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T–EQUIVALENCES GENERATED BY SHAPE
FUNCTION ON THE REAL LINE

Dug Hun Hong

This paper is devoted to give a new method of generating T -equivalence using shape
function and finding the exact calculation formulas of T -equivalence induced by shape
function on the real line. Some illustrative examples are given.
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1. INTRODUCTION

For the fuzzy set-theoretical modelling of verbal quantities and computing with these
quantities, it appears useful to part the class of real numbers into fuzzy equivalence
classes. Jacas and Recasens [8] considered the idea of generating fuzzy numbers as
equivalence classes of a T -indistinguishability operator based on a scale function.
The theoretical approach suggested in [10] and further developed in [11] indicates
that partitions based on the concept of a shape function can be especially significant.
DeBaets et al [2] and Marková [12] characterized that the shapes by means of which
T -equivalences can be generated, are based on the knowledge of idempotents of the
T -addition of fuzzy numbers.

In this paper, we give a new method of generating T -equivalence using shape
function and finding the exact calculation formulas of T -equivalence induced by
shape function on the real line. Some illustrative examples are given.

2. PRELIMINARIES

Definition 1. (Jacas and Recasens [8]) A fuzzy number is a mapping A : R →
[0, 1] such that there exists a ∈ R with A(a) = 1 and A is increasing on (−∞, a] and
A is decreasing on [a,∞).

Definition 2. (De Baets and Mesiar [3]) Consider a t-norm T . A binary fuzzy
relation E on an universe X is called a T -equivalence on X if and only if it is
reflexive, symmetric and T -transitive, i. e. if and only if for any (x, y, z) in X3:

(i) E(x, x) = 1;



282 D.H. HONG

(ii) E(x, y) = E(y, x);

(iii) T (E(x, y), E(y, z)) ≤ E(x, z).

Definition 3. (Jacas and Recasens [8]) A scale is a continuous non-decreasing
surjective monotonic mapping S : R → R.

Definition 4. A shape is a non-increasing mapping φ : R+ → [0, 1] such that
φ(0) = 1.

Definition 5. A mapping d : X2 → [0,∞] is called a pseudo-metric on X if and
only if for any (x, y, z) in X3

(i) d(x, x) = 0;

(ii) d(x, y) = d(y, x);

(iii) d(x, z) ≤ d(x, y) + d(y, z).

It is called a metric if it moreover satisfies, for any (x, y) ∈ X2

(iv) d(x, y) = 0 ⇔ x = y.

Consider a scale s, then the mapping ds : R2 → R+ defined by

ds(x, y) = |s(x)− s(y)|
is a pseudo-metric on R. Now consider a shape φ, then we construct the binary
fuzzy relation Es,φ as follows:

Es,φ(x, y) = φ(|s(x)− s(y)|).

Definition 6. A generator (or source of vagueness) g is a scale such that g(0) = 0.

A function T : [0, 1] × [0, 1] → [0, 1] is said to be a triangular norm [9, 14] (t-
norm for short) iff T is symmetric, associative, non-decreasing in each argument, and
T (x, 1) = x for all x ∈ [0, 1], and, in general, T (x1, · · · , xn) = T (T (. . . T (T (x1, x2), x3),
. . . , xn−1), xn). Some well-known continuous t-norms are the minimum operator
TM , the algebraic product TP and the Lukasiewicz t-norm TL defined by TL(x, y) =
max(x + y − 1, 0). The minimum operator TM is the strongest (greatest) t-norm.
The weakest (smallest) t-norm TW is defined by

TW (x, y) =

{
min(x, y) if max(x, y) = 1,

0, elsewhere.

We will call t-norm T is Archimedean if and only if T is continuous and T (x, x) <
x for all x ∈ (0, 1). Every Archimedean t-norm T is representable by a continuous
and decreasing function f : [0, 1] → [0,∞] with f(1) = 0 and

T (x1, · · · , xn) = f [−1](f(x1) + · · ·+ f(xn))
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for all xi ∈ [0, 1], 1 ≤ i ≤ n, where f [−1] is the pseudo-inverse of f , defined by

f [−1](y) =

{
f−1(y) if y ∈ [0, f(0)],

0 if y ∈ [f(0),∞].

The function f is the additive generator of T . If T = TP , then f(x) = log x−1 and
if T = TL, then f(x) = 1− x.

For arbitrary fuzzy numbers Ai, i = 1, · · ·, n, n ∈ N , on the real line, their
T -sum is defined by means of the extension principle as follows:

A1 ⊕T · · · ⊕T An(z) = sup
x1+···+xn=z

T (A1(x1), . . . , An(xn)), z ∈ R.

Definition 7. Let J be a finite or countable set. Let {Ti|i ∈ J} be a collection of
t-norms and {(ai, bi)|i ∈ J} a collection of disjoint intervals in [0, 1]. We call ordinal
sum of t-norms {Ti|i ∈ J} to the following t-norm :

T (x, y) =





ai + (bi − ai)Ti

(
x− ai

bi − ai
,

y − ai

bi − ai

)
whenever (x, y) ∈ (ai, bi)2

= (ai, bi)× (ai, bi),

min(x, y) otherwise,

which is denoted by T = (〈ai, bi, Ti〉|i ∈ J), and only if all Ti are generated, then
equivalently it can be used T = (〈ai, bi, fi〉|i ∈ J) where fi is the additive generator
of Ti.

The following theorem gives a general classification of continuous t-norms [9].

Theorem 1. (Ling [9]) Let T be a continuous t-norm. Then T is Archimedean
or T -min or T is an ordinal sum of Archimedean t-norms.

3. T -EQUIVALENCE GENERATED BY SHAPES

Consider a generator g and a shape φ, and the fuzzy relation Eg,φ, which is always
reflexive and symmetric. Let T be a t-norm and φn = φ ⊕T · · · ⊕T φ (n-fold T -
sum of φ). Then φn(x) ≤ φn+1(x) for any x ∈ R and for n ∈ N , the natural
numbers. Hence the limit always exists. Let limn→∞ φn ≡ φ∗. We also note that if
we define |φ| : R → [0, 1] such that |φ|(z) = φ(|z|) and |φ|n = |φ| ⊕T · · · ⊕T |φ|, then
limn→∞ |φ|n ≡ |φ|∗ = |φ∗|.

Theorem 2. For a continuous t-norm T , a generator g and a shape φ, the fuzzy
relation Ef,φ∗ is a T -equivalence on R.

P r o o f . We only need to show that for any a, b, y ∈ R

T (Eg,φ∗(a, y), Eg,φ∗(y, b)) ≤ Eg,φ∗(a, b),
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or equivalently

T (|φ|∗(g(y)− g(a)), |φ|∗(g(b)− g(y))) ≤ |φ|∗(g(b)− g(a)). (1)

By the continuity of the t-norm T , we have

T (|φ|∗(g(y)− g(a)), |φ|∗(g(b)− g(y)))
= lim

n→∞
T (|φ|n(g(y)− g(a)), |φ|n(g(b)− g(y))

and

T (|φ|n(g(y)− g(a)), |φ|n(g(b)− g(y))

= T

(
sup

x1+···+xn=g(y)−g(a)

T (|φ|(x1), · · · , |φ|(xn)),

sup
xn+1+···+x2n=g(b)−g(y)

T (|φ|(xn+1), · · · , |φ|(x2n))

)

= sup
x1+···+xn=g(y)−g(a)

xn+1+···+x2n=g(b)−g(y)

T (T (|φ|(x1), · · · , |φ|(xn)), T (|φ|(xn+1), · · · , |φ|(x2n)))

≤ sup
x1+···+x2n=g(b)−g(a)

T (|φ|(x1), · · · , |φ|(x2n))

= |φ|2n(g(b)− g(a))

where the second equality comes from the continuity of T and the inequality comes
from non-decreasing property of T , hence equation (1) is proved since limn→∞ |φ|2n(g(b)−
g(a)) = |φ|∗(g(b)− g(a)). 2

The following theorem is due to B.De Baets et al [2]. Here, we give a new proof
using the idea of Theorem 2.

Theorem 3. (DeBaets et al [2]) Consider a t-norm T , a generator g and a shape
φ. Let H = {|g(u) − g(v)||(u, v) ∈ R2}. If for any x ∈ H, φ ⊕T φ(x) = φ(x), then
the fuzzy relation Eg,φ is a T -equivalence on R.

P r o o f . Define φ0 as follows :

φ0(x) =

{
φ(x) if x ∈ H,

inf{φ(w)|w < x, w ∈ H} if x 6∈ H.

Then φ0 is a shape with Eg,φ(x, y) = Eg,φ0(x, y) for (x, y) ∈ R2. We can also show
that for any x ∈ R, φ0 ⊕T φ0(x) = φ0(x). It is because φ0 ⊕T φ0(x) ≥ φ0(x) is
always true and for x 6∈ H, w ∈ H and w < x,

φ0 ⊕T φ0(x) ≤ φ0 ⊕ φ0(w)
= φ(w)
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and hence

φ0 ⊕T φ0(x) ≤ inf{φ(w)|w < x, w ∈ H}
= φ0(x).

We now note that φ0 = φ∗0 and can prove that Eg,φ0 is a T -equivalence on R according
to the exactly same method as Theorem 1 without the assumption of continuity of
T using φ0 ⊕T φ0 = φ0. This completes the proof. 2

Recently, many authors [5, 6, 7, 13] studied facts about T -sums of shape function
and their limits.

Theorem 4. (Hong and Hwang [6], Hong and Ro [7], Mesiar [11]) Consider a
continuous Archimedean t-norm T with additive generator f and a shape φ. If f ◦φ
is convex, then

φn(x) = f [−1]
(
nf ◦ φ

(x

n

))
.

Theorem 5. (Hong and Hwang [5]) Consider a continuous Archimedean t-norm
T with additive generator f and a shape φ. If f ◦ φ is convex, then φ∗(0) = 1 and
for x > 0,

lim
n→∞

φn(x) = φ∗(x) = f [−1](xf ′−(1)φ′+(0)).

Definition 8. Consider (a, b) ∈ R, a 6= b, then φ(a,b) is the linear transformation
defined by

φ(a,b)(x) =
x− a

b− a

Note that the inverse mapping φ−1
(a,b) of φ(a,b) is given by φ−1

(a,b)(x) = a + (b− a)x.

Definition 9. Consider a fuzzy quantity A and (a, b) ∈ [0, 1]2, a < b.

(i) The fuzzy quantity A[a,b] is defined as A[a,b] = tr ◦ φ(a,b) ◦ A, i. e. A[a,b](x) =
tr((A(x)− a)/(b− a)), where tr : R → [0, 1] is defined by

tr(x) =





0, if x < 0,

x, if 0 ≤ x ≤ 1,

1, if x > 1.

(ii) The fuzzy quantity A[a,b] is defined by

A[a,b](x) =

{
φ−1

(a,b)(A(x)), if A(x) > 0,

0, elsewhere.

We need the following result to generalize Theorem 5 to arbitrary continuous t-norm.
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Theorem 6. (DeBaets and Marková [1]) Consider an ordinal sum of continuous
t-norm T = (〈ai, bi, fi〉|i ∈ I) written in such a way that

⋃
λ∈I [ai, bi] = [0, 1] and a

shape φ. If fi ◦ φ[ai,bi] is convex for all i ∈ I, then

φn(x) = sup
i∈I

{
(φTi,[ai,bi]

n )[ai,bi](x)
}

where φ
Ti,[ai,bi]
n (x) = f

[−1]
i

(
nfi ◦ φ[ai,bi]

(
x
n

))
.

Theorem 5 can be easily generalized to arbitrary ordinal sums of continuous t-
norm T .

Theorem 7. Consider an ordinal sums of continuous t-norm T = (〈ai, bi, fi〉|i ∈ I)
written in such a way that

⋃
λ∈I [ai, bi] = [0, 1] and a shape φ. If fi ◦φ[ai,bi] is convex

for all i ∈ I, then

φ∗(x) = lim
n→∞

φn(x)

= sup
i∈I

{
(φTi,[ai,bi])[ai,bi](x)

}
,

where φTi,[ai,bi](x) = limn→∞ φ
Ti,[ai,bi]
n (x) = f

[−1]
i (x(fi)′−(1)

(
φ[ai,bi])′+(0)

)
.

4. EXAMPLES

Example 1. Consider the product t-norm TP with additive generator f(x) =
log x−1, and a generator g and a shape function φ defined by φ(x) = max{1− x, 0}.
Then, by Theorem 5 (or see [5]), φ∗(x) = e−x, and hence Eg,φ∗(x, y) = e−|g(x)−g(y)|

is a T -equivalence on R.

Example 2. Consider the Lukasiewicz t-norm TL with additive generator f(x) =
1 − x, and generator g and a shape function φ defined by φ(x) = max{1 − x, 0}.
Then, by Theorem 5 (or see [5]), φ∗(x) = φ(x), and hence Eg,φ∗(x, y) = max{1 −
|g(x)− g(y)|, 0} is a T -equivalence on R.

Example 3. Consider the ordinal sums T = (〈0, 1
3 , log x−1〉, 〈 13 , 1, 1−x〉), a gener-

ator g and a shape function φ defined by φ(x) = max{1− x, 0}. Then, by Theorem
7, φ∗(x) = max

{
1− x, 1

3

}
, and hence Eg,φ∗(x, y) = max

{
1− |g(x)− g(y)|, 1

3

}
is a

T -equivalence on R.

Example 4. Consider the ordinal sums T = (〈0, 1
3 , 1 − x〉, 〈 13 , 1, log x−1〉), a gen-

erator g and a shape function φ defined by φ(x) = max{1 − x, 0}. Then, by The-
orem 7, φ∗(x) = 1

3 + 2
3e−

3
2 x since fTP ,[ 13 ,1](x) = e−

3
2 x and fTL,[0, 1

3 ](x) = 1. Hence
Eg,φ∗(x, y) = 1

3 + 2
3e−

3
2 |g(x)−g(y)| is a T -equivalence on R.



T–Equivalences Generated by Shape Function on the Real Line 287

Example 5. Consider the ordinal sums T = (〈0, 1
3 , log x−1〉, 〈13 , 1, 1 − x〉), a gen-

erator g and a shape function φ defined by

φ(x) =





1 if x = 0,

1
3 (1− x) if 0 < x ≤ 1,

0 otherwise.

Then, by Theorem 7,

φ∗(x) =

{
1 if x = 0,

1
3e−x otherwise,

since

fTL,[ 13 ,1](x) =

{
1 if x = 0,

0 otherwise,

and fTP ,[0, 1
3 ](x) = e−x. Hence

Eg,φ∗(x, y) =

{
1 if x = y,

1
3e−|g(x)−g(y)| otherwise,

is a T -equivalence on R.

Example 6. Consider the ordinal sums T = (〈0, 1
3 , 1 − x〉, 〈 13 , 1, log x−1〉), a gen-

erator g and a shape function φ defined by

φ(x) =





1 if x = 0,

1
3 (1− x) if 0 < x ≤ 1,

0 otherwise.

Then, by Theorem 7,

φ∗(x) =





1 if x = 0,

1
3 (1− x) if |x| ≤ 1,

0 otherwise,

since

fTP ,[ 13 ,1](x) =

{
1 if x = 0,

0 otherwise,

and fTL,[0, 1
3 ](x) = 1− x. Hence

φg,φ∗(x, y) =





1 if g(x) = g(y),
1
3 (1− |g(x)− g(y)|) if |g(x)− g(y)| ≤ 1,

0 otherwise,

is a T -equivalence on R.
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