optimal as proved in
[3] or [4]. But in the case of time series the situation is much more complicated be-
cause of a possible stochastic dependence. The first goal of the paper is to suggest a
method detecting changes in a trend of time series and the other goal is to recognize
the type of a detected change in the behaviour of a trend.

2. FORMULATING PROBLEM

In practice we can very often meet time series that can be described by an additive
model consisting of two components {mn}, {en}, i.e.

xn = mn + en

where {mn} presents a trend of time series and {en} is an error.
We shall assume that the errors {en} can be expressed by a colour noise with

vanishing mean value and an unknown spectral density function. The trend {mn}
can be understood either as the mean value of the sequence {xn} or as a random
process usually stochastically independent on {en}. In the latter case one must find
a suitable mathematical model describing the behavior of {mn} which could be a
very difficult way, so we will assume {mn} can be considered as a deterministic trend.
Since the trend {mn} can change in time the observed process {xn} is nonstationary
in general. But within some time intervals when the trend assigns a constant value,



A Method of Trend Recognition in Time Series 473

the sequence {xn} is weak stationary. In this sense we shall speak about local weak
stationarity. Our task is obtain as much as possible information about the behaviour
of {mn} via observed data {xn}, i. e. from this point of view the problem of change
detection belongs among typical statistical decision problems. As a basic state we
mean the stationary situation when the trend {mn} shows a constant course. Any
deviation from this state presents a change, which should be detected as quickly as
possible. The next step is, very important in practice too, how to characterize the
type of a detected change. It means we have a collection of typical courses occurring
after changes and we must solve the decision problem of which typical course is the
most similar to the course we have just observed. This decision problem we can be
met very often in technical diagnostics. On the other hand, one must also determine
the end of the change, which was detected before because we must be ready to
accept next changes. For these purposes we need some state variables describing
the course of the observed process after detecting a change. Such a state variable
is defined on the trajectories of our process assigning its value in a state space.
The state space is usually determined by experience and practice. Every situation
after occurring any change may be understood as a state that is typical for some
situations corresponding to the technical condition of a device. For the description
of similarity between two states we need a similarity measure by means of which
we could choose the nearest state with respect to the reality. In this way one can
appreciate the course of the observed process with on-line regime.

3. THEORETICAL BACKGROUND

The basic assumption is that the colored noise is a weakly stationary regular random
sequence with vanishing mean value. A trend {mn} is added to this noise, whose
basic state is a constant level. Until any change occurs the result of our observa-
tion is a weakly stationary sequence with a certain mean value. Since we do not
know the parameters of the process {xn} it is necessary to obtain some estimates
characterizing the course of {xn}. At this situation we use the following idea to
substitute the completely unknown sequence {xn} we have observed by a simpler
sequence, which would be similar to the observed sequence as much as possible. Af-
ter constructing such a suitable approximation we shall make our decisions on the
basis of the approximating sequence. It seems to be quite reasonable to choose the
family of Gaussian autoregressive sequences. We suggest to measure the similarity
between the observed sequence and an autoregressive approximation by means of
the asymptotic I-divergence rate having the form

R̄1 (ϕ̂x, εa) =
1
4π

∫ π

−π

(
ϕ̂x

ϕa
− ln

ϕ̂x

ϕa
− 1

)
dλ

where ϕ̂x is the spectral density function derived from observation and ϕa is the
spectral density function of an autoregressive model with a suitable order. For more
information we refer to the monograph [5]. The problem how to choose a suitable
order of an autoregressive sequence is not solved in this paper but one can say the
more abrupt changes the shorter order is sufficient for a good detection. Let us
assume we have chosen the order p for an autoregressive model

yn+1 +
p∑

k=1

ak yn−k+1 = σp ξn+1

where {ξn} is a standard Gaussian white noise. Minimizing R̄1 (ϕ̂x, ϕ̂a) with

ϕ̂a(λ) =
1
2π

σ2
p∣∣∣∑p

j=1 ajeiλj
∣∣∣
2
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and

ϕ̂x(λ) =
1
2π

p∑

j=−p

e−ijλR̂j ,

where for j = 0, 1, . . . , p

R̂j =
1
N

N−j∑

k=1

(xk − x̄) (xk+j − x̄) , R̂j = R̂−j

and

x̄ =
1
N

N∑

k=1

xk,

we will reach the system of Yule–Walker equations for (a1, a2, . . . , ap, σp) as proved
in [6]. It means the most similar autoregressive model is given by the Yule–Walker
estimates. The system of the Yule–Walker equations can be very quickly solved by
means of the Levinson algorithm. The number N presents the length of a sliding
window moving over the observations.

At this moment we have at our disposal the estimates (â1, â2, . . . , âp, σ̂p) obtained
by the procedure described above and we can work with the approximating model

yn+1 +
p∑

j=1

âp yn+1−j = σ̂p ξn+1.

Knowing the values xn, xn−1, . . . , xn−p we can, using this model, construct a “best”
predictor of xn+1 under the history of the length p. This predictor has the form

x̂n+1 = −
p∑

j=1

âjxn−j +


1 +

p∑

j=1

âj


 x̄.

There is an opportunity to use this predictor for the detection of changes in the
behaviour of {mn}. Coming out from the assumption we are in the basic state, i. e.
the weak stationarity of {xn}, we can expect under the maintenance of stationarity
the residuum xn+1−x̂n+1 should be relatively small. In such a case with high proba-
bility xn+1 should fall into a small neighbourhood of x̂n+1, which can be determined
as an interval of reliability by means of the estimate σ̂2

p. The correctness of this
approach is based on the result given in [7] that showed that increasing the order
p of the approximating autoregressive model we can reach a very good similarity
between the approximation and reality because

lim
p→∞

R̄1 (ϕ̂x, ϕ̂a(p)) = 0,

if we knew, of course precisely the spectral measure ϕ̂(·) corresponding to the sta-
tionary state. Here, ϕ̂x is derived from the observations as mentioned above. As
long as the difference between xn+1 − x̂n+1 is larger then a change in the behaviour
of {mn} is detected. In this way all the information on the behaviour of the time
series is expressed via the sequence of residua. It is evident as long as a change
is sufficiently expressive then the residuum is with high probability expressive too
since the predictor is somewhat delayed behind the reality. This fact can be utilized
for the construction of an adaptive prediction in time series, which is switched on
immediately if a change in the trend was detected. This adaptive prediction consists
in the simple fact that we add to the predicted value x̂n+2 the previous residuum
xn+1 − x̂n+1. But, we will solve the problem how to use the behaviour of residua
for the characterization of the course of the observed time series. The course of the
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sequence will be characterized locally which means we will treat the last residua
only. How a long sequence of residua one must use we will not discuss here, but as
the experience says on the basis of simulations one can already use 15 – 20 samples
of residua. Everything is depending on the types of changes and on the sampling
period. As long as a change is very slow it may happen such a situation will not be
detected at all.

In practice we can use the following state variable {Sn} describing the course
of time series. This variable is derived of residua and assigns three values only:
0,+1, –1 according to the magnitude and sign of the residuum. If

|xn+1 − x̂n+1| < δ,

where δ > 0 is the threshold determined by σ̂p, then the state variable Sn+1 equals
0. As long as

xn+1 − x̂n+1 > δ,

then we put Sn+1 = +1. On the other hand, if

xn+1 − x̂n+1 < −δ

Sn+1 will be equal to the value –1. In this way the course of {xn} is characterized by
the sequence of signs from the alphabet {−1, 0, +1}. It could be possible to enlarge
the alphabet to 5 or 7 signs according to the magnitudes of residua so that one can
distinguish the intensity of changes too.

At this moment we will assume the state variable {Sn} forms a Markov chain
acquiring three states: −1, 0, +1. Further, we will assume that this chain is locally
stationary, i. e. relatively short periods of residua can be understood as a realization
of a stationary chain. For the evaluation of the time series course we will compute
the relative frequency

p̂ij =
nij

n− 1

corresponding to the number of the immediate transitions from the state i into the
state j within the window containing the last values of the state variable {Sn}. Here,
the number n presents the length of this moving window. We obtained in such a
way a matrix

P̂ = {p̂ij}i, j∈{−1,0,1} ,

an estimate of the probability distribution for the random variable {Sn(·), Sn+1(·)}

P {ω : Sn(ω) = i, Sn+1(ω) = j} .

Now, there is the problem how to characterize the similarity between two courses.
Let some typical examples based on practice and experience be chosen. These typical
courses are interesting for us from some reasons; e. g. from the point of view of
technical diagnostics. Every chosen course is characterized by a matrix

Qk =
{

q
(k)
ij

}
i, j∈{−1,0,+1}

k = 1, 2, . . . , M . Now, the task is to choose a course described by the matrix
Qk, k = 1, 2, . . . ,M in order to be the most similar to the observed course given
by the matrix P̂. As a similarity measure we will use the I-divergence between the
probability distributions Qk and P̂, i. e.

I
(
P̂|Qk

)
=

∑

i, j∈{−1,0,+1}
p̂ij ln

p̂ij

q
(k)
ij

.
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The solution of our classification problem is given by minimizing

min
k=1,2,...,M

I
(
P̂|Qk

)
.

Using this method one can meet the situation q
(k)
ij = 0 for some pair i, j. In order

to overcome these difficulties it seems to be reasonable to put q
(k)
ij = ε > 0 in such

a case where ε is a small positive member chosen below mini,j

{
q
(k)
ij > 0

}
.

The suggested approach can be made more severe by setting up a threshold that
must not be overcome by the minimum value of I-divergence. In this way we want to
minimize the error choosing the closest course to the observed one, but this closest
course will not be similar to the reality as we would wish.

There is of course a possibility to use another measure of similarity. A very
frequently used measure is the χ2-distance having the famous form

χ2 (P|Qk) =
∑

i,j∈{−1,0,1}

(
pij − q

(k)
ij

)2

q
(k)
ij

.

Since we assumed the stationarity of the Markov property the next measure derived
from stationarity is possible too. The measure in question is so called asymptotic
I-divergence rate equal to

AIR
(
P̂|Qk

)
=

∑

i,j∈{−1,0,1}
pij ln

pi|j

q
(k)
i|j

where pi|j = P {Sn+1 = i |Sn = j}. This measure of similarity is introduced by the
following Lemma.

Lemma. Let {ξn}, {ηn} be two stationary Markov chains with a finite num-
ber of states {1, 2, . . . , N}. Let P, Q be their transition probability matrices, p =
(p1, p2, . . . , pN ), q = (q1, q2, . . . , qN ) their initial probability distributions; pij = 0 if
and only if qij = 0. Then there exists the following limit

lim
n→∞

EPn

{
Pn (ξ1, ξ2, . . . , ξn) ln

Pn(ξ1, ξ2, . . . , ξn)
Qn(η1, η2, . . . , ηn)

}
=

=
N∑

i,j=1

pij ln
pi|j
qi|j

where P =
{
pi|j

}N

i,j=1
, Q =

{
Qi|j

}N

i,j=1
, pij = pj pi|j , qij = qj qi|j ,

Pn (ξ1, ξ2, . . . , ξn) = P {ξ1 = i1, ξ2 = i2, . . . , ξn = in} ,

Qn (η1, η2, . . . , ηn) = P {η1 = i1, η2 = i2, . . . , ηn = in}
with i1, i2, . . . , in ∈ {1, 2, . . . , N}.

P r o o f . Let us put ln 0
0 = 0 to overcome problems with division by 0. Thanks

to the Markov property we can write

Pn (ξ1, ξ2, . . . , ξn) = pi1 pi2|i1 pi3|i2 . . . pin|in−1

Qn (η1, η2, . . . , ηn) = qi1 qi2|i1 qi3|i2 . . . qin|in−1 .

Then, the I-divergence I (Pn|Qn) equals

EPn

{
Pn (ξ1, ξ2, . . . , ξn) ln

Pn(ξ1, ξ2, . . . , ξn)
Qn(η1, η2, . . . , ηn)

}
=

=
∑

(i1,i2,...,in)

pi1pi2|i1 . . . pin|in−1 ln
pi1pi2|i1 . . . pin|in−1

qi1qi2|i1 . . . qin|in−1

.
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Since the considered Markov chains are stationary I (Pn|Qn) can be expressed as
follows:

I (Pn|Qn) =
∑

(i1,i2,...,in)

pi1

∏

(i,j)

p
nij

i|j ln





pi1

∏
(i,j) p

nij

i|j
qi1

∏

(i,j)

q
nij

i|j





where nij is the number of the immediate transitions j → i within the time period
of the length n; evidently

∑
(i,j) nij = n− 1.

In this way we obtained the following form

P (Pn|Qn) =
∑

(i1,i2,...,in)

Pn (ξ1, ξ2, . . . , ξn)





N∑

i,j=1

nij ln
pi|j
qi|j

+ ln
pi1

qi1



 .

Then

1
n

I (Pn|Qn) =
∑

(i1,i2,...,in)





N∑

i,j=1

nij

n
ln

pi|j
qi|j

+
1
n

ln
pi1

qi1



 Pn {ξ1, ξ2, . . . , ξn} .

Now, thanks to the law of large numbers and to the finite number of states one can
easily prove that

lim
n→∞

1
n

I (Pn|Qn) =
N∑

i,j=1

pij ln
pi|j
qi|j

because nij

n −→n→∞ pj pi|j in probability. 2

4. APPLICATION IN PRACTICE

For illustration of the given method we will show a few examples and will give a
detailed discussion of application. In practice, one must very often know whether
the course of an observed process is regular or irregular. Among regular courses a
stationary course without any changes naturally belongs. A regular change of course
is the behaviour of an observed process corresponding to a controlled process. Such
a typical regular change is a monotone change expressing a transition from one level
to another one. The recognition of those changes and their intensity too is very
important for technical diagnostics. A monotonic change belonging to the class of
regular courses is given in Figure 1. An irregular course with very rapid changes
in the behaviour of a technological process caused by a not working feed-back is
presented in Figure 2. Figure 3 describes an
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Fig. 1. Monotonic change.

Fig. 2. Irregular behaviour.

Fig. 3. Admissible behaviour.

admissible course of a technological process. The course of a technological process
is denoted by a full line. The sequence of small squares presents the course of the
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one step predictor following possible changes. The difference between the measured
value and its prediction is the residuum. All the courses were obtained from practice.

During the construction of a program for a computer some modifications of the
described method were done. With regard to practice one of the important infor-
mation is to know whether an observed error signal represented in a moving window
as a state variable series {Sn} is increasing or decreasing. The probabilistic ap-
proach given above cannot distinguish these two dissimilar cases. For a better data
processing the original values in {Sn}, i. e. 0, +1, –1 were substituted by 0, 2, 1, so
that 2 represents the increase and 1 the decrease of the error signal. One can easily
imagine {Sn}, e. g. 0, 0, 2, 2, 2, 0, 1, 2, 1, 1, 1, 0, 0, . . . , 0 describing an “increase”
and {S′m} as
0, 0, 1, 1, 1, 0, 2, 1, 2, 2, 2, 0, 0, . . . , 0 describing a “decrease”, while their transition
matrices P̂n and P̂m are identical. For this reason a switch before the proper classi-
fication procedure was installed, dividing all the error signals into two basic groups
according to the beginning of a respective state variable series.

Further, in a moving window with n data we can observe (n−1) transitions only,
i. e. for the last value the transition is unknown as far as in the next step when
the (n + 1)-st value becomes the n-th one. So, the last value has a nonequivalent
position with respect to other data in a moving window. It shows to be convenient
to know an auxiliary (n + 1)-st value determining the last transition from n to
(n + 1). The following example demonstrates the usefulness of the knowledge of the
(n + 1)-st value in an {Sn}-sequence. Let us assume the 10-data moving window:
0, 0, 0, 2, 2, 2, 1, 1, 2, 1. In the next step of observation the error signal – after
shifting one step from the right to the left – changes into 0, 0, 2, 2, 2, 1, 1, 2, 1, 0.
Although dealing evidently with the same error signal, the {Sn}-sequence before
shifting has no transition from 1 to 0, and thus it has a different qualitative transition
matrix as the shifted sequence. Comparing these two sequences, we meet the problem
described earlier: how to treat the term q

(k)
ij = 0; always the I-divergence value will

be greater than in the case when the transition (1 → 0) is known, the similarity
measure is then distorted.

This just described problem can be generalized: how to avoid such cases where
P and Q contain pij = 0 or qij = 0 at different positions? By practical examples
it can be shown that the I-divergence value is mostly influenced by these undefined
terms. The only way ensuring that these undefined terms cannot appear at all is the
use of P and Q with all the same types of transitions. In our described 9-elements
transition matrix there exist about 70 combinations of different transition types for
an increasing error signal and the same number for a decreasing signal, which one can
meet in practice. Other examples are almost impossible. Fortunately, we can deal
with only one of them, e. g. with the increasing signal and thanks to the installed
switch before the proper classification procedure, every decreasing signal can be
transformed on the basis of mirror symmetry into a similar increasing one, as it is
shown in the first example (1 is transformed into 2, 2 into 1 and 0 remains without
any change). The detailed analysis of all the possible combinations of different
transitions types leads to the conclusion that for practice about 20 of them can be
utilized only.

The classification procedure after the basic determination of an error signal (in-
creasing/decreasing) at the beginning starts with the error type identification se-
lecting one type from 20 possibilities mentioned above. Each of these 20 error type
classes can contain several representants Q1, Q2, . . . ,Qr that are successively com-
pared with the observed error signal and the respective values of similarity measure
are calculated. The optimal similarity measure is then chosen to be minimum of
them. The corresponding I-divergence value is finally compared with a prescribed
threshold that must not be overcome for the similarity to be considered as satisfac-
tory.
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Several typical courses were tested by the described method to achieve a sufficient
number of combinations in error type classes, e. g. step, S-curve, jump, oscillations
and some others. Signals that were obtained as actual regular processes are charac-
terized with several numbers of error types only.

Figure 4 shows three courses of signals that were considered being representation
types. Firstly, the type 0 presents a relatively quiet course (output window contains
zeros only); secondly, the type B is a sequence of dumped oscillations (output window
contains 0, 1 and 2) and the third course, type A, is an increase (output window
contains 0 and 2 only).

Fig. 4. Reference signal.

Figure 5 shows three representants of oscillations (possible subtypes) that have
a different number of transitions but with the same kind of them. Similarly, Fig-
ure 6 shows 3 subtypes of increases. All the subtypes were chosen according to the
representative types but with different amplitudes. In Figure 7 a real signal coming
to the input of the discrimination procedure is displayed. The suggested procedure
works in two levels. At the first level, the corresponding type of a signal according
to the kind of transitions determined within a sliding window is found. In this step
we choose a family of all courses having the same types of transitions. The second
step is already carried out within this family. We prepared some typical courses
(subtypes) in advance, which are interesting for us for some reasons. Here, see Fig.
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5 and Fig. 6, where some typical

Fig. 5. Oscillations – reference subtypes. Fig. 6. Increase – reference subtypes.

subtypes were chosen in advance. We evaluate the value I(P, Qi) for every pair P, Qi

where the matrix P is derived from a real signal and the matrices Qi, i = 1, 2, 3
were chosen in advance as typical. The matrices Qi, i = 1, 2, 3 represent the chosen
subtypes

Fig. 7. Real signal.

in every family. After finding the minimum value, let’s say I(P,Q1) the real signal
is declared to be the most similar to the reference signal No 1. The following table
brings the values of I(P, Q) for four chosen windows covering some parts of a real
signal.

window Ipq(1) Ipq(2) Ipq(3) minimal most similar
value subtype

32 – 51 0,065 0,347 0,641 0,063 A1
61 – 80 0,137 0,129 0,066 0,066 B3

133 – 152 0,013 0,047 0,183 0,013 A1
169 – 188 0,117 0,019 0,069 0,019 B2
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Ipq(i) = I(P, Qi), i = 1, 2, 3.

In the window 32–51 the type A was detected and among the chosen subtypes
A1, A2, A3 the subtype A1 is the most similar to the real signal. Similarly, in the
window 61–80 we first detected the type B and then among the subtypes B1, B2, B3

the subtype B3 was chosen according to the minimal value of I-divergence. In the
same way the signal in the window 133–152 in Figure 7 is the most similar to the
subtype A1. The last window 169–188 is the most similar to the subtype B2.

(Received October 4, 1991.)
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