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Demlová, Petr Hájek, Martin Janžura,
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SOLVING CONVEX PROGRAMS
VIA LAGRANGIAN DECOMPOSITION

Matthias Knobloch

We consider general convex large-scale optimization problems with finite dimensional
decision variables. Under usual assumptions concerning the structure of the constraint
functions, the considered problems are suitable for decomposition approaches. Lagrangian-
dual problems are formulated and solved by applying a well-known cutting-plane method
of level-type. The proposed method is also capable to handle infinite function values.
Therefore it is no longer necessary to assume that the feasible set with respect to the
non-dualized constraints is bounded.

The paper primarily deals with the description of an appropriate oracle. We first discuss
the realization of the oracle under appropriate assumptions for generic convex problems.
Afterwards we show that for convex quadratic programs the algorithm of the oracle is
universally applicable.

Keywords: level method, cutting-plane methods, decomposition methods, convex program-
ming, nonsmooth programming

AMS Subject Classification: 90C25, 90C30, 90C06, 65K05

1. INTRODUCTION

Large-scale optimization problems has been attracting the attention of specialists
already for many years. The reason for such an enduring interest comes from appli-
cations. As an example, one can consider portfolio optimization, where the dimen-
sion depend on the number of possible assets and can thus be very large. Another
example comes from models for power plant optimization. These models are another
class of large-scale problems.

Usually these problems have a structure which enables to use decomposition ap-
proaches. In the last years decomposition has become even more important since the
fast development of parallel computers has revealed new areas where decomposition
can be used to handle problems of very large scale with the help of computers. Pri-
mal decomposition approaches are for instance described in [3] and [16]. A method
using simultaneous primal-dual decomposition can be found in [13].

Methods for dual decomposition often need the assumption that the feasible set of
the considered program is bounded. Our method enables to get rid of this additional
assumption. In [4] we have already discussed the basic theory of our method for
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convex quadratic problems. The aim of the paper is to show some application
aspects associated with the solution of general convex programs.

2. PROBLEM FORMULATION AND ASSUMPTIONS

We consider optimization problems of the following form

(P )





f(x) → infx

g(x) ≤ O
h(x) ≤ O
x ∈ Rn,

where g(x) = (g1(x), g2(x), . . . , gm(x))> and h(x) = (h1(x), h2(x), . . . , hp(x))>. The
functions f, gi and hj are supposed to be convex on Rn for all i and for all j.
Moreover, it is supposed that all functions f, gi and hj are differentiable on the
entire space Rn.

We define the optimal value of (P ) as

f∗ := inf
x∈Rn

{f(x) : g(x) ≤ O, h(x) ≤ O}

and we denote the optimal set of (P ) by

X∗ = {x ∈ Rn : g(x) ≤ O, h(x) ≤ O, f(x) = f∗}.
As usual, we assume the feasible set of (P ) to be nonempty, which means f∗ < +∞.
Of course, the case X∗ = ∅ is not excluded. We only have to suppose the problem
(P ) to be solvable in the sense that the optimal value of (P ) is bounded from below,
i. e. f∗ > −∞.

Finally, we demand that a constraint qualification holds for the feasible set of
(P ) with respect to the constraints connected with function g. For instance, it is
possible to assume the existence of a vector x̄ ∈ Rn with h(x̄) ≤ O such that

gi(x̄) < 0 ∀ i = 1, 2, . . . ,m.

This assumption is usually referred as the Slater-condition.
We note that in the special cases, where (P ) is a linear or a convex quadratic

program, the theory developed in this article is applicable as well. In these cases
an additional regularity condition will be superfluous. Section 6 deals with convex,
quadratic programs.

3. DUAL DECOMPOSITION APPROACH

To solve problem (P ) we choose an approach which uses a dual problem correspond-
ing to (P ). With the help of the Lagrangian function L(x, λ) defined by

L(x, λ) := f(x) + 〈λ, g(x)〉, λ ≥ O
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we construct the so-called dual function for (P ) with respect to the constraints
g(x) ≤ O as

ϕ(λ) := inf
h(x)≤O

L(x, λ).

We remark that ϕ(λ) is defined as the optimal value of an optimization problem.
In what follows let this program be denoted by (ϕ(λ)). In the usual way the dual
problem

(D)

{
ϕ(λ) → maxλ

λ ≥ O
can be associated with the primal problem (P ). Let ϕ∗ denote the optimal value of
(D).

First we discuss some known facts from the duality theory. Between the primal
and the dual objective function the relation

ϕ(λ) ≤ f(x)

holds for all dual feasible λ and all primal feasible x. This relation is known as
“weak duality”. It follows immediately that ϕ∗ ≤ f∗ and since (P ) is supposed to
be feasible we get ϕ∗ < +∞.

Since we have additionally assumed that a constraint qualification holds for (P ),
we can establish “strong duality”, i. e. f∗ = ϕ∗ and moreover, the existence of some
λ∗ ≥ O such that

f∗ = ϕ(λ∗).

This means that (D) has at least one optimal solution.
We remind the reader that the set {x ∈ Rn : h(x) ≤ O} was not supposed to be

bounded in general. This means that the optimal value of (ϕ(λ)) may be equal to
−∞ for certain λ ≥ O although its objective function is differentiable on the entire
space. Let us therefore denote by domϕ the effective domain of ϕ(λ), i. e.

domϕ = {λ ≥ O : ϕ(λ) > −∞}.
To avoid confusion, we remark that independently of domϕ we consider the set Rm

+

as the feasible set of problem (D).
The set domϕ is always nonempty under the previous assumptions since at least

the aforementioned dual optimal solution λ∗ is an element of domϕ.
Unfortunately, the existence of a primal minimizer cannot be ensured without

additional assumptions. Consider for instance the case f(x) = ex and g(x) = x
without any constraint function h(x). It can be easily seen that f∗ = 0 = ϕ∗.
Moreover, λ∗ = 0 is dual optimal and domϕ = {0}, but there is no x∗ such that
ex∗ = 0.

It is well known from the duality theory that the function ϕ(λ) is concave on the
convex set domϕ. We set ˆϕ(λ) := −ϕ(λ) and consider the problem

{ ˆϕ(λ) → minλ

λ ≥ O
(1)
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instead of considering (D). Then (1) is a convex problem of minimization.
Obviously, the vectors from Rm

+ \ domϕ cannot be optimal in (1). Also simply
changing the feasible set of (1) to “domϕ” is not possible since domϕ cannot be
described explicitly in general.

It can be seen that the chosen approach is not of practical use, unless the prob-
lem (P ) has a specific structure. In general, it is supposed that (P ) is difficult to
solve, whereas the problems (ϕ(λ)) have nice properties and are easier to solve. The
typical situation arises when (P ) has block-angular constraints and f has a com-
patible structure. The difficulty is the presence of the constraints modeled by g.
These constraints couple all variables. They are therefore referred as the so-called
“coupling constraints”. Since our dual approach makes it possible to get rid of these
constraints, the problems (ϕ(λ)) can be decomposed into smaller subproblems which
can be solved separately or one can solve them simultaneously on parallel computer
architectures. Another possible application is the computation of lower bounds using
the methods of integer programming via Lagrangian relaxation.

Problem (1) is a problem of minimizing a convex objective function subject to
nonnegativity conditions. Unfortunately, the objective function is not given in an
explicit form. Therefore, we will have to choose an appropriate method to solve (1).
In the next section the proposed method will be described.

4. ALGORITHM OF THE LEVEL METHOD

It is convenient to solve problems of the type, including also the problem (1), with
the help of cutting plane methods. The algorithm we use to solve (1) is a so-
called level method, a special cutting plane method, was first mentioned in [10].
Essentially we use a variant described in [2]. This algorithm generates a sequence
{λi}i=1,2,... to find the optimal solution of a convex minimization problem with
compact, polyhedral feasible set. Obviously, the feasible set of (1) is polyhedral but
unbounded. For U > 0 we define

Λ := {λ ∈ Rm
+ : λ ≤ U · 1I},

where 1I is the vector consisting of ones. Since (1) has minimizers, it is possible to
find a suitable U such that Λ contains at least one minimizer of (1). Therefore, we
henceforth consider the following problem

(D̂)

{
ϕ̂(λ) → infλ

λ ∈ Λ
(2)

instead of (D). It is explicitly allowed that ϕ̂(λ) = +∞ for certain λ ∈ Λ.
The level method demands a so-called oracle to be given. The oracle can be

imagined as a black box, which is capable to produce desired output (subgradients,
function values, separating hyperplanes) if it is provided with special input data
(current iterate).

Let us now describe the steps of the level method.
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Algorithm 1. (Level Method).

Step 0. Choose precision ε > 0, starting point λ1 ∈ Λ, the level parameter Θ ∈ (0, 1)
and C > 0. We set ϕ̂∗0 = ∞ and start with k = 1.

Step 1. Provide the oracle with λk and let the oracle compute a vector bk and a number
βk such that the following conditions hold:

• if λk ∈ dom ϕ̂ then bk is a subgradient of ϕ̂ at λk and βk = ϕ̂(λk),

• if λk /∈ dom ϕ̂ then for bk and βk > 0 holds

〈bk, λ− λk〉+ βk ≤ 0 ∀λ ∈ dom ϕ̂. (3)

Step 2. If λk ∈ dom ϕ̂ then set ϕ̂∗k = min{ϕ̂∗k−1, ϕ̂(λk)} and update the values βk
i using

the following rule

βk
i =

{
ϕ̂(λi)− ϕ̂∗k if λi ∈ dom ϕ̂, i = 1, 2, . . . , k

βk−1
i if λi /∈ dom ϕ̂, i = 1, 2, . . . , k − 1.

(4)

Otherwise ϕ̂∗k := ϕ̂∗k−1 and βk
k := βk.

Step 3. Compute ∆k as the optimal value of the problem




t→ max

〈bi, λ− λi〉+ βk
i + ‖bi‖t ≤ 0 i = 1, 2, . . . , k

λ ∈ Λ.

(5)

If ϕ̂∗k <∞ and ∆k < C · ε, additionally compute ∆′
k as the optimal value of





t→ max

〈bi, λ− λi〉+ βk
i + t ≤ 0 ∀ i : λi ∈ dom ϕ̂

〈bi, λ− λi〉+ βk
i ≤ 0 ∀ i : λi /∈ dom ϕ̂

λ ∈ Λ.

(6)

Step 4. If ∆′
k < ε then STOP. Otherwise use the minimizer of problem





‖λ− λk‖2 → min

〈bi, λ− λi〉+ βk
i + Θ · ‖bi‖ ·∆k ≤ 0 i = 1, 2, . . . , k

λ ∈ Λ

(7)

as new iterate λk+1.

Step 5. Set k = k + 1 and return to Step 1.
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Remarks.

• To prove convergence of the algorithm, several assumptions must be fulfilled:
ϕ̂ has to be a proper, convex function, all vectors bi generated by the algorithm
must have a norm bounded by some constant L > 0, Λ is supposed to be a
polyhedron and, furthermore, the set int(domϕ ∩ Λ) must be nonempty. The
last assumption especially means that we have to demand the interior of domϕ
to be nonempty. This property cannot always be ensured. In [4] we give an
example with int(domϕ) = ∅. Methods how to overcome this problem have
not been published yet.

• The following fact can be proven: If ε > 0 then the method stops after a finite
number k0 of iterations and we have 0 ≤ ϕ̂∗k0

− ϕ̂∗ ≤ ε. The proof of this
fact can be found in [3]. Note that in [3] only linear problems and primal
decomposition methods are discussed. Nevertheless, the proof can be easily
adapted.

• The described algorithm already contains certain modifications.

– In problems (5) and (7) we use normalized subgradients. If we replace
the coefficient ‖bi‖ by 1 the subgradients are unnormalized. It is not a
priori clear which one of the methods yields the better performance.

– The described method exploits the strategy of the so-called “Deeper
Cuts”. Instead of using the cuts

〈bi, λ− λi〉 ≤ 0 ∀ i : λi ∈ dom ϕ̂

we use cuts of the following form

〈bi, λ− λi〉 ≤ ϕ̂∗k − ϕ̂(λi) ∀ i : λi ∈ dom ϕ̂

in the kth iteration. Since ϕ̂∗k − ϕ̂(λi) ≤ 0 the feasible sets of (5) and (7)
become smaller in general and therefore these cuts are called “deeper”.
Practical experience (see [16]) has shown that the level method performs
a lot better when deeper cuts are used.

• Further modifications for fixing the problem that our method demands un-
bounded storage are known. Techniques for subgradient selection are for in-
stance described in [16] and techniques for subgradient aggregation are con-
tained in [9].

Since the algorithm demands an oracle to be given we have to construct such an
oracle which is capable to compute the data needed for the outer iterations. In the
next section we will describe how the oracle can be constructed.

5. REALIZATION OF THE ORACLE

After having described the proposed solution method, our next aim is to apply
Algorithm 1 to problem (1). This algorithm demands an oracle to be given. The
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core problem of an implementation of the method will be to make the oracle available.
A brief look at the steps of the algorithm reveals that the used oracle is supposed
to be able to:

• decide, whether a current iterate λk is in domϕ or not, i. e. to compute ϕ̂(λk),

• compute subgradients of the objective function ϕ̂,

• construct separating hyperplanes.

Therefore the aim of the forthcoming sections is to show, how the oracle can be
constructed to meet all three requirements.

5.1. Determining infinity

Algorithm 1 consists of two different types of iterations. If λk ∈ domϕ, then a
standard cutting-plane step is done. If λk /∈ domϕ, then the oracle must compute
data to construct a hyperplane separating λk from domϕ. As already mentioned,
there is no way to describe the set domϕ explicitly in general. Therefore, when the
oracle is provided with a current iterate λk, its first task is to find out, if λk ∈ domϕ.
Henceforth points from Rm

+ \ domϕ shall be called infinity points.
We remind the reader that the value ϕ(λk) is the optimal value of a convex

optimization problem. Therefore, it is possible to use duality theory to obtain results
concerning the finiteness of ϕ(λk). The dual problem corresponding to problem
(ϕ(λ)) is {

ψλ(µ) → supµ

µ ≥ O,
where ψλ(µ) is defined by

ψλ(µ) := inf
x∈Rn

{f(x) + 〈λ, g(x)〉+ 〈µ, h(x)〉}. (8)

Let ψ∗λ denote the optimal value of (ϕ(λ)D). Problem (ϕ(λ)D) and the function
ψλ(µ) both depend on the parameter λ.

The value ψλ(µ) is defined as the optimal value of an unconstrained optimization
problem. Evaluating first order necessary and sufficient conditions for this program
and regarding duality results leads to the construction of an infinity point indicator
function. Let η(λ) be the optimal value function of the problem

(η(λ))

{ ∥∥∇f(x) +G(x)>λ+H(x)>µ
∥∥2 → infx,µ

µ ≥ O, x ∈ Rn,
(9)

where G(x) respectively H(x) is the Jacobian of g(x) respectively h(x). Obviously,
η(λ) ≥ 0 holds for all λ ∈ Rm

+ and moreover, η(λ) < ∞ ∀λ ∈ Rm
+ since (η(λ)) has

feasible solutions for arbitrary λ.

To prove statements concerning ϕ(λ) we will sometimes need an additional as-
sumption.
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Assumption 2. A constraint qualification holds for the feasible set of problem
(ϕ(λ)).

The feasible set of (ϕ(λ)) is {x ∈ Rn : h(x) ≤ O}. We note that this set obviously
does not depend on the parameter λ.

Solving problem (η(λ)) is closely related to determining the infinity of ϕ(λ) and
to the construction of separating hyperplanes, too. The following theorem shows
the possible use of (η(λ)).

Theorem 3. Let Assumption 2 hold. If λ0 ∈ domϕ then η(λ0) = 0.

P r o o f . Let λ0 ∈ domϕ, i. e. ϕ(λ0) > −∞. Since in virtue of Assumption 2
problem (ϕ(λ0)) is regular, it follows that strong duality holds between (ϕ(λ0)) and
its dual (ϕ(λ0)D) and the latter possesses at least one optimal solution µ0 ≥ O, i. e.
it holds

ϕ(λ0) = ψ∗λ0 = ψλ0(µ0).

Since λ0 ∈ domϕ we have

−∞ < ϕ(λ0)
= ψ∗λ0

= inf
x∈Rn

{
f(x) + 〈λ0, g(x)〉+ 〈µ0, h(x)〉} .

Therefore, the function f(x) + 〈λ0, g(x)〉+ 〈µ0, h(x)〉 is bounded from below and it
is lower semicontinuous because of the differentiability of the functions f, gi and hj .
We can therefore apply Theorem 6.3 from [6]. It follows that there is a sequence
{xk}∞k=1 such that

lim
k→∞

(∇f(xk) +G(xk)>λ0 +H(xk)>µ0
)

= 0

⇒ lim
k→∞

∥∥∇f(xk) +G(xk)>λ0 +H(xk)>µ0
∥∥2

= 0.

The sequence {(xk, µ0)>}∞k=1 is feasible in (η(λ0)). Moreover, this sequence realizes
the optimal value of (η(λ0)) since η(λ0) ≥ 0. It follows η(λ0) = 0 and the theorem
is proven. 2

The next corollary is a direct consequence of the previous theorem.

Corollary 4. Let Assumption 2 hold. If η(λ0) > 0 then λ0 /∈ domϕ.

It can be seen that Theorem 3 is not sufficient to decide, whether a current
iterate λk is in domϕ or not. To make η(λ) a true infinity point indicator function
the converse statement to Theorem 3 is needed. Unfortunately, couterexamples show
that this statement is not valid in general. Therefore we have to make additional
assumptions.
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Assumption 5. For arbitrary λ ∈ Rm
+ there exists an optimal solution of problem

(η(λ)).

Theorem 6. Let Assumption 5 hold. If η(λ0) = 0 then λ0 ∈ domϕ.

P r o o f . Let λ0 ∈ Rm
+ such that η(λ0) = 0. Since Assumption 5 holds, there exists

an optimal solution (x∗, µ∗) ∈ Rn × Rp
+ of (η(λ0)). For this solution

∇f(x∗) +G(x∗)>λ0 +H(x∗)>µ∗ = O

must hold. This is the necessary and sufficient condition for x∗ to be a global
minimizer of problem (ψλ0(µ∗)). From the weak duality relation we get

ϕ(λ0) ≥ ψ∗λ0

= sup
µ≥O

{ψλ0(µ)}

≥ ψλ0(µ∗)
= f(x∗) + 〈λ0, g(x∗)〉+ 〈µ∗, h(x∗)〉
> −∞

which proves the theorem. 2

Consequently, if Assumptions 2 and 5 hold simultaneously, then λ0 ∈ domϕ if
and only if η(λ0) = 0. In this case the oracle is able to make a definite decision
regarding the property to be an infinity point for a current iterate.

5.2. Supergradients of the dual function

For iterates λk ∈ domϕ the level method from Section 4 has to solve problem (ϕ(λk))
to compute the objective function value and it has to compute a subgradient of ϕ̂
at λk, which is of course directly connected with a supergradient of ϕ.

The following result is well-known. Nevertheless, it will be stated and proven
here, since its message is of crucial interest for implementing Algorithm 1.

Theorem 7. (ε-Supergradients of the dual function) Let ε ≥ 0, λ0 ∈ domϕ and
let x0 be an ε-optimal solution of problem (ϕ(λ0)). Then the vector g(x0) is an
ε-supergradient of the function ϕ(·) at λ0.

P r o o f . Since λ0 ∈ domϕ it follows that ϕ(λ) is finite. The vector x0 is an
ε-optimal solution of (ϕ(λ0)). That means

ϕ(λ0) ≥ f(x0) + 〈λ0, g(x0)〉 − ε. (10)

Moreover, x0 is feasible in (ϕ(λ)) for arbitrary λ ∈ Rm. Therefore, it holds

ϕ(λ) ≤ f(x0) + 〈λ, g(x0)〉 ∀λ ∈ Rm. (11)
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Multiplying (10) by (−1) and adding it to (11) yields

ϕ(λ)− ϕ(λ0) ≤ 〈g(x0), λ− λ0〉+ ε ∀λ ∈ Rm (12)

which means that g(x0) is in the ε-superdifferential of ϕ(·) at λ0. 2

One easily checks that under the assumptions of Theorem 7 −g(x0) is an ε-
subgradient of ϕ̂ at λ0. The above stated theorem is therefore one of the necessary
keys for the implementation of the oracle.

5.3. Construction of separating hyperplanes

This section is devoted to the construction of the so-called “domain-cuts”. We
remember the reader that a domain-cut at λ0 /∈ domϕ consists of a vector a and a
number α such that the following two conditions hold:

〈a, λ− λ0〉+ α ≤ 0 ∀λ ∈ domϕ

α > 0,

i. e. the hyperplane connected with a and α separates λ0 from domϕ and λ0 has
positive distance from the hyperplane. The basic result for the realization of this
aim is the following.

Theorem 8. Let Assumptions 2 and 5 hold and let λ0 /∈ domϕ. Let the vector
s be a subgradient of η(λ) at λ0. Then with the vector s and the number η(λ0) a
domain-cut can be constructed, i. e.

〈s, λ− λ0〉+ η(λ0) ≤ 0 ∀λ ∈ domϕ (13)
η(λ0) > 0. (14)

P r o o f . Let λ0 ∈ Rm
+ \ domϕ. From Theorem 6 we immediately get (14).

Since s ∈ ∂η(λ0) we know

η(λ)− η(λ0) ≥ 〈s, λ− λ0〉 ∀λ ∈ Rm. (15)

Considering Theorem 3 we have moreover that η(λ) = 0 ∀λ ∈ domϕ. Writing down
(15) only for λ ∈ domϕ yields the validity of (13). 2

Obviously, Theorem 3 does not contain statements concerning the existence of
subgradients of η. But we know that the subdifferential of a convex function is
nonempty for points in the relative interior of the function’s domain and, moreover,
it is obvious that the domain of η coincides with Rm. Therefore, convexity of η(λ)
should be ensured. To this purpose it is possible to use the next lemma.
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Lemma 9. Let the function

‖∇f(x) +H(x)>µ+G(x)>λ‖2 (16)

be jointly convex with respect to (x, µ, λ) on Rn×Rp
+×Rm. Then the optimal value

function η(λ) is convex on Rm.

P r o o f . See [15] Proposition 2.6. 2

Unfortunately, the assumption of Lemma 9 is not always valid. An analogue of
Theorem 8 can also be proved, if we assume that η is quasi-convex and the normal
vector s is from a generalized, quasi-convex subdifferential. To prove quasi-convexity
of η it is sufficient that (16) is jointly quasi-convex. Nevertheless, the next example
will show that even that property is not possible to be proven in general.

Example 10. We consider problem (P ) with

f(x1, x2) =
√

1 + x2
1 + x2

2 + x2
1

and with arbitrary convex differentiable functions g and h. For (16) to be quasi-
convex it is necessary that (16) is quasi-convex with respect to x for fixed µ and
λ. Let µ := λ := O. It is then necessary that ‖∇f(x1, x2)‖2 is quasi-convex.
Considering

‖∇f(x1, x2)‖2 =

(
x1√

1 + x2
1 + x2

2

+ 2x1

)2

+
x2

2

1 + x2
1 + x2

2

(17)

one easily checks that (17) is not quasi-convex.

From Lemma 9 one can immediately conclude that for linear programs and for
convex, quadratic programs function η(λ) is convex. See Section 6 for more details.

Besides Lemma 9 there are more cases where η is a convex function. They shall
not be stated and proven here since they are beyond the scope of this paper. We
will work with a new assumption in the forthcoming parts of this article instead.

Assumption 11. The function η(·) is convex on Rm.

The above assumption ensures that for every iterate λk /∈ domϕ it is possible to
build up a separating hyperplane with the help of a subgradient of η.

Finally, we have to discuss how the needed subgradient can be computed. We will
show that this subgradient is connected with an optimal solution of (η(λ)). Since
(16) is not supposed to be jointly convex it is not possible to make use of known
results.
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Theorem 12. Let Assumptions 5 and 11 hold. For λ ∈ Rm let (x∗(λ), µ∗(λ)) be
a global optimal solution of (η(λ)). Then

∇η(λ) = 2 ·G(x∗(λ))
(∇f(x∗(λ)) +H(x∗(λ))>µ∗(λ) +G(x∗(λ))>λ

)

holds.

P r o o f . Let λ0 ∈ Rm arbitrary but fixed. Since η is convex by assumption there
is a subgradient of η for each λ ∈ Rm. Let therefore be a ∈ ∂η(λ0). It holds

η(λ)− η(λ0) ≥ 〈a, λ− λ0〉 ∀λ ∈ Rm

⇔ η(λ)− 〈a, λ〉 ≥ η(λ0)− 〈a, λ0〉 ∀λ ∈ Rm,

which means that λ0 is a global optimal solution of the program

inf
λ
{η(λ)− 〈a, λ〉} .

Applying the definition of η we get that λ0 is a global optimal solution of problem

inf
λ

{
inf

µ≥O,x

{∥∥∇f(x) +H(x)>µ+G(x)>λ
∥∥2

}
− 〈a, λ〉

}
.

Considering that (x∗(λ0), µ∗(λ0)) is a global optimal solution of problem (η(λ0)) it
follows that (x∗(λ0), µ∗(λ0), λ0) is a global optimal solution of the following opti-
mization problem:

inf
µ≥O,x,λ

{∥∥∇f(x) +H(x)>µ+G(x)>λ
∥∥2 − 〈a, λ〉

}
.

Since (x∗(λ0), µ∗(λ0), λ0) is an optimal solution, the first order necessary conditions
must hold. This means especially that

2·G(x∗(λ0))·(∇f(x∗(λ0))+G(x∗(λ0))>λ0+H(x∗(λ0))>µ∗(λ0)
)

= a. (18)

Since a was an arbitrary element of ∂η(λ0) and since we have proven that a can be
represented by the above formula, we have actually proven that ∂η(λ0) only consists
of one single element. Considering that the domain of function η(λ) coincides with
Rm and together with the convexity of η(λ) we have proven that the left-hand-side
of (18) is the gradient of η at λ0. 2

Therefore, the above theorem yields the last property, which is necessary to realize
the oracle.

5.4. Algorithm of the oracle

The theorems stated in the previous subsections clarify how the oracle has to be
implemented. Nevertheless, we will give the steps of the detailed algorithm of the
oracle for the sake of completeness. We suppose that Assumptions 2, 5 and 11 hold.
Moreover, we assume that for every λ ∈ domϕ there is an optimal solution of
problem (ϕ(λ)).

Assume that the algorithm of the oracle has been started with λk being the input.
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Algorithm 13. (Oracle).

Step 1. Compute the optimal value η(λk) and an optimal solution (x∗(λk), µ∗(λk)) of
problem { ∥∥∇f(x) +G(x)>λk +H(x)>µ

∥∥2 → infx,µ

µ ≥ O, x ∈ Rn.

Step 2. If η(λk) > 0 then

bk := G(x∗(λk)) · (∇f(x∗(λk)) +G(x∗(λk))>λk +H(x∗(λk))>µ∗(λk)
)

βk
k := η(λk)

and STOP. Otherwise continue with Step 3.

Step 3. Compute the optimal value ϕ(λk) and an optimal solution xk of problem
{

f(x) + 〈λk, g(x)〉 → infx

h(x) ≤ O
and set

bk = −g(xk).

After the algorithm of the oracle has been described, we are able use the algorithm
to solve (1). Therefore, we can devote our interest to further topics which we intend
to discuss, namely, to a very important subclass of convex programs.

6. LINEAR AND CONVEX QUADRATIC PROGRAMS

Of course, the theory of the previous sections covers linear and convex quadratic
programming problems. Nevertheless, we will devote the current section to a brief
overview over this class of programs because of its importance in practical applica-
tions. See [4] for a more detailed survey of dual decomposition in convex quadratic
programming.

In the sequel we consider the special case of problem (P ) of the following form:

(PQ)





1
2 〈x,Qx〉+ 〈c, x〉 → infx

Gx ≤ g

Hx ≤ h.

The matrix Q is supposed to be symmetric and positive semidefinite. The case
Q = O is allowed. Since the constraint functions are affine, the necessary constraint
qualification for our dual approach holds.

The following statement is the key to the realization of the oracle for the consid-
ered class of problems.
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Proposition 14. Assumptions 2, 5 and 11 are valid for (PQ).

P r o o f . For the considered class of programs, the problems (ϕ(λ)) look as follows

ϕ(λ) = inf
Hx≤h

{ 1
2 〈x,Qx〉+ 〈c, x〉+ 〈λ,Gx− g〉}

and have a polyhedral feasible set. Therefore these problems are regular and As-
sumption 2 holds.

For λ ∈ Rm
+ the function η(λ) is defined by

η(λ) = inf
x,µ≥O

‖Qx+ c+G>λ+H>µ‖2

The function ‖ · ‖ is convex. Composition with an affine function yields a convex
function, too. The function (·)2 is convex and nondecreasing for nonnegative argu-
ments. It can be concluded that the function ‖Qx + c + G>λ + H>µ‖2 is jointly
convex with respect to (x, µ, λ) on Rn × Rp

+ × Rm. Using Lemma 9 it follows that
η(λ) is convex on Rm and Assumption 11 holds.

Moreover, the objective function of (η(λ)) is convex, quadratic function which is
bounded from below by zero and the constraints are affine. Therefore, for all λ ∈ Rm

+

problem (η(λ)) has minimizers which means that Assumption 5 holds. 2

Instead of using the squared Euclidean norm in problem (η(λ)) it is possible to
use ‖ · ‖1, where ‖x‖1 =

∑n
i=1 |xi|. The advantage of using this norm is the fact that

(η(λ)) can be written as a linear program. The dual problem corresponding to this
program is 




〈c+G>λ, κ〉 → maxκ

Qκ = O

Hκ ≥ O
−1I ≤ κ ≤ 1I.

(19)

To indicate the difference to function η(λ) we denote the optimal value function of
(19) by η̂(λ). Since strong duality holds, we only solve (19) to compute the value of
η̂(λ) in each iteration. Obviously η̂(λ) has essentially the same properties as function
η(λ) does, i. e. it is an infinity point indicator function.

Moreover, problem (19) will help us to find subgradients of η̂(λ).

Theorem 15. Consider problem (PQ). Let λ0 /∈ domϕ and let κ∗ be an optimal
solution of problem (19) for λ = λ0. Then

Gκ∗ ∈ ∂η̂(λ0).

P r o o f . See [4] Theorem 4. 2
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Remarks.

• The advantage of using ‖ · ‖1 instead of ‖ · ‖22 is the fact that for linear and
quadratic programs the oracle has to solve a linear program instead of a convex
quadratic program.

• For the considered class of programs it is possible to describe a way to con-
struct approximate feasible and approximate optimal primal solutions using
the iteration data of the level method. For the sake of brevity we skip this
theorem.

(Received September 30, 2003.)
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