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TWO DIMENSIONAL PROBABILITIES
WITH A GIVEN CONDITIONAL STRUCTURE

Josef Štěpán1 and Daniel Hlubinka

A properly measurable set P ⊂ X×M1(Y) (where X,Y are Polish spaces and M1(Y) is
the space of Borel probability measures on Y) is considered. Given a probability distribution
λ ∈ M1(X) the paper treats the problem of the existence of X × Y-valued random vector
(ξ, η) for which L(ξ) = λ and L(η|ξ = x) ∈ Px λ-almost surely that possesses moreover
some other properties such as “L(ξ, η) has the maximal possible support” or “L(η|ξ = x)’s
are extremal measures in Px’s”. The paper continues the research started in [7].

1. INTRODUCTION

To clarify the purpose of the paper consider the following model for a transport
that starts randomly at a locality x ∈ X and reaches a random locality y ∈ Y: If
(ξ, η) denotes the (X × Y)-valued random vector which value (ξ(ω), η(ω)) = (x, y)
designates the particular transport from x to y, we ask the probability distribution
of the (ξ, η) to respect in the first place that

(i) the conditional distribution of terminals y given a departure point x should be
subjected to a restriction L(η|ξ = x) ∈ Px almost surely, where Px is a set of
(admissible) probability distributions for the transport that originates at the x,
while the departure distribution is given by a fixed probability distribution λ.

Moreover, we may venture to ask L(ξ, η) to follow some additional rules on the top
of (i):

(ii) For each x ∈ X there is a prescribed terminal region Ax ⊂ Y and the transport
should made as many localities y ∈ Ax as possible accessible from the starting
point x i.e., we ask for a transport (ξ, η) such that with the probability one the
conditional distribution L(η|ξ = x) is supported by the set Ax and it possesses
the maximal possible support.

(iii) If F (x, µ) is the payoff we receive for the transport that originates at an x ∈ X
using a target probability distribution µ ∈ Px we ask for a transport (ξ, η)

1The paper was prepared with the support of Grant Agency of Charles University under contract
3051-10/716.
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that provides the maximal payoff with the probability one, i.e. L(η|ξ = x) =
arg max{F (x, µ), µ ∈ Px} almost surely.

(iv) If Px’s are convex sets of probability distributions we wish to design a simple
(discrete) transport (ξ, η) such that L(η|ξ = x) is an extremal distribution in
Px almost surely, or, on the contrary,

(v) having a measure m on the target space Y we prefer an m-continuous solution
(ξ, η), i.e. such that L(η|ξ = x) is a distribution absolutely continuous with
respect to m almost surely.

If we interpret the Px’s in (i) as the sections of a Borel set P in X ×M1(Y) we
are able to prove (Theorem 1) the existence of a transport (ξ, η) that respects (i)
whatever probability distribution λ supported by prX(P) we may prescribe for the
random variable ξ. If we interpret the Ax’s in (ii) as the values of a multifunction
A : X → 2Y which graph is a Borel set in X × Y, Theorems 2 and 3 propose
sufficient conditions for the existence of a transport that respects both (i) and (ii).
The Corollaries 2,3 and 4 deal with a possibility to construct a transport (ξ, η) that
satisfies the rules (i,iii), (i,iv) and (i,v), respectively.

A typical example of a set P we have on mind is a set P ⊂ X each of which
sections Px’s is defined as a moment problem. The Corollary 1 treats the situation.

The techniques used in our proofs depend heavily on the results coming from
the theory of the analytic sets, on its cross-section theorems in the first place. We
refer to [3] for the elements of the theory. The paper introduces also a concept
of an universally measurable (closed valued) multifunction to generalize that of a
lower semicontinuous multifunction (see [1]). A characterization of the universal
measurability, given by our Lemma 1 may be of some interest by itself.

Generally, the paper is a contribution to the research on a possibility to construct
a probability distribution with given moments, marginals and a conditional struc-
ture, see [2] for the latest developments. Actually, the paper continues and in a way
completes the research started in [7]. Most importantly, the present paper clarifies
the problem met in [7] when trying to construct the transports with the properties
(i) and (ii) and introduces further nontrivial examples of the P-sets the theory may
be applied to (Corollaries 2 and 4).

2. DEFINITIONS AND RESULTS

Fix first metric spaces X and Y and denote by F(X),G(X),B(X),A(X), and U(X)
all closed, open, Borel, analytic, and universally measurable sets in X. Recall that a
set A ⊂ X is analytic if there exists a Polish space Z and continuous map φ : Z→ X
such that A = φ(Z), that

B(X) ⊂ A(X) ⊂ U(X) and
B(X× Y) = B(X)⊗ B(Y) ⊂ U(X)⊗ U(Y) ⊂ U(X× Y)

and also recall that

U(X) = {U ⊂ X : ∀µ ∈ M1(X) ∃B1 ⊂ U ⊂ B2, Bi ∈ B(X), µ(B2 \B1) = 0},
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where we have denoted the space of all Borel probability measures on X by M1(X).
Let us agree that having a µ ∈ M1(X), we denote by µ also its uniquely determined
extension from B(X) to U(X). Moreover, using the notation λ∗ for outer measures,
we denote

M∗
1 (B) = {λ ∈ M1(X) : λ∗(B) = 1} for a B ⊂ X.

Whenever speaking about a topology on M1(X) we mean its standard weak topology
that makes the space metric and Polish if the space X has the property.

Agree that any map A : X→ 2Y will be referred to as a multifunction from X to
Y, we shall write A : X ⇒ Y in this case and denote

Graph(A) := {(x, y) ∈ X× Y : y ∈ Ax},
where Ax ⊂ Y is the value of A at a point x ∈ X.

Define A : X ⇒ Y to be U-measurable and strongly U-measurable if

{x ∈ X : Ax ∩G 6= ∅} ∈ U(X), ∀G ∈ G(Y) and
{x ∈ X : Ax ∩B 6= ∅} ∈ U(X), ∀B ∈ B(Y), respectively.

Observe that if we fix V ∈ G(Y) and Z ⊂ X, Z 6∈ U(X), put Ax = V for x 6∈ Z,
Ax = V for x ∈ Z, we have exhibited an example of a multifunction A = (Ax, x ∈ X)
that is U-measurable but not strongly U-measurable.

A multifunction F : X ⇒ Y will be called a closed valued multifunction (CVM)
if Fx ∈ F(Y) for all x ∈ X and a lower semicontinuous multifunction if it is closed
valued and {x ∈ X : Fx ∩ G 6= ∅} ∈ G(X) for all G ∈ G(Y). We refer to Lemma 1
for a necessary and sufficient condition for a CVM F to be (strongly) U-measurable,
and observe that a multifunction A : X ⇒ Y is U-measurable iff the CVM AC :=
{Ax, x ∈ X} has the property. Thus

Graph(A) ∈ A(X× Y) ⇒ Graph(AC) ∈ U(X)⊗ B(Y) (1)

according to Lemma 1 (iv) and (i). Especially, we observe that

Graph(A) ∈ A(X× Y), Ax ∈ F(Y) for x ∈ X⇒ Graph(A) ∈ U(X)⊗ B(Y) (2)

Putting Sµ = supp(µ) for µ ∈ M1(Y) where Y is a separable metric space we get
an example of CVM S =

(
Sµ, µ ∈ M1(Y)

)
from M1(Y) to Y that is obviously lower

semicontinuous. Recall that for a finite Borel measure µ on Y we define

supp(µ) :=
⋂
{F, F ∈ F(Y), µ(F ) = µ(Y)}

= {y ∈ Y : µ(G) > 0, ∀G ∈ G(Y), y ∈ G}.

For the rest of the paper we shall assume the fixed spaces X and Y to be Polish.
Our results concern subsets P in X×M1(Y) such that

P ∈ A(
X×M1(Y)

) ∪ U(X)⊗ B(
M1(Y)

)
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mostly. To such a set we may attach naturally a set OutputP ⊂ X×Y defined by2

OutputP := {(x, y) ∈ X× Y : ∃µ ∈ Px, y ∈ supp(µ)}, i.e.

(OutputP)x =
⋃
{supp(µ), µ ∈ Px}, x ∈ X.

See Lemma 2 for a result that claims a topological stability of the P → OutputP
operation.

To illustrate this, consider a multifunction A : X ⇒ Y with Ax ∈ U(Y) and put
PA := {(x, µ) ∈ X×M1(Y) : µ(Ax) = 1}. It is easy to verify that OutputPA = AC .
Hence Lemma 4 (ii), (iii) together with Lemma 2 (ii), (iii) state that

Graph(A) ∈ A(X× Y) ⇒ PA ∈ A(X×M1(Y))
⇒ OutputPA ∈ U(X)⊗ B(Y)

Graph(A) ∈ U(X)⊗ B(Y) ⇒ PA ∈ U(X)⊗ B(M1(Y))
⇒ OutputPA ∈ U(X)⊗ B(Y).

(3)

Frequently we need P ⊂ X ×M1(Y) such that
(
(OutputP)x, x ∈ X)

is a closed
valued multifunction X ⇒ Y. We can achieve that assuming a weak form of convexity
for all the sections Px’s (see [7] and our Lemma 3). We shall say that a P ⊂
X×M1(Y) satisfies CS-condition if

∀ (
x ∈ X, (µn, n ∈ N) ⊂ Px

) ∃
(

αn > 0,

∞∑
1

αn = 1 :
∞∑
1

αnµn ∈ Px

)
.

A typical example of a P ⊂ X×M1(Y) our results may be applied to is a set P
each of its sections is defined by a moment problem:

Px :=
{

µ ∈ M1(Y) :
∫

Y
fi(x, y)µ(dy) = ci(x), i ∈ I

}
, x ∈ X, (4)

where I 6= ∅ is an index set and for i ∈ I
fi : X× Y→ [0, +∞], ci : X→ [0, +∞] are Borel measurable functions. (5)

Remark that if I is at most countable set then such a P belongs to B(
X×M1(Y)

)
by Lemma 4(i). If fi’s are bounded continuous, ci’s continuous then regardless the
cardinality of the set I, P ∈ F(

X×M1(Y)
)
. Either situation provides a P for which

the CS-condition holds.

Recall that a map H : X→ Y is called universally measurable if it is a map that
is measurable with respect to the σ-algebras U(X) and U(Y) which is as to say that
it is measurable w.r.t. the σ-algebras U(X) and B(Y) according to Lemma 8.4.6. in
[3]. A universally measurable map x → Px from X into M1(Y) will be called here
a universally measurable Markov kernel (UMK). Note that x → Px is a UMK if

2We denote by Ax the section of A ⊂ X× Y at a point x ∈ X
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and only if x → Px(B) is a universally measurable (u.m.→ ) function for all B ∈ B(Y).
Indeed since

x
u.m.→ Px ⇒ x

u.m.→ Px(B),∀B ∈ B(Y) ⇒ x
u.m.→ Px(f), ∀ f ∈ Cb(Y) ⇒ x

u.m.→ Px,

where the first implication follows by the well known fact that µ → µ(B) are for
all B ∈ B(Y)

(B(M1),B
)

measurable, the second implication can be verified by
approximating f ∈ Cb by Borel step functions and the third follows by separability
of M1(Y) that implies B(

M1(Y)
)

= σ{µ : |µ(f)−µ0(f)| < ε; ε > 0, µ0 ∈ M1(Y), f ∈
Cb}. Hence, for a λ ∈ M1(X) and a UMK x → Px we define correctly a probability
measure Pλ ∈ M1(X× Y) by

Pλ(A×B) =
∫

A

Px(B) λ(dx) where A×B ∈ B(X)⊗ B(Y).

Remark 1. Let f : X× Y→ [0, +∞] be a universally measurable function. Then
the sections f(x, ·), x ∈ X and x → ∫

Y f(x, y)Px(dy) are universally measurable
functions in the sense Y → [0,∞] and X → [0,∞], respectively. Moreover, if λ ∈
M1(X) then ∫

X×Y
f dPλ =

∫

X

∫

Y
f(x, y)Px(dy)λ(dx) (6)

especially, Pλ(U) =
∫
X Px(Ux)λ(dx), U ∈ U(X×Y) defines the extension of Pλ from

B(X× Y) to U(X× Y).
The universal measurability of the sections f(x, ·) is an obvious statement. To

verify the rest assume first that f is Borel measurable. Then the map Hf : x →∫
Y f(x, y)Px(dy) is received by substituting x → (x, Px) from X into X ×M1(Y) to

(x, µ) → ∫
Y f(x, y)µ(dy) from X × M1(Y) into [0,∞]. The former of the maps is

easily seen to be measurable w.r.t. the σ-algebras U(X) and B(
X×M1(Y)

)
because

x → Px is a UMK, while the latter one is a Borel measurable map by Lemma 4 (i)
in Section 3. Hence the map Hf is universally measurable which implies, putting
f = IC that Pλ(C) =

∫
X Px(Cx) λ(dx) for C ∈ B(X × Y). A standard procedure

extends the latter definition of Pλ to the equality (6). For a general f and λ ∈ M1(X)
there are Borel measurable functions f1 ≤ f ≤ f2 such that f1 = f2 [λ]-almost surely.
Then Hf1 ≤ Hf ≤ Hf2 on X, Hf1 = Hf2 [λ]-almost surely according to (6) applied
to f1 and f2. Hence, the Hf is universally measurable and
∫

X×Y
fdPλ =

∫

X×Y
f1dPλ =

∫

X

∫

Y
f1(x, y)Px(dy)λ(dx) =

∫

X

∫

Y
f(x, y)Px(dy) λ(dx)

according to the first part of our argument.

Let us agree that whenever we shall speak about an (X×Y)-valued vector (ξ, η) we
mean a map defined on a probability space (Ω, E ,P) that is measurable with respect
to the σ-algebras E and U(X × Y). This definition makes the random variables ξ
and η to be measurable w.r.t. the σ-algebras U(X) and U(Y), respectively and it
presents no loss of generality (see Lemma 8.4.6. in [3], again). Recall that if we have
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an (X×Y)-valued random vector (ξ, η), then a UMK x → Px from X into M1(Y) is
called a regular conditional distribution of η given the values of ξ if

P[ξ ∈ A, η ∈ B] =
∫

A

Px(B)λ(dx), A ∈ B(X), B ∈ B(Y), where λ = L(ξ). (7)

It is a well known fact that a regular conditional distribution of η given the values
of ξ exists and it is determined uniquely almost surely w.r.t. L(ξ) provided that X
and Y are Polish spaces (see [8], p.126). We shall denote as usual Px = L(η|ξ = x)
for any regular conditional distribution x → Px of η given the values of ξ.

Obviously we may paraphrase Remark 1 as

Remark 2. If (ξ, η) is an (X× Y)-valued random vector such that

L(ξ) = λ and L(η|ξ = x) = Px λ-almost surely (8)

holds for a λ ∈ M1(X) and a UMK x → Px then

L(ξ, η) = Pλ and E[f(ξ, η)|ξ = x] =
∫

Y
f(x, y)Px(dy) λ-almost surely

holds for any universally measurable function f ∈ L1(Pλ).

A reverse statement to Remark 2 is provided by

Remark 3. Given a UMK x → Px and a λ ∈ M1(X) there is an (X × Y)-valued
random vector (ξ, η) such that (8) holds.

To construct a vector (ξ, η) possessing the properties (8) put (Ω,F , P) :=
(
X ×

Y,U(X × Y),Pλ) and ξ := prX, η := prY, where prX : X × Y → X denotes the
canonical projection of X× Y onto X.

More generally, given a P ⊂ X × M1(Y) and λ ∈ M1(X) our results concern
mainly the existence of an (X× Y)-valued random vector (ξ, η) such that

L(ξ) = λ and L(η|ξ = x) ∈ Px almost surely w.r.t. λ. (9)

A random vector (ξ, η) with properties (9) shall be called a (P, λ)-vector. Observe
that the random vector (ξ, η) the existence of which is stated by Remark 3 is in
fact (P, λ)-vector with P = Graph(x → Px). A simple argument verifies that
P ∈ U(X)⊗ B(

M1(Y)
)

in this case as a consequence of the universal measurability
of x → Px.

Remark 4. If A : X ⇒ Y is a multifunction with Graph(A) ∈ U(X × Y) and
λ ∈ M1(X) then

(i) (ξ, η) is a (PA, λ)-vector.

(ii) P[(ξ, η) ∈ Graph(A)|ξ = x] = 1 λ-almost surely.
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(iii) P[(ξ, η) ∈ Graph(A)] = 1

are equivalent statements because P[(ξ, η) ∈ Graph(A)|ξ = x] = Px(Ax) according
to Remark 2.

Finally, we shall say that a (P, λ)-vector is maximally supported if

supp
(L(η|ξ = x)

) ⊃ supp
(L(η′|ξ′ = x)

)
λ-a.s. for any (P, λ)-vector (ξ′, η′).

Note that if a (P, λ)-vector is maximally supported then according to Lemma 5 in
Section 3 supp

(L(ξ, η)
) ⊃ supp

(L(ξ′, η′)
)

for any (P, λ)-vector (ξ′, η′) and that the
implication can not be reversed according the counterexample that follows the proof
of the lemma.

Our main results are

Theorem 1. Consider Q ⊂ X × M1(Y), a multifunction A : X ⇒ Y and λ ∈
M∗

1

(
D(Q, A)

)
, where D(Q, A) := {x ∈ X : ∃µ ∈ Qx, µ∗(Ax) = 1}. Then

either Q ∈ A(
X×M1(Y)

)
, Graph(A) ∈ A(X× Y)

or Q ∈ U(X)⊗ B(
M1(Y)

)
, Graph(A) ∈ U(X)⊗ B(Y)

implies that there is a (Q∩ PA, λ)-vector (ξ, η).

Observe that according to Remark 4 the theorem states exactly that there is a
(Q, λ)-vector (ξ, η) such that P[(ξ, η) ∈ Graph(A)] = 1.

Theorem 2. Assume that P ∈ U(X) ⊗ B(
M1(Y)

)
satisfies the CS-condition and

is such that OutputP ∈ U(X)⊗ B(Y). Then for each λ ∈ M∗
1 (prXP) there exists a

(P, λ)-vector (ξ, η) such that

supp
(L(η|ξ = x)

)
= (OutputP)x λ-almost surely. (10)

Remark that a (P, λ)-vector (ξ, η) that possesses the property (10) is maximally
supported. We do not know whether the implications P ∈ U(X) ⊗ B(

M1(Y)
) ⇒

OutputP ∈ U(X) ⊗ B(Y) is true or not. Observe (3) for the positive answer for a
very simple choice of P.

Theorem 3. Assume that R ⊂ X × M1(Y) and a multifunction A : X ⇒ Y are
such that

Graph(A) ∈ A(X× Y) ∩ U(X)⊗ B(Y),
R ∈ A(

X×M1(Y)
) ∩ U(X)⊗ B(

M1(Y)
)

and satisfies the CS-condition. (11)

Then for each λ ∈ M∗
1

(
D(R, A)

)
:= M∗

1 {x ∈ X : ∃µ ∈ Rx, µ(Ax) = 1} there exists
a maximally supported (R∩ PA, λ)-vector (ξ, η).

Observe that Theorem 3 may be applied to R and A such that both R and
Graph(A) are simply Borel sets and that, in this situation, provides a generalization
to the second part of Theorem 1 in [7].
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3. PROOFS

Lemma 1. Let F : X ⇒ Y be a CVM, and A : X ⇒ Y a multifunction. Then

(i) F U-measurable

(ii) Graph(F ) ∈ U(X)⊗ B(Y)

(iii) F strongly U-measurable,

are equivalent statements.
Moreover

(iv) Graph(A) ∈ A(X× Y) ∪ U(X)⊗ B(Y) ⇒ A is strongly U-measurable.

(v) F lower semicontinuous ⇒ Graph(F ) ∈ B(X× Y).

P r o o f . It is sufficient to verify (i)⇒(ii), (iv), (v).
(i)⇒(ii): To verify this we simply write

X×Y\Graph(F ) = {(x, y) : y 6∈ Fx} =
⋃

G∈V
{x : Fx∩G = ∅}×G ∈ U(X)⊗B(Y) (12)

where V is a countable topological base in Y.

(iv): Let B ∈ B(Y). Then {x : Ax ∩B 6= ∅} = prX[Graph(A) ∩ (X×B)] ∈ U(X) by
8.4.4. and 8.4.6. in [3] because Graph(A) ∩ (X×B) ∈ A(X× Y) ∪ U(X)⊗ B(Y)

(v): It follows by (12) because {x : Fx ∩G = ∅} = X \ {x : Fx ∩G 6= ∅} ∈ F(X) for
G ∈ G(Y) as F is lower semicontinuous. 2

Lemma 2. (see also Lemma in [7] for the implication (i) below)

(i) P ∈ A(
X×M1(Y)

) ⇒ OutputP ∈ A(X× Y)

(ii) P ∈ U(X)⊗ B(
M1(Y)

) ⇒ OutputP ∈ U(X× Y)

(iii) P∈A(
X×M1(Y)

)
, (OutputP)x∈F(Y) for all x∈X⇒ OutputP∈U(X)⊗B(Y).

P r o o f . (iii) follows by (iv) and by [(iii)⇒(ii)] in Lemma 1 as x → (OutputP)x

represents a closed valued multifunction X ⇒ Y.
We shall prove (i) and (ii): Put D := {(x, y, µ) ∈ X × Y ×M1(Y) : (x, µ) ∈ P, y ∈
supp(µ)}, observe that OutputP = prX×Y(D), and D = (P ×Y)∩ (X×Graph(S)),
where S : M1(Y) ⇒ Y is the closed valued correspondence defined by Sµ = supp(µ).
Because S is easily seen to be lower semicontinuous it follows by (v) in Lemma 1
that

P ∈ A(
X×M1(Y)

) ⇒ D ∈ A(
X× Y×M1(Y)

) ⇒ prX×Y(D) ∈ A(X× Y)

and

P ∈ U(X)⊗ B(
M1(Y)

) ⇒ D ∈ U(X)⊗ B(
Y×M1(Y)

) ⇒ prX×Y(D) ∈ U(X× Y)

(again by 8.4.4. and 8.4.6. in [3]). 2
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Lemma 3. Let P ⊂ X×M1(Y) satisfies the CS-condition. Then

∀x ∈ prXP ∃µx ∈ Px such that supp(µx) = (OutputP)x

and therefore x → (OutputP)x is a closed valued multifunction X ⇒ Y.

To verify the statement it is sufficient to read carefully the first part of the proof
of Theorem 2 in [7]. We shall do it for the sake of completeness of our presentation.

P r o o f . Let x ∈ prXP and {µ1, µ2, . . .} a dense set in Px. By the CS-condition
we have µx =

∑∞
1 αnµn ∈ Px for some αn > 0,

∑∞
1 αn = 1. Obviously supp(µx) ⊂

(OutputP)x, to verify the reverse inclusion choose y ∈ (OutputP)x and Vy ∈
G(Y) its arbitrary neighbourhood. There is a ν ∈ Px such that y ∈ supp(ν). If
µnk

→ ν weakly then for an arbitrary open neighbourhood Vy of y lim sup µnk
(Vy) ≥

lim sup ν(Vy) > 0. Thus, µnk
(Vy) > 0 for a k ∈ N, hence µx(Vy) ≥ ∑

αnk
µnk

(Vy)>
0. It follows that y ∈ supp(µx). 2

Lemma 4. Let f : X×Y→ [0,∞] be a
(U(X)⊗B(Y),B(R+

)
measurable function

and A : X ⇒ Y a multifunction. Then
(i) (x, µ) → ∫

Y f(x, y)µ(dy) is a U(X)⊗B(
M1(Y)

)
-measurable map from X×M1(Y)

into [0,∞]. Moreover, the Borel measurability of f implies that the map is Borel
measurable.
(ii) If Graph(A) ∈ U(X)⊗ B(Y) then PA ∈ U(X)⊗ B(

M1(Y)
)
.

(iii) If Graph(A) ∈ A(X× Y) then PA ∈ A
(
X×M1(Y)

)
.

(iv) If Graph(A) ∈ U(X)⊗ B(Y) then3

PA,S := {(x, µ) ∈ X×M1(Y) : µ(Ax) = 1, supp(µ|Ax) = Ax}
is a set in U(X)⊗ B(

M1(Y)
)
.

Observe that Ax ∈ B(Y) and Ax ∈ U(Y) if Graph(A) ∈ U(X) ⊗ B(Y) and
Graph(A) ∈ A(X×Y), respectively. Hence the sets PA, PA,S are defined correctly.
Observe also that we miss an analogue of (iv) when Graph(A) ∈ A(X× Y).

P r o o f . (i) Assume first that f = IU×B where U ∈ U(X), B ∈ B(Y). Then∫
Y f(x, y) µ(dy) = µ(B)IU (x) for x ∈ X and (i) follows easily observing that µ →

µ(B) is a Borel measurable map M1(Y) → R. Theorem I.2.20 in [5] now extends the
validity of (i) to f ’s that are bounded and U(X) ⊗ B(Y)-measurable, which in fact
verifies (i) generally. The “moreover part” of (i) may be proved in a similar way.
(ii) is an immediate consequence of (i) putting f(x, y) = IAx(y).
(iii) Because Graph(A) is universally measurable in X× Y it follows that

µ(Ax) = (εx ⊗ µ)
(
Graph(A)

)
for x ∈ X,

3As usual if µ ∈ M1(Y) and A ∈ U(Y), (µ|A) denotes the restriction of µ to the Borel σ-algebra
B(A), hence supp(µ|A) ∈ F(A) is the set defined equivalently by supp(µ|A) = {y ∈ A : µ(G∩A) >
0 ∀G ∈ G(Y), y ∈ G}.
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where εx denotes the probability measure that degenerates at x, hence

PA = {(x, µ) : (εx ⊗ µ)
(
Graph(A)

)
= 1}.

Thus, PA is seen to be inverse image of M∗
1

(
Graph(A)

)
with respect to the con-

tinuous map (x, µ) → (εx ⊗ µ) that maps X × M1(Y) into M1(X × Y). Because
M∗

1

(
Graph(A)

)
is an analytic set in M1(X × Y) by Theorem 7, p. 385 in [6]4, (iii)

follows directly by 8.2.6. in [3].
(iv) According to (iii) we have to prove that PS := {(x, µ) : supp(µ|Ax) = Ax} is a
set in U(X)⊗ B(

M1(Y)
)
. To see that we write PS as the intersection of the sets

[(
{x : G∩Ax 6= ∅}×M1(Y)∩{(x, µ) : µ(G∩Ax) > 0}

)
∪

(
{x : G∩Ax = ∅}×M1(Y)

)]

where the G’s are running through a countable topological base in Y. To verify the
above equality observe that

supp(µ|Ax) = Ax iff [G ∩Ax 6= ∅, G ∈ V ⇒ µ(G ∩Ax) > 0], x ∈ X.

To complete the proof apply (i) to see that

{(x, µ) : µ(G ∩Ax) > 0} ∈ U(X)⊗ B(
M1(Y)

)

and (iv) in Lemma 1 to see that {x : G ∩ Ax 6= ∅} and {x : G ∩ Ax = ∅} are sets in
U(X). 2

Lemma 5. Let (ξ, η) be a maximally supported (P, λ)-vector for a P ⊂ X×M1(Y)
and λ ∈ M1(X). Then

supp
(L(ξ, η)

) ⊃ supp
(L(ξ′, η′)

)
for any (P, λ)-vector (ξ′, η′).

P r o o f . Denote Px = L(η|ξ = x) and Qx = L(η′|ξ′ = x). It follows by Remark 1
in Section 2 that

∫
X Px

[
(suppPλ)x

]
λ(dx) = Pλ[suppPλ] = 1. Hence the sections

(suppPλ)x ∈ F(Y) are such that Px
[
(suppPλ)x

]
= 1 almost surely w.r.t. λ and

therefore (suppPλ)x ⊃ supp(Px). Observe that the latter inclusion and Remark 1
imply that

Qλ(suppPλ) =
∫

X
Qx

[
(suppPλ)x

]
λ(dx) ≥

∫

X
Qx

[
suppPx

]
λ(dx)

≥
∫

X
Qx

[
suppQx

]
λ(dx) = 1

because suppPx ⊃ suppQx a.s [λ]. Thus suppPλ ⊃ suppQλ which, according to
Remark 2, concludes the proof. 2

It might be of some interest to note that the reverse implication to that of pre-
sented by Lemma 5 is not true: put Qx = εx for x ∈ [0, 1] and Px = εx for x ∈ [0, 1),

4The theorem states exactly that M1

`
Graph(A)

´ ∈ A`X × M1(Y)
´
, but M∗

1

`
Graph(A)

´
is

easily seen to be the image of the former set w.r.t. the continuous map λ → 1Graph(A) ◦ λ where

1Graph(A) : Graph(A) → X× Y is the identity map. Hence M∗
1

`
Graph(A)

´ ∈ A`X×M1(Y)
´
.
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P1 = ε0 and λ = 1
2 (m + ε1) where m is Lebesgue measure on [0, 1]. Obviously, we

have
supp(Qλ) = Diag

(
[0, 1]2

)
, supp(Pλ) = Diag

(
[0, 1]2

) ∪ {(1, 0)}
hence

supp(Qλ) ⊂ supp(Pλ), supp(P1) = 0 and supp(Q1) = {1}.

Putting P = Graph(x → Px)∪Graph(x → Qx), L(η|ξ = x) = Px, L(η′|ξ′ = x) = Qx,
L(ξ) = L(ξ′) = λ we observe that the (ξ, η) is a (P, λ)-vector which distribution has
the maximal support but it is not maximally supported.

We are prepared to complete our proofs.

P r o o f o f T h e o r e m 1 . Put P := Q∩PA. It follows by Lemma 4 (iii) and (ii)
that either P ∈ A(

X×M1(Y)
)

or P ∈ U(X)⊗B(
M1(Y)

)
which in both cases implies

that D(Q, A) = prXP ∈ U(X) (8.4.1., 8.2.6. and 8.4.4. in [3]). The cross section
theorem (either 8.5.3.(b) or 8.5.4.(b) in [3]) verifies that there is a map x → Px

from D(Q, A) into M1(Y) which is measurable w.r.t. the σ-algebras U(X)∩D(Q, A)
and B(

M1(Y)
)

such that Px ∈ Px holds on D(Q, A), i.e. λ-almost surely. The
map x → Px can be obviously extended (e.g. by any constant) to an universally
measurable Markov kernel x → Px from X into M1(Y) and according to Remark (3)
in Section 2 there exists a (X× Y)-valued vector (ξ, η) such that (8) holds. This of
course means that the (ξ, η) is an (Q∩ PA, λ)-vector. 2

P r o o f o f T h e o r e m 2 . Put Q := P ∩PS , where PS := {(x, µ) ∈ X×M1(Y) :
supp(µ) = (OutputP)x}. Because (OutputP)x ∈ F(Y) for each x ∈ X according
to Lemma 3, we may apply Lemma 4 (iv) with A = {(OutputP)x, x ∈ X} to verify
that PS ∈ U(X)⊗B(

M1(Y)
)
. Hence Q belongs to the σ-algebra also and Theorem 1,

applied to the Q and to the CVM A with Graph(A) = X×Y, implies that there is a
(Q, λ)-vector (ξ, η) because prXQ = prXP according to Lemma 3 again. Hence, the
(ξ, η) is a (P, λ)-vector such that (10) holds. 2

P r o o f o f T h e o r e m 3. We plan to apply Theorem 2 to P = R ∩ PA, where
PA and hence also P belong to A(

X × M1(Y)
) ∩ U(X) ⊗ B(

M1(Y)
)

according to
Lemma 4 (ii) and (iii). It is obvious that P satisfies the CS-condition and therefore
OutputP is in U(X) ⊗ B(Y) according to Lemma 3 and Lemma 2 (iii). Because
D(R, A) = prXP, it follows by Theorem 2 that there is a (P, λ)-vector (ξ, η) such
that (10) holds. It follows directly from the definition of the set OutputP that the
(ξ, η) is a maximally supported (R∩ PA, λ)-vector. 2

4. COROLLARIES

Using Theorem 1 and 3 we are able to generalize Corollary 1 in [7], namely to remove
the requirement on the local compactness of the space Y.
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Corollary 1. Assume that fi(x, y), ci(x) satisfy (5) for i ∈ I, I being an at most
countable set. Consider A ∈ A(X× Y) ∪ U(X)⊗ B(Y) and put

D(f, c, A) :=
{

x ∈ X : ∃µ ∈ M1(Y), µ(Ax) = 1,

∫

Y
fi(x, y) µ(dy) = ci(x), i ∈ I

}
.

Then to each λ ∈ M∗
1

(
D(f, c, A)

)
such that ci ∈ L1(λ) for i ∈ I there exists an

(X× Y)-valued random vector (ξ, η) for which

L(ξ) = λ, P[(ξ, η) ∈ A] = 1,E[fi(ξ, η)] < ∞, E[fi(ξ, η)|ξ] = ci(ξ), i ∈ I (13)

holds.
If moreover A ∈ A(X × Y) ∩ U(X) ⊗ B(Y) then a random vector (ξ, η) with the

properties (13) may be chosen such that supp
(L(ξ, η)

) ⊃ supp
(L(ξ′, η′)

)
for any

other random vector (ξ′, η′) that satisfies (13).

P r o o f . Put Q =
{
(x, µ) ∈ X×M1(Y) :

∫
Y fi(x, y) µ(dy) = ci(x), i ∈ I

}
and con-

sider the multifunction B : X ⇒ Y with Graph(B) = A. Then, using the notation
introduced in Theorem 1, we have D(f, c, A) = D(Q, B) and Q ∈ B(

X×M1(Y)
)

ac-
cording to Lemma 4 (i). Observe also, that for a random vector (ξ, η), the properties
(13) state equivalently that the (ξ, η) is a (Q∩PB , λ)-vector. The equivalence is an
easy consequence of Remark 2 and 4 in Section 2 using the integrability of ci’s with
respect to λ. Because the set Q satisfies obviously the CS-condition, Theorem 1 and
Theorem 3 verify the statements of our Corollary. 2

Remark that for a finite index set I

D(f, c, A) = {x ∈ X : (x) ∈ co(f(x,Ax))}, c = (ci, i ∈ I), f = (fi, i ∈ I),

where co denotes the convex hull (see [4], for example).
The theory we have presented is designed mostly with the purpose to prove the

existence of a (P, λ)-vector with the maximal support of its probability distribution.
The rest of our corollaries suggests some other possible applications.

Corollary 2. Consider a set P ∈ U(X)⊗B(
M1(Y)

)
and an upper bounded function

F : X×M1(Y) → R that is U(X)⊗ B(
M1(Y)

)
-measurable. Denote

SF (x) := sup{F (x, µ), µ ∈ Px} for x ∈ X (i.e. SF (x) = −∞ for x 6∈ prX(P))
D(P, F ) := {x ∈ X : SF (x) = F (x, µ) for some µ ∈ Px}.

Consider moreover a measure λ ∈ M∗
1

(
D(P, F )

)
. Then there exists a (P, λ)-vector

(ξ, η) such that

F
(
x,L(η|ξ = x)

)
= SF (x) holds λ-almost surely. (14)

P r o o f . Obviously, the random vector (ξ, η) which existence is stated is equiva-
lently defined as a (Q, λ)-vector, where
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Q := P ∩ SF , where SF := {(x, µ) : F (x, µ) = SF (x)}.
Because prXQ = D(P, F ), we could use Theorem 1 (with A : X ⇒ Y, such that
Graph(A) = X×Y) to prove the existence of a (Q, λ)-vector (ξ, η) if SF would be
a set in U(X) ⊗ B(

M1(Y)
)
. To verify this, it is sufficient to show that the function

SF : X→ [−∞, +∞) is universally measurable: Fix a ∈ R and observe that

{x : SF (x) > a} = {x : ∃µ ∈ Px, F (x, µ) > a} = prX(P ∩ [F > a]),

where [F > a] = {(x, µ) : F (x, µ) > a}. Thus {x : SF (x) > a} is the projection of a
set in U(X)⊗ B(

M1(Y)
)

and therefore a universally measurable set in X according
to 8.4.4. in [3]. 2

An obvious choice for the function F (x, µ) is given by

F (x, µ) :=
∫
Y f(x, y) µ(dy), x ∈ X, µ ∈ M1(Y),

where f : X×Y→ R is an upper bounded U(X)⊗B(Y)-measurable function. A more
sophisticated choice of the F allows to enrich the result given by Theorem 3 in [7]:
For a P ⊂ X × M1(Y) such that all its sections Px are convex sets we denote
Pe := {(x, µ) ∈ P : µ ∈ exPx} where exPx denotes as usual the set of all extremal
measures in Px (might be an empty set). Theorem 4 in [7] states the existence of a
(Pe, λ)-vector (ξ, η) (i.e. L(η|ξ = x) is an extremal measure in Px λ-almost surely),
provided that the P is a closed set in X×M1(Y) and λ ∈ M∗

1 (prX(P)).

Corollary 3. Let P ∈ U(X)⊗B(
M1(Y)

)
is a set such that Px is a compact convex

set in M1(Y) for all x ∈ X and λ a measure in M∗
1 (prX(P)). Then there exists a

(P, λ)-vector (ξ, η) such that L(η|ξ = x) ∈ exPx λ-almost surely.

P r o o f . It is a well known fact that there exists a bounded continuous strictly
convex function A : M1(Y) → R. For its construction we may refer to [8] (p.40) or
simply suggest to put A(µ) :=

∑∞
n=1 2−n

(∫
Y fndµ

)2
, µ ∈ M1(Y), where 0 ≤ fn ≤ 1

are continuous functions defined on Y such that
∫
Y fndµ =

∫
Y fndν, n ∈ N implies

that µ = ν for µ, ν ∈ M1(Y). Applying Corollary 2 to the continuous bounded
function

F : X×M1(Y) → R defined by F (x, µ) = A(µ) for (x, µ) ∈ X×M1(Y),

observing that D(P, F ) = prX(P) in this case (F (x, ·)’s are continuous on compacts
Px’s) we prove the existence of a (P, λ)-vector (ξ, η) that possesses the property
(14). It means that A

(L(η|ξ = x)
)

= max{A(µ) : µ ∈ Px} λ-almost surely, hence
L(η|ξ = x) ∈ exPx λ-almost surely because A is a strictly convex function. 2

Observe that Corollary 3 may be applied to a set P defined by

P =
{

(x, µ) ∈ X×M1(Y) :
∫

Y
fi(x, y)µ(dy) = ci(x), i ∈ N

}
,
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where Y is a compact metric space and fi : X×Y→ [0,∞), ci : X→ [0,∞] are Borel
measurable such that fi(x, ·) is a bounded continuous for each x ∈ X.

We shall close our presentation by a simple observation on the existence of (P, λ)-
vectors (ξ, η) with the L(η|ξ = x)’s that are absolutely continuous with respect to a
σ-finite Borel measure on the space Y.

Corollary 4. Let P is a set in U(X)⊗B(
M1(Y)

)
and m a σ-finite Borel measure

on Y. Denote

D(P,m) := {x ∈ X : ∃µ ∈ Px, µ ¿ m}
and consider λ ∈ M∗

1

(
D(P,m)

)
. Then there exists a (P, λ)-vector (ξ, η) such that

L(η|ξ = x) ¿ m [λ] a.s. or equivalently L(ξ, η) ¿ λ⊗m. (15)

If P ∈ U(X)⊗B(
M1(Y)

)∩A(
X×M1(Y)

)
satisfies moreover the CS-condition then

there is a (P, λ)-vector such that (15) holds and such that

supp
(L(ξ, η)

) ⊃ supp
(L(ξ′, η′)

) ∀ (P, λ)-vector (ξ′, η′) with the property (15).

P r o o f . We shall use Theorem 1 and Theorem 3 with Q = P ∩ Am and R =
P∩Am, respectively and also with A : X ⇒ Y such that Graph(A) = X×Y, denoting
Am := {(x, µ) ∈ X ×M1(Y) : µ ¿ m}. Observe that D(P ∩ Am, A) = D(P,m) =
prX(P ∩ Am) in this case. We state that Am is a Borel set in X×M1(Y): Observe
first that Z =

{
f ∈ L1(m) : f ≥ 0 m-almost everywhere,

∫
Y f dm = 1

}
is a closed,

hence a Borel set in L1(m) that is a Polish space in its standard norm topology.
Putting H(f) = mf , where f ∈ L1(m) and dmf = f dm, it follows easily that
H : Z → M1(Y) is a continuous injective map such that Am = X ×H(Z). Hence,
Am ∈ B(

X×M1(Y)
)

according to 8.3.7. in [3].
Thus, P ∩Am is a set that satisfies the measurability requirement of Theorem 1

if P ∈ U(X)⊗B(
M1(Y)

)
and that of Theorem 3 if P ∈ U(X)⊗B(

M1(Y)
) ∩A(

X×
M1(Y)

)
. Moreover, the set P ∩Am obviously satisfies the CS-condition if the set P

does. Hence, for a P in U(X) ⊗ B(
M1(Y)

)
there exists a (P ∩ Am, λ)-vector (ξ, η)

according to Theorem 1 and for P ∈ U(X)⊗B(
M1(Y)

)∩A(
X×M1(Y)

)
there exists

a maximally supported (P ∩ Am, λ)-vector (ξ, η) according to Theorem 3 which
concludes the proof because

(ξ, η) is an (Am, λ)-vector iff L(ξ, η) ¿ λ⊗m

according to Remark 1 in Section 2. 2

(Received August 5, 1997.)
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