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SCHWARZ–LIKE METHODS FOR APPROXIMATE
SOLVING COOPERATIVE SYSTEMS∗

Ivo Marek

This paper is dedicated to Prof. Dr.Dr.h.c. Frantǐsek Nožička on the occasion
of his 85th birthday.

The aim of this contribution is to propose and analyze some computational means to
approximate solving mathematical problems appearing in some recent studies devoted to
biological and chemical networks.

Keywords: cooperative systems, steady states of evolution problems, Schwarz iterative so-
lution

AMS Subject Classification: 65F10, 47B60

Basic mathematical tools for investigating some biological and chemical networks
as presented in [11, 12] are recalled in Section 1. In Section 2 some variants of iter-
ative Schwarz-like methods studied in [1, 16] are described and applied to problems
discussed in Section 1. An analysis and comparison of two particular Schwarz-like
methods is presented in Section 4.

1. COOPERATIVE SYSTEMS

In [11] a theory for linear problems of the type

d
dt

w(t) = Tw(t), w(0) given, (1)

where T is a given infinitesimal generator of a semigroup of operators is developed.
Several examples mainly from biology and chemistry where the state vectors w(t)
of the underlying chemical network follow an evolution (1) are presented there. In
these cases the conservation of matter requires the existence of an element f such
that the duality pairing [w(t), f ] is constant during all times of the evolution so that
we have

[w(t), f ] = [w(0), f ], t ≥ 0. (2)
∗Research has been supported by Grant No. 201/02/0595 of the Grant Agency of the Czech

Republic and Grant No.MSM 210000010 of the Ministry of Education, Youth and Sports of the
Czech Republic.



612 I. MAREK

It should be noted that in case the space where the evolution is investigated is a
Hilbert space the pairing just mentioned becomes a corresponding inner product.

More complicated networks (and some examples are shown [12]) are described by
a state vector u(t) which is formed by finitely many substates in the fashion

u(t) =
(
u1(t), . . . , uN (t)

)
(3)

following an evolution
{

d
dtu

j(t) = T (j)(u(t))uj(t) := B(j)uj(t) + G(j)(u(t))uj(t)
[
uj(t), f j

]
=

[
uj(0), f j

]
, t > 0, j = 1, . . . , N.

(4)

Hence, the subsystems evolve like (1) and (2) for which we developed the theory in
[11]. The dependence of the operators T (j) on the data is typically on the complete
state (3) rather than only on some substates.

If uj ∈ Xj , j = 1, . . . , N , for the states of the subsystems, the product X =
X1 ×X2 × · · · ×XN can be formed and the “block”-diagonal operator

B = diag
{

B(1), . . . , B(N)
}

, G(u) = diag
{

G(1)(u), . . . , G(N)(u)
}

(5)

can be defined on X. Now (3) evolves according to

d
dt

u(t) = Bu(t) + G(u(t))u(t), [u(t), f ] = [u(0), f ], t ≥ 0, (6)

where f = (f1, . . . , fN ) ∈ X and B is the infinitesimal generator of a semigroup of
operators of class C0 [13, p. 321]. Note that structurally (6) is very similar to (1),
(2). Only the infinitesimal generator G = G(u) itself depends on the total state (3)
so that our problem becomes nonlinear.

In [12] the evolution problem was assumed in the form (6) under very general
conditions and an existence theorem (concerning mild solutions which in our appli-
cations become classical solutions) was proven for all times t ≥ 0 and the question
of its long run behaviour settled: In fact, any solution of (6) settles in the long
run at a steady state. Defining equations to determine this steady state are given
there. This theorem is important not only in its own right. It also provides the basis
for singular perturbation techniques on such systems to obtain analytic expressions
which characterize the speed of reaction systems, and we refer to [7, 22] for the
pseudo-steady state process leading to the definition of the speed of the underlying
chemical networks. Note that the theory does not need the diagonal form of (5).
However, it relies heavily on (2). Relation (6) is only an easy way to fit (3), (4)
under the general pattern (10). The original form of the examples is (4).

As in the earlier papers [11, 12] we need the theoretical basis for infinitesimal
generators with monotonicity properties. The corresponding basic definitions are
summarized in this section.

Let E be a Banach space over the field of real numbers. Let E ′ denote the dual
space of E . Let F , F ′ be the corresponding complex extensions of E , E ′ respectively
and let B(E) and B(F) be the spaces of all bounded linear operators mapping E
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into E and F into F respectively. In fact, we are going to provide our investigations
in a Hilbert space E equipped with an inner product [·, ·].

Let K ⊂ E be a closed normal and generating cone, i. e. let
(i) K +K ⊂ K,
(ii) aK ⊂ K for a ∈ R+,
(iii) K ∩ (−K) = {0},
(iv) K = K,

where K denotes the norm-closure of K,
(v) E = K −K,

and
(vi) there exists a δ > 0 such that ||x + y|| ≥ δ||x||, whenever x, y ∈ K.
Property (vi) is called normality of K.

We let
x ¹ y or equivalently y º x ⇐⇒ (y − x) ∈ K

(vii) For every pair x, y ∈ K there exist x ∧ y = inf{x, y} and x ∨ y = sup{x, y}
as elements of K.

A cone K satisfying condition (vii) is called a lattice cone and the partial order
on E a lattice order. In the terminology of H.H. Schaefer [19] E is called a Banach
lattice. Our theory is free of hypothesis (vii).

Let
K′ = {x′ ∈ E ′ : x′(x) ≥ 0 for all x ∈ K}

and
Kd = {x ∈ K : x′(x) > 0 for all 0 6= x′ ∈ K′} .

We call K′ the dual cone of K and Kd the dual interior of K, respectively. If E
happens to be a Hilbert space then K′ is replaced by K∗ a representation of K′ in
the sense of natural isomorphism of the dual E ′ with E .

In the following analysis we assume that the dual interior Kd is nonempty.
A set H′ ⊂ K′ is called K-total if the following implication holds

x′(x) ≥ 0 ∀x′ ∈ H′ =⇒ x ∈ K.

A linear form x̂′ ∈ K′ is called strictly positive, if x̂′(x) > 0 for all x ∈ K, x 6= 0.
We write [x, x′] in place of x′(x), where x ∈ E and x′ ∈ E ′ respectively. If E

happens to be a Hilbert space then [x, x′] denotes the appropriate inner product.
A bounded linear operator T ∈ B(E) is called K-nonnegative if TK ⊂ K. We

write in this case T º 0 and equivalently 0 ¹ T . If T and S both in B(E) satisfy
(S − T )K ⊂ K we write T ¹ S or equivalently S º T .

If T ∈ B(E) then T ′ denotes its dual and hence, T ′ ∈ B(E ′). In case E is a Hilbert
space, the dual operator T ′ is to be replaced by the adjoint operator T ∗ defined via
relations [Tx, y] = [x, T ∗y] valid for all x in the domain of T and y in the domain of
T ∗.
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Definition 1. Operator T ∈ B(E) is called K-stochastic if there exists a vector
x̂′ ∈ K′ such that for the dual map T ′ the following relation

T ′x̂′ = x̂′,

holds. We also say that T is a transition operator of a Markov chain or process and
that operator T corresponds to vector x̂′. If E is a Hilbert space the dual T ′ is to be
replaced by its adjoint T ∗.

Definition 2. A bounded linear operator T is K-irreducible if for every pair of
elements 0 6= x ∈ E , 0 6= x′ ∈ E ′, there is a positive integer p = p(x, x′) such that
x′(Bpx) 6= 0. This implies that in the Markov chain each state has access to every
other state, i. e., the chain is ergodic [20]. The Perron–Frobenius theorem states
that for T ≥ O irreducible, r(T ) is an isolated eigenvalue, and the corresponding
eigenvector is positive; see, e. g., [3].

Let T ∈ B(F) and let σ(T ) denote its spectrum. Further, let T ∈ B(E). We
introduce the operator T̃ by setting T̃ z = Tx + iTy, where z = x + iy, x, y ∈ E and
call it complex extension of T . By definition, we let σ(T ) := σ(T̃ ). Similarly, we let
r(T ) := r(T̃ ), where r(T̃ ) = max{|µ| : µ ∈ σ(T̃ )} denotes the spectral radius of T̃ .

In order to simplify notation we will identify T and its complex extension and
will thus omit the tilde sign denoting the complex extension.

The set
σπ(T ) = {µ ∈ σ(T ) : |µ| = r(T )}

is called peripheral spectrum of T . Note that σπ(T ) is never empty.
If µ is an isolated singularity of R(λ, T ) = (λI − T )−1 we have the following

Laurent expansion of R(λ, T ) around µ [17, 21]

R(λ, T ) =
∞∑

k=0

Ak(µ)(λ− µ)k +
∞∑

k=1

Bk(µ)(λ− µ)−k, (7)

where Ak−1 and Bk, k = 1, 2, . . ., belong to B(F). Moreover, it holds [21]

B1(µ) =
1

2πi

∫

C0
(λI − T )−1dλ, (8)

where
C0 = {λ : |λ− µ| = ρ0}

and ρ0 is such that {λ : |λ− µ| ≤ ρ0} ∩ σ(T ) = {µ}.
Furthermore,

Bk+1(µ) = (T − µI)Bk(µ), k = 1, 2, . . . (9)

If there is a positive integer q = q(µ) such that

Bq 6= 0, and Bk = 0, for k > q,
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then µ is called a pole of the resolvent operator and q its multiplicity.
We define the symbol

ind(µI − T ) = q(µ)

and call it the index of T at µ. In particular, we call ind(T ) the index of T instead
of index of T at 0.

The motivating examples are particular cases of Problem (P) defined as follows:

Problem (P) To find K-positive solutions

d
dt

u(t) = Bu(t) + G(u(t))u(t) = T (u(t))u(t), u(0) = u0, (10)

where B is generally an unbounded linear densely defined operator and G(u) for
every u ∈ E is a bounded linear map on E , where E denotes the underlying space to
be specified in each particular situation. We assume that we can identify situations
in which Problem (P) as formulated above possesses solutions and we are aware
of conditions guaranteeing the existence of them as well as some of their properties
such as uniqueness, asymptotic behaviour etc. A rather typical representative of such
problem is described in our study [12]. Since our aim in the present contribution is
to propose some algorithms of computational nature and analyse their properties we
do not go into much details referring the reader to [12] to consulting general aspects.
All properties needed for a good understanding of the numerical processes studied
will be presented here.

2. CONE PRESERVING ITERATIVE METHODS

In this section we present some notation, definitions, and preliminaries. Analogous
concepts on nonnegative matrices (defined here for generally infinite dimensional
spaces) can be found in the standard reference [3].

By σ(C) we denote the spectrum of C and by r(C) its spectral radius. By R(C)
and N (C) we denote the range and null space of C, respectively.

Let λ ∈ σ(C) be a pole of the resolvent operator R(µ,C) = (µI − C)−1. The
multiplicity of λ as a pole of R(µ,C) is called the index of C with respect to λ
and denoted indλC. Equivalently, q = indλC if it is the smallest integer for which
R((λI−C)q+1) = R((λI−C)q). This happens if and only if R((λI−C)q)⊕N ((λI−
C)q) = E .

A very important concept in matrix theory is the notion of an M -matrix. For
our purposes we need a slightly more general concept of K − M -operator and its
unbounded version of an approximate K −M -operator.

Definition 3. A bounded linear operator A ∈ B(E) is called K − M -operator if
A = bI−B, where B ∈ B(E) and b ≥ r(B). Note that in case E = RN and K = RN

+

operator A is called M -operator (matrix).
Let A be a densely defined bounded from above linear operator with its domain

of definition ∆(A) and let a ∈ R1 be its (lower) bound. Assume that there exists a
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system of operators {Ah : 0 < h ≤ h0}, Ah ∈ B(E), such that relation

lim
h→0

‖Ahx−Ax‖ = 0 (11)

holds for every x ∈ ∆(A). Operator A is called approximate K − M -operator if
each of the operators Ah in the collection mentioned has the form Ah = bI − Bh

with b ≥ r(Bh) and each Bh being K-nonnegative. A pair of operators (M, W ) is
called a splitting of A if A = M −W and M−1 exists as a bounded linear operator
on E . A splitting of an operator A is called of K-nonnegative type if the operator
T = M−1W is K-nonnegative [15]. If, in particular, both operators M−1 and W
are K-nonnegative, the splitting is called regular [23]. If M−1 and T = M−1W are
nonnegative, the splitting is called weak regular [18].

Note a weak regular splitting does require explicitly no conditions upon part W
of the splitting of A.

Let T be a bounded linear operator. T is called convergent if limk→∞ T k exists
and zero-convergent, if moreover limk→∞ T k = O. Standard stationary iterations of
the form

xk+1 = Txk + c, k = 0, 1, . . . , (12)

converge if and only if either T is zero-convergent or, if r(T ) = 1, T is convergent.
A bounded linear operator T with unit spectral radius being an isolated pole of the
resolvent operator is convergent if the following two conditions hold:

(i) if λ ∈ σ(T ) and λ 6= 1, then |λ| < 1.
(ii) ind1T = 1.

Equivalent conditions for (ii) can be found in [3].
It is useful to write T = Q+S, where Q is the first term of the Laurent expansion

of T , i. e., the eigenprojection onto the invariant subspace corresponding to λ = 1;
see, e. g., [21]. Then Q2 = Q, QS = SQ = O, and 1 /∈ σ(S). This is called the
spectral decomposition of T . The condition (i) above is equivalent to having r(S) < 1.

We state a very useful lemma; its proof can be found, e. g., in [9]. We note that
when r(T ) = 1, this lemma can be used to show condition (ii) above. To prove
convergence one needs to show in addition that condition (i) also holds.

Lemma 1. Let T be a K-nonnegative bounded linear operator such that Tv ≤ αv
with v > 0. Then r(T ) ≤ α. If furthermore r(T ) = α is a pole of the resolvent
operator (λI − T )−1, then indαT = 1.

3. ALGEBRAIC FORMULATION OF SCHWARZ METHODS

In this section we want to generalize convergence of some procedures well known as
algebraic Schwarz iteration techniques [1, 16]; our aim is however to analyze solving
equations in infinite dimensional spaces as well. Given an initial approximation x0

to the solution of
Ax = b, b ∈ E , (13)
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the (one-level) multiplicative Schwarz method can be written as the stationary iter-
ation

xk+1 = Txk + c, (14)

where

T = Tµ = (I − Pp)(I − Pp−1) · · · (I − P1) =
1∏

i=p

(I − Pi) (15)

and c is a certain vector in E . Here

Pi = RT
i (RiART

i )−1RiA, (16)

where Rj is a suitable linear operator and R∗j its adjoint with respect to the inner
product in the Hilbert space E . Note that each Pi, and hence each I − Pi, is a
projection operator; i. e., (I − Pi)2 = I − Pi. Each I − Pi naturally has spectral
radius equal to 1.

The additive Schwarz method for the solution of (13) is of the form (14), where

T = Tθ = I − θ

p∑

i=1

Pi = I − θ

p∑

i=1

RT
i A−1

i RiA, (17)

where 0 < θ ≤ 1 is a damping parameter.
The operator Ri corresponds to the restriction operator from the whole space to a

subset of the state space (usually of finite dimension nj , j = 1, . . . , p; the dimension
of the range R(R0) is infinite in general) in the domain decomposition setting, and
the operator Ai = RiART

i is the restriction of A to that subset. A solution using
Ai is called a local solver as in the domain decomposition method as well as in the
algebraic case.

We assume that our standard choice of operators Rj follows the same idea as
does the choice of the rows of Ri as rows of the n × n identity matrix I in case of
E = Rn, e. g.,

Ri =




0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0


 .

Let us assume that the Hilbert space E with which we provide our analysis is
partially ordered by a closed normal cone generating E , i. e. E = K −K. Moreover,
let subsets H′j ⊂ K′ j = 1, . . . , p, exist such that

p⋃

j=1

H′j = H′

is K-total and x ∈ Ej holds if and only if there exists an element x′x ∈ H′j such
that x′x(x) 6= 0. In order to allow overlaps of individual reduction maps Rj we do
not assume that Ej ∩ Ek, j 6= k, Ej =range(Rj) and Ek =range(Rk). Obviously,
0 6= x ∈ Ej ∩Ek if and only if there are x′ ∈ H′j and y′ ∈ H′k such that x′(x)y′(x) 6= 0
and Ej ∩ Ek = {0} if and only if x′(x)y′(x) = 0 whenever x′ ∈ H′j , y′ ∈ H′k and
x ∈ Ej ∩ Ek.
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Formally, space E can be considered as a direct sum

E = Ej ⊕ E−j ,

where E−j is the “complementary” subspace to Ej . We also have a corresponding
decomposition of operator A given by formula

A =
(

Aj Kj

Lj A−j

)
,

where Aj maps Ej ∩∆(A) into Ej and A−j maps E−j ∩∆(A) into E−j .
We assume that the maps

Ej = R∗jRj

are diagonal operators, i. e.
µjI ¹ Ej ¹ νjI (18)

for some real µj , νj , j = 1, . . . , p. In fact, we expect that similarly as in the finite
dimensional case operators Ej will signal whether the method chosen does possess
some overlaps and how extensive they are.

It is easy to see that as in case of finite dimensional situation both Ai and A¬i

are K − M -operators [3]. For each i = 1, . . . , p, we construct diagonal operators
Ei ∈ Rn×n associated with Ri chosen

Ei = RT
i Ri. (19)

If A is an K−M -operator for each i = 1, . . . , p, we construct a second collection
of operators Mi associated with Ri as follows

Mi =
[

Ai O
O D¬i

]
, (20)

where
D¬i ≥ O (21)

is invertible diagonal operator representing a “diagonal” of A.
The following result comes from [1].

Proposition 1. Let A be a nonsingular K−M -operator. Let Mi be defined as in
(20). Then the splittings A = Mi −Wi are regular (and thus weak regular and of
nonnegative type).

In the cases considered in this paper, we always have that Mi defined in (20) are
nonsingular. With the definitions (19) and (20) we obtain the following equality

EiM
−1
i = RT

i A−1
i Ri, i = 1, . . . , p. (22)

We can thus rewrite (15) as

T = Tµ = (I − EpM
−1
p A)(I − Ep−1M

−1
p−1A) · · · (I − E1M

−1
1 A). (23)
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Similarly, (17) can be rewritten as

T = Tθ = I − θ

p∑

i=1

EiM
−1
i A. (24)

This is how we interpret the multiplicative and additive Schwarz iterations.
In [1] it was shown that when A is nonsingular, r(Tµ) < 1, and thus, the method

(12) is convergent. Furthermore, there exists a unique splitting A = M −W such
that T = Tµ = M−1W . This splitting is a weak regular splitting.

In this paper we want explore the convergence of (12), using the iterations defined
by (23), (24), when A is singular.

4. TWO APPROACHES TO APPROXIMATE SOLVING STATIONARY
EQUATION

We are going to describe two ways for constructing solutions to stationary equations.
The first one is based on an application of one of the Schwarz algorithms directly to
the stationary equation, the second one utilizes the asymptotic behaviour of solutions
of the appropriate evolution. The second alternative is suitable in particular for
problems when no additional information is available such as irreducibility etc.

As classical properties of M -matrices suggest strict positive diagonals may strongly
influence convergence and the speed of convergence of the investigated iterative pro-
cesses. We recall a useful

Lemma 2. Let T ∈ B(E) satisfy TK ⊂ K and T º αI with some real α > 0. Then
(1/r(T ))T = S is convergent.

P r o o f . Obviously, r(T ) ≥ α and hence, r(S) = 1. For completing the proof we
need to show that 1 is a unique spectral point with modulus r(S). Let T = αI + V .
By hypothesis, VK ⊂ K and λ ∈ σ(T ) can be written as λ = α + µ, µ ∈ σ(V ).
Hence, r(T ) = α+ r(V ). Let µ = c+di with reals c, d and i2 = −1, c2 +d2 = r(V )2.
It follows that

1 ≥ |λ|2
(α + r(V ))2

=
α2 + 2αc + r(V )2

α2 + 2αr(V ) + r(V )2
= 1

only if c = r(V ) or, equivalently, if µ is real and hence λ positive. This completes
the proof of the lemma. 2

In [12] it has been shown that a solution u = u(t) to Problem (P) gets stationary
and u(+∞) is a solution to

B (αu(+∞) + βPu0) + G(u(+∞))u(+∞) = 0, (25)

where α and β are suitable nonnegative reals and u0 the initial condition in (10).
Since, by hypothesis,

−Bh = Ch − cI, G(u)|h = F (u)|h − f(u)I,

CK ⊂ K, F (u)|hK ⊂ K, c ≥ r(Ch), f(u) ≥ r(H(u)|h),
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where Ch and F (u)|h denote appropriate discretizations of C and F (u) respectively,
it is an easy matter to show that

1
r(Ch) + r(H(u)|h)

(
Ch + H(u))|h

)
= T (u)|h (26)

satisfies
T (u)∗|hx̂∗h = x̂∗h, x̂∗ ∈ K∗.

Thus, in view of Definition 3, T (u) is K-stochastic corresponding to vector x̂∗ ∈ Kd.

Theorem 1. Let E be a Hilbert space with an inner product [·, ·]. Let A = I −B,
where B ∈ B(E) is a K-stochastic operator such that Bv = v with v ∈ Kd. Let
p ≥ 1 be a positive integer and A = Mi −Wi be splittings of nonnegative type such
that the diagonals of Ti = M−1

i Ni, i = 0, 1, . . . , p, are positive. Then

T = Tµ = (I − EpM
−1
p A)(I − Ep−1M

−1
p−1A) · · · (I −E1M

−1
1 A)

and T̂ = Tp . . . T1 are convergent operators. Furthermore, there is a splitting of
nonnegative type

A = M −W (27)

such that T = M−1W, and the iteration operator T possesses the following proper-
ties:

T = Q + S, Q2 = Q, QS = SQ = O, r(S) < 1, (28)

and
AQ = O. (29)

The existence of a splitting of nonnegative type, and properties (28) and (29) also
hold for T̂ .

P r o o f . We begin with the operator T̂ . Let v > 0 be such that Bv = v, i. e.,
Av = 0. For each splittings of A = Mi −Wi, we then have that Miv = Niv. This
implies that T̂ v = v, and by Lemma 1 we have that r(T̂ ) = 1 and that the index is
1. To show that T̂ is convergent, we show that T º αI for some real α > 0. This
follows from the fact that each of the operators Ti satisfies relation Tj º αjI with
positive reals α0, . . . , αp. We follow a similar logic for the multiplicative Schwarz
iteration operator (23). Since Av = 0, Tv = v, and thus r(T ) = 1 and ind1T = 1.
Each factor in (23) can be written as

I − Ei + Ei(I −M−1
i A) = I − Ei + EiM

−1
i Wi,

and since O ≤ Ei ≤ I and M−1
i Wi ≥ O, each factor is nonnegative. For a row in

which Ei is zero, the diagonal entry in this factor has value one. For a row in which
Ei has value one, the diagonal entry in this factor is the positive diagonal entry of
M−1

i Wi. Thus, again, we have a finite product of K-nonnegative operators, each
dominanting a positive multiple of the identity operator, implying that the product
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T does dominate a positive multiple of the identity operator too, and therefore it is
convergent.

The rest of the proof applies equally to T and T̂ , we only detail it for T . The
matrix T being convergent implies the spectral decomposition (28), where Q is the
spectral projection onto the eigenspace of T corresponding to r(T ) = 1. Furthermore
since T ≥ O, Q = limk→∞ T k ≥ O.

We show now that N (I − T ) = N (A). According to construction of T , the null
spaces satisfy N (A) ⊂ N (I − T ). Any element of y ∈ N (I − T ) which does not
belong to N (A) has to have a form y = Ax for some x and y 6= 0. Since Q ≥ O,
we have that y ≥ 0. On the other hand yT e = xT A∗e = 0, a contradiction. Since
we then have that N (I − T ) = N (A), the existence of a splitting of the form (27)
follows similarly as does the finite dimensional analog of Theorem 1 from Theorem
2.1 of [2]. The fact that T ≥ O indicates that this splitting is of nonnegative type.

With this splitting, using (28) the following identity holds AQ = M(I−T )Q = O,
so we also have (29). 2

An example of splittings that lead to iteration matrices satisfying the hypotheses
of Theorem 1 is described in the following proposition requiring no proof. It provides
a possible modification to the local solvers, when the iteration operator defined by
(20) does not dominate a positive multiple of the identity operator.

Proposition 2. Let B ≥ O, B∗x̂′ = x̂′. Let α1, . . . , αp, be any positive real
numbers. Let A = I −B = Mi −Ni, i = 0, . . . , p, be defined by

Mi =
[

αiI + Ai 0
0 αiI + D¬i

]
(30)

and Wi = Mi−A, where D¬i are defined in (20)–(21). Then, the splittings are reg-
ular, and iteration operator Ti = M−1

i Wi i = 0, . . . , p dominate a positive multiple
of the identity operator.

Let us recall that we want to compute the stationary state, i. e. a solution of the
system (25). This problem can be reformulated in terms of a new iterative process
with the generating nonnegative operators C and F (u(t)):

u ((k + 1)τ)) =
1

c + f(u)
(
Ch + F (u(kτ))|hu ((k + 1)τ)

)
, u(0) = u0. (31)

An alternative to the method of approximate solving stationary equation of Prob-
lem (P) as described in Theorem 1 is to compute the limit limk→∞ u(kτ) using
process (31).

From a variety of possible choices of rational approximations of the exponential
we choose one from the class of limited Padé approximations, say

R(z) =
Pj(z)

(1− γz)q
, q ≥ 2,
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with appropriate real γ and polynomial Pj of degree j. Denoting

(Lk)|h =
1

c + f(u)
(
Ch + H(u(kτ))|h

)

we want to compute according to (31)
(
I − γτ(Lk)|h

)q
u((k + 1)τ) = Pj(kτ)u((k + 1)τ), k = 0, 1, . . . (32)

The above process can be implemented as follows. Let us omit the discretization
parameter index and set vk = u(kτ) and

vk+1/q = (I − γτLk)u(kτ), . . . , vk+(q−1)/q = (I − γτLk)q−1
u(kτ), k = 0, 1, . . .

Then
(I − γτLk) vk+1/q = Pj(τLk)vk(kτ),

(I − γτLk) vk+2/q(kτ) = Pj(τLk)vk+1/q(kτ),

. . .

(I − γτLk) vk+1 = Pj(τLk)vk+(q−1)/q(kτ).

Convergence of the method just described is an easy consequence of the fact that
the operators {(Lk)|h}, k = 1, 2, . . . are nonsingular K−M -operators in the spirit of
Definition 3 and the convergence results of [1]. Actually, we have

Theorem 2. Let E be a Hilbert space over the reals generated by a closed normal
cone K. Assume B is a generally unbounded linear operator defined on a dense
domain D ⊂ E and its adjoint satisfies relation B∗x̂∗ = 0. We assume further that
B generates a semigroup of operators of class C such that T (t;−B)K ⊂ K, t > 0.
Finally assume that for any u ∈ D ∩K operator G(u) ∈ B(E) is an K−M -operator
satisfying [G(u)]∗x̂∗ = 0.

Then the iteration process (32) returns a sequence {u(kτ)} of approximations to
a unique solution to Problem (P) such that

lim
k→∞

u(kτ) = u(+∞).

5. CONCLUSIONS

Nowadays it is accepted by the community of numerical analysts that two- and gen-
erally multi-level iterative methods offer an essentially broader variety of tools to
solve large scale computational problems. In this context the Schwarz and Schwarz-
like methods play a quite important role. Many contributions of many authors
document this statement as a rule by investigating problems characterized by non-
singular operators. An emphasis of our approach is just the opposite that is to
problems with singular operators. Another goal of our analysis is that we consider
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the computational problems in their original form, i. e. we work with generally
infinite dimensional objects and let discretizations to be made at an appropriate
moment, e. g. at each iteration step.

We apply our Schwarz-like methods to a problem coming from stochastic modeling
in biology and chemistry. We can thus profit from having nicely structured operators
but suffer of approaching problems with hardly accessible data. We thus propose
two methods each suitable in the corresponding situation. The first method assumes
all data accessible and the second just the opposite. In particular, the method using
auxiliary time evolution does require no a priori knowledge of location as well as
access to each single data. As example let us mention irreducibility of the operators
of the model and access to matrix elements of appropriate discretizations. The latter
is compensated by ability of our method of an easy computation of the corresponding
matrix actions.

(Received February 26, 2004.)
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