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A NEW INDIRECT ADAPTIVE POLE PLACER
FOR POSSIBLY NON–MINIMUM PHASE
MIMO LINEAR SYSTEMS

K.G. Arvanitis, G. Kalogeropoulos and I.K. Kookos

The use of generalized sampled-data hold functions, in order to synthesize adaptive pole
placers for linear multiple-input, multiple-output systems with unknown parameters, is in-
vestigated in this paper, for the first time. Such a control scheme relies on a periodically
varying controller, which suitably modulates the sampled outputs of the controlled plant.
The proposed control strategy allows us to assign the poles of the sampled closed-loop sys-
tem arbitrarily in desired locations, and does not make assumptions on the plant other than
controllability and observability of the continuous and the sampled system, and the knowl-
edge of a set of structural indices, namely the locally minimum controllability indices of the
continuous-time plant. The indirect adaptive control scheme presented here, estimates the
unknown plant parameters (and hence the parameters of the desired modulating matrix
function) on line, from sequential data of the inputs and the outputs of the plant, which
are recursively updated within the time limit imposed by a fundamental sampling period
T0. The controller determination is based on the transformation of the discrete analogue of
the system under control to a phase-variable canonical form, prior to the application of the
control design procedure. The solution of the problem can, then, be obtained by a quite
simple utilization of the concept of state similarity transformation, whereas known indirect
adaptive pole placement techniques require the solution of matrix polynomial Diophantine
equations. Moreover, in many cases, the solution of the Diophantine equation for a desired
set of closed-loop eigenvalues might yield an unstable controller, and the overall adaptive
pole placement scheme is then unstable with unstable compensators because their outputs
are unbounded. The proposed strategy avoids these problems, since here gain controllers
are essentially needed to be designed. Moreover, persistency of excitation and, therefore,
parameter convergence, of the continuous-time plant is provided without making assump-
tions either on the existence of specific convex sets in which the estimated parameters
belong or on the coprimeness of the polynomials describing the ARMA model, or finally
on the richness of the reference signals, as compared to known adaptive pole placement
schemes.

1. INTRODUCTION

In the last decade, many pieces of work treating design issues of linear time-invariant
systems by periodically time-varying and/or multirate sampled-data controllers have
been reported in the literature [2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 25, 27, 29, 30, 32,
38, 40]. The interest for such a type of control strategies is warranted by the new
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dimensions of flexibility of the design process offered by these control schemes, which
also provide a series of remarkable advantages over ordinary time-invariant feedback
strategies, such as state feedback, dynamic compensation or state observers (for an
overview of these advantages see [2, 6, 7, 8, 9, 10, 11, 12, 27, 29, 30, 40]). Among
the most interesting control strategies of this type, is feedback control based on
generalized sampled-data hold functions (GSHF). GSHF control has been proposed
first in [29], and subsequently has successfully been applied in solving a variety of
important control problems (see for example, [2, 29, 30, 40]).

In his excellent work [29], Kabamba proposes a GSHF based periodic controller,
which suitably modulates the sampled output of the system under control and dis-
crete reference signals by periodically varying functions, in order to solve, among
other important control problems, the sampled pole placement problem for linear
time-invariant continuous-time systems. Under certain conditions, the modulating
functions can be tailored to a given system in such a way that for the sampled closed
loop system a desired set of prespecified eigenvalues can be reached. A main fea-
ture of the approach reported in [29] is that the pole placement problem is obtained
without the requirement of pole-zero cancellation.

The aim of the present paper is to explore the possibility to extend the GSHF
technique proposed in [29], to the control of linear time-invariant multi-input, multi-
output systems with unknown parameters. To this end, the certainty equivalence
principle is used to combine the identification method with a control structure de-
rived for the pole placement problem. Adaptive pole placement control has long
been the focus of interest by many control designers, for obvious reasons. Several
techniques based on either direct or indirect adaptive control schemes were pre-
sented to treat the problem and a very large number of papers were reported on
the subject (see for example [1, 3, 13, 14, 16, 17, 19, 20, 21, 22, 23, 34, 36, 39, 43],
and the references therein). The feedback strategies proposed to solve the adaptive
pole placement problem, are hitherto based on dynamic output feedback, thus in-
troducing high order exogenous dynamics in the control loop. On the other hand, a
common feature of these techniques is that they reduce the solution of the problem
to the solution of a polynomial Diophantine equation. This approach, however, does
not ensure that the compensators obtained from the solution of the Diophantine
equation are necessarily stable. In the case of unstable solutions, the control scheme
composed by feedforward and feedback compensators is not stable and thus is not
useful. The control signal are calculated from two sets of unbounded signals that are
the outputs of the compensators. In a short time the system becomes unstable. It
is worth noticed at this point, that unstable solutions of the Diophantine equation,
can occur even though, the system under control possesses the parity interlacing
property (p.i.p.) [44] (is strongly stabilizable). A plant is said that it possesses
the p.i.p. if the number of its real poles between each pair of zeros in the unstable
domain is even. In this case, it is possible to obtain a stable controller from these
unstable solutions by using the approach presented in [33], which is based on an
interpolation procedure. Unfortunately, as mentioned above, this approach can be
applied only in cases where the system under control is strongly stabilizable. When
the system under control contains unknown parameters (as in the case of adaptive
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pole placement control), this information of crucial importance is not available to the
designer. Thus, up to now, the design of a stable and useful adaptive pole placement
compensator cannot be guaranteed.

In the present paper the adaptive pole placement problem of linear multi-input,
multi-output systems is solved using GSHF control, for the first time. Using the
proposed approach, the determination of the GSHF based pole placers sought is
mainly based on the transformation of the discrete analogue of the continuous-time
system under control to a phase variable canonical form, prior to the application
of the control design procedure. As a consequence of this fact, the solution of the
problem can be obtained by a quite simple utilization of the concept of state sim-
ilarity transformation. No Diophantine equations are needed to be solved here, in
contrast to known techniques. Moreover, no exogenous dynamics is introduced in
the control loop, and the designed GSHF based adaptive pole placers are always sta-
ble, since gain controllers are needed to be designed here, as compared to dynamic
compensators or state observers needed by known techniques. As a consequence of
this design philosophy, a useful globally stable indirect adaptive control scheme is
derived, which estimates the unknown plant parameters (and consequently the con-
troller parameters) on-line, from sequential data of the inputs and the outputs of the
plant, which are recursively updated within the time limit imposed by a fundamen-
tal sampling period T0. This adaptive scheme is applicable to plants with arbitrary
poles and zeros and relative degree, including plants with non-minimum phase zeros
and plants which do not possess the p.i.p. It is remarked that, the a priori knowledge
needed in order to implement the proposed adaptive pole placers, is controllability
and observability of the continuous and the discretized plant under control, its order,
and a set of structural indices, namely the locally minimum controllability indices
of the continuous-time plant. Finally, persistency of excitation of the controlled
plant is assured without making any assumption either on the existence of special
convex sets in which the estimated parameters belong or on the coprimeness of the
polynomials describing the ARMA model or, finally, on the richness of the reference
signals, as in known indirect adaptive pole placement techniques.

2. PRELIMINARIES AND PROBLEM FORMULATION

Consider the continuous-time, linear time-invariant multi-input, multi-output sys-
tem having the following state-space representation

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) (1)

where x(t) ∈ IRn is the state vector, u(t) ∈ IRm is the input vector and y(t) ∈ IRp is
the output vector and where the matrices A, B and C have appropriate dimensions.

With regard to system (2.1), we make the following two assumptions:

Assumption 2.1. (a) System (2.1) is controllable and observable and of known
order n. (b) There are known integers ni, i ∈ Jm, Jm = {1, 2, . . . ,m}, which
comprise a set of locally minimum controllability indices of the pair (A,B).
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Assumption 2.2. Let Ni, i ∈ Jm be positive integers. Also let N = lcm{N1, . . .
. . . , Nm}, where lcm{∗, . . . , ∗} denotes the least common multiplier of the arguments
quoted in the braces. Then, there is a sampling period T0 ∈ IR+, such that the
discretized systems, obtained by sampling (2.1) with periods T0 and τ = T0/(6n −
1)N and having the following matrix triplets

(Φ, B̃, C) ≡
(

exp(AT0),
∫ T0

0

exp(Aλ)B dλ, C

)
,

(Φτ , Bτ , C) ≡
(

exp(Aτ),
∫ τ

0

exp(Aλ)B dλ, C
)

respectively, are controllable and observable.
Except for this prior information, the matrix triplet (A,B,C) is arbitrary and

unknown. It is mentioned that, no assumption is made here on the relative degree
of the plant or its stable invertibility.

For a controllable matrix pair (A,B), with B=̂[ b1 b2 · · · bm ], its locally minimum
controllability indices (LMCI) are a collection of m integers {n1, n2, . . . , nm}, for
which the following relationships simultaneously hold

m∑

i=1

ni = n and rank
[
b1 · · · An1−1b1 · · · bm · · · Anm−1bm

]
= n.

Note that, LMCI defined as above are also known as the “Kronecker invariants” or
“Kronecker indexes” of the pair (A,B).

Consider now applying to system (2.1) the following control law

u(t) = F (t) y(kT0) + w(kT0), t ∈ [kT0, (k + 1)T0], k ≥ 0 (2)

where y(kT0) ∈ IRp is a discrete measurement vector, obtained by sampling y(t)
with sampling period T0, and w(kT0) ∈ IRm is a vector of uniformly bounded refer-
ence signals. The modulating matrix function F (t) ∈ IRm×p, known as generalized
sampled-data hold function (GSHF) [29], is assumed to be bounded, integrable and
T0-periodic, i. e. F (t + T0) = F (t), for t ∈ [kT0, (k + 1)T0]. The overall control
strategy is depicted in Figure 1, wherein the hold circuit H0 is the zero order hold
with holding time T0. The resulting closed-loop system is described by the following
state-space equations

x[(k + 1)T0] = (Φ +KfC)x(kT0) + B̃w(kT0), y(kT0) = Cx(kT0), k ≥ 0

where x(kT0) ∈ IRn is a discrete measurement vector obtained by sampling x(t) with
sampling period T0 and where the matrix Kf ∈ IRn×p is defined as

Kf =
∫ T0

0

exp[A(T0 − λ)]BF (λ) dλ. (3)

The adaptive pole placement problem treated in the present paper is as follows:
Find a periodic controller F (t), which when applied to system (2.1), drives the
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Fig. 1. Control strategy in the nonadaptive case.

poles of the resulting closed-loop system (also called the closed-loop monodromy
eigenvalues), to new desired values λ̂1, λ̂2, . . . , λ̂n, where complex poles appear in
conjugate pairs.

To solve the above problem, an indirect adaptive control scheme is exhibited in
the sequel. In particular, we first solve the pole placement problem, namely, the as-
signment of the poles of the sampled system to the prespecified values λ̂1, λ̂2, . . . , λ̂n,
using GSHF, for known systems. This is done in Section 3. Next, using these results,
the pole placement problem is solved for the configuration of Figure 2, wherein the
periodic controller F (t) is with prespecified periodic behavior and persistent exci-
tation signals are introduced in the control loop for future identification purposes.
This is done in Section 4. It is remarked that the motivation for modifying the
control strategy as in Figure 2, is that it facilitates the derivation of the indirect
adaptive control scheme sought, which is presented in Section 5. In Section 5, the
global stability of the proposed scheme is also studied.

3. SOLUTION OF THE POLE PLACEMENT PROBLEM
VIA GSHF CONTROL FOR KNOWN SYSTEMS

The procedure for stabilization through pole placement using the GSHF control
depicted in Figure 1, consists in finding a periodic controller F (t), such that

det(zI − Φ−KfC) ≡ p̂(z) (3.1a)
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Fig. 2. The structure of the adaptive control system.

where

p̂(z) =
n∏

i=1

(z − λ̂i)=̂zn + â1z
n−1 + · · ·+ ân−1z + ân. (3.1b)

Since, det(zI −Φ−KfC) ≡ det(zI −ΦT −CTKT
f ), relation (3.1a), is equivalent to

the relation
det(zI − ΦT − CTKT

f ) = p̂(z). (2)

Consider now the following fictitious discrete time system

x̃([k + 1]T0) = ΦT x̃(kT0) + CT ũ(kT0), ỹ(kT0) = B̃T x̃(kT0). (3)

Clearly, the pole placement problem via GSHF control, defined in relation (3.2),
is equivalent to the problem of choosing the matrix KT

f in the state feedback control
law

ũ(kT0) = KT
f x̃(kT0) + w̃(kT0) (4)

such that (3.2) to be satisfied.
We start our analysis to this equivalent state feedback pole placement problem by

first transforming system (3.3), to its equivalent input Luenberger canonical form.
To this end, let δi, i = 1, 2, . . . ,m be the controllability indices of the pair (ΦT , CT )
(which obviously are the observability indices of the pair (Φ, C)) and let P ∈ IRn×n
be the following matrix

P =
[
cT1 · · · (ΦT )δ1−1 cT1 · · · cTp · · · (ΦT )δp−1 cTp

]
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where cTi , i = 1, 2, . . . , p are the ordered columns of CT . Setting

γj =
j∑
ρ=1

δρ, j = 1, 2, . . . , p

and defining hTj as the γjth row of P−1, it can be shown that under the transforma-
tion z̃(kT0) = Q x̃(kT0), where Q ∈ IRn×n is the columnar stack of δ1+ · · ·+δp (= n)
rows, defined by

Q =




hT1
...

hT1 (ΦT )δ1−1

...
hTp
...

hTp (ΦT )δp−1




the system (3.3) can be written as

z̃[(k + 1)T0] = Φ∗ z̃(kT0) + C∗ ũ(kT0), ỹ(kT0) = B̃∗ z̃(kT0) (5)

where
Φ∗ = QΦTQ−1, C∗ = QCT , B̃∗ = B̃TQ−1

and where the matrices Φ∗ and C∗ have the following respective forms

Φ∗ =




Φ∗11 · · · Φ∗1p
...

. . .
...

Φ∗p1 · · · Φ∗pp


 , C∗ =



C∗1
...
C∗p




where

Φ∗ii =
[

0δ,−1 Iδi−1

−aTii

]
∈ IRδi×δi , ΦTij =

[
O(δ,−1)×δj

−aTij

]
∈ IRδi×δj , (i 6= j),

C∗i =
[
O(δ,−1)×p
−qTi

]
∈ IRδi×p

where

aTii = [(aii)0 (aii)1 · · · (aii)δi−1] , aTij =
[
(aij)0 (aij)1 · · · (aij)δj−1

]
(i 6= j)

qTi =
[
0Ti−1 1 q̃Ti

]
, q̃Ti = [(cii)i+1 (cii)i+2 · · · (cii)p] .

Here, 0r, Or×q and Ir represent a zero r-dimensional vector a zero r× q matrix and
an r-dimensional identity matrix respectively (empty if r or q is zero). Now, let
ν̃(kT0) be the set of inputs defined as follows

ũ(kT0) = Lν̃(kT0)
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where L is the following upper triangular nonsingular matrix

L =




1 q̃T1
0 1 q̃T2

...
0 0 · · · 0 1 q̃Tp−1

0 0 · · · 0 1



.

It is now obvious that

C∗L = QCTL ≡ C̃∗ =



C̃∗1
...
C̃∗m




where

C̃∗i =
[

O(δi−1)×p
0Ti−1 1 0Tp−i

]

and that system (3.5) can be transformed to the following form

z̃[(k + 1)T0] = Φ∗z̃(kT0) + C∗ν̃(kT0) (6)

which is the input Luenberger canonical form corresponding to system (3.3). In
what follows, to system (3.6), we apply the following state feedback law

ν̃(kT0) = F ∗z̃(kT0) + L−1w̃(kT0) (7)

in order to drive the eigenvalues of system (3.6) to desired positions λ̂1, λ̂2, . . . , λ̂n.
Clearly, this is equivalent to the application of a state feedback law of the form (3.4),
with

KT
f = LF ∗Q (8)

to system (3.3), in order to drive its eigenvalues to the desired positions λ̂i, i =
1, 2, . . . , n.

From the above analysis, it is clear that in order to solve the pole placement
problem for system (3.3), under the control law (3.4), one can equivalently solve
the pole placement problem for system (3.6), under the control law (3.7). The
solution of this later problem can be obtained as follows: Observe first that the
solution of this problem is equivalent to the problem of selecting F ∗ and a nonsingular
transformation matrix T such that

Φ∗ + C̃∗F ∗ = TΠT−1 (9)

where

Π =

{
diag(λ̂1, . . . , λ̂n) if the desired eigenvalues are distinct

blockdiag(J1, . . . , Js) if the desired eigenvalues are repeated
(10)
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with

Jq =




λ̂q 1 0 · · · 0
0 λ̂q 1 · · · 0
0 0 λ̂q · · · 0
...

...
...

. . . 1
0 0 0 · · · λ̂q



∈ IRrq×rq (11)

and where the order rq of the qth Jordan block Jq, is the multiplicity of the eigenvalue
λ̂q.

To solve (3.9) for F ∗ and T , partition the matrices Φ∗ii and Φ∗ij as

Φ∗ii =

[
Φ̂∗ii

−aTii

]
, Φ∗ij =

[
Φ̂∗ij

−aTij

]
(i 6= j)

where
Φ̂∗ii = [ 0δi−1 Iδi−1 ], Φ̂∗ij = O(δi−1)×δj

(i 6= j)

define the matrices

T =




T11 · · · T1p

...
. . .

...

Tp1
... Tpp


 , Tij =

[
T̂ij

t̃Tij

]
, T̂ij =




tTij1
...

tTij,δi−1


 , t̃Tij = tTij,δi

partition C̃∗i as

C̃∗i =

[
C̃+
i

c̃Ti

]

where
C̃+
i = O(δi−1)×p, c̃Ti = [ 0Ti−1 1 0Tp−1 ]

and define
Π = blockdiag{Π1 · · · Πp}

where each matrix Tij has the dimensionality of Φ∗ij , and each matrix Πi has the
dimensionality of Φ∗ii, and may have one of the forms given in (3.10) (or its combi-
nation).

Next, define Φ̂∗, C̃+, T̂ , Φ̃∗, C̃ and T̃ as

Φ̂∗=
[
(Φ̂∗ij)i=1,...,p

]
j=1,...,p

, C̃+ =
(
C̃+
i

)
i=1,...,p

, T̂ =
[
(T̂ij)i=1,...,p

]
j=1,...,p

(3.12a)

Φ̃∗=
[
(−aTij)i=1,...,p

]
j=1,...,p

, C̃=
(
c̃Ti

)
i=1,...,p

, T̃ =
[
(t̃ij)i=1,...,p

]
j=1,...,p

(3.12b)

where parentheses define a column of blocks, and brackets [·] define a row of block
columns, and apply a linear transformation upon (3.9) to obtain

[
Φ̂∗

Φ̃∗

]
+

[
C̃+

C̃

]
F ∗ =

[
T̂

T̃

]
ΠT−1 (13)
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where it is noted that C̃+ = O(n−p)×p and C̃ = Ip. From (3.13) we obtain

Φ̂∗T = T̂Π (14)

F ∗ = −Φ̃∗ + T̃ΠT−1. (15)

Equations (3.14) and (3.15) show that the problem of determining F ∗ and T has
been decoupled, i. e. one first finds T from (3.14) and then F ∗ from (3.15). To find
T , observe that

Φ̂∗T =




Φ̂∗11T11 Φ̂∗11T12 · · · Φ̂∗11T1p

Φ̂∗22T21 Φ̂∗22T22 · · · Φ̂∗22T2p

...
...

. . .
...

Φ̂∗ppTp1 Φ̂∗ppTp2 · · · Φ̂∗ppTpp




(16)

T̂Π =




T̂11Π1 T̂12Π2 · · · T̂1pΠp

T̂21Π1 T̂22Π2 · · · T̂2pΠp

...
...

. . .
...

T̂p1Π1 T̂p2Π2 · · · T̂ppΠp



.

Hence, equation (3.14) reduces to

Φ̂∗ijTij = T̂ijΠj (i, j = 1, . . . , p). (17)

As it can be shown, the solution of (3.17) with regard to Tij has the form

Tij =




ρTij

ρTijΠj

...
ρTijΠ

δi−1
j




=̂
(
ρTijΠ

k
j

)
k=0,...,δi−1

(18)

where ρTij is a δj-dimensional row vector with arbitrary elements for all i, j =
1, 2, . . . , p. The general form of T will be

T =




(ρT11Π
k
1)k=0,...,δ1−1 (ρT12Π

k
2)k=0,...,δ1−1 · · · (ρT1pΠ

k
p)k=0,...,δ1−1

(ρT21Π
k
1)k=0,...,δ2−1 (ρT22Π

k
2)k=0,...,δ2−1 · · · (ρT2pΠ

k
p)k=0,...,δ2−1

...
...

. . .
...

(ρTp1Π
k
1)k=0,...,δp−1 (ρTp2Π

k
2)k=0,...,δp−1 · · · (ρTppΠ

k
p)k=0,...,δp−1



. (19)

In (3.19), all elements of the first row of each block of T are arbitrary and hence
we have a total number of arbitrary elements in T equal to n × p. Note also that
this arbitrariness is constrained by the requirement that T must be invertible, i. e.
detT 6= 0.
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To find F ∗, observe that relations (3.12), (3.18) and (3.19) yield

T̃ =




ρT11Π
δ1−1
1 ρT12Π

δ1−1
2 · · · ρT1pΠ

δ1−1
p

ρT21Π
δ2−1
1 ρT22Π

δ2−1
2 · · · ρT2pΠ

δ2−1
p

...
...

. . .
...

ρTp1Π
δp−1
1 ρTp2Π

δp−1
2 · · · ρTppΠ

δp−1
p



. (20)

On the basis of (3.20), relation (3.15) yields

F ∗ = −Φ̃∗ +RΠ∗T−1 (21)

where

R = blockdiag{ρT1 , . . . , ρTp }, Π∗ =




Πδ1

...
Πδp


 (22)

with ρTi = [ ρTi1 · · · ρTip ]. Note that, when Πj is in Jordan form, Tij can take the
form

Tij =




(ρTij)1 (ρTij)2 · · · (ρTij)sj

(ρTij)1(Jj)1 (ρTij)2(Jj)2 · · · (ρTij)sj
(Jj)sj

...
...

. . .
...

(ρTij)1(Jj)
δi−1
1 (ρTij)2(Jj)

δi−1
2 · · · (ρTij)sj (Jj)

δi−1
sj




(23)

where

Πj = blockdiag
{
(Jj)1, . . . , (Jj)sj

}
, ρTij =

[
(ρTij)1 · · · (ρTij)sj

]

in which (ρTij)q is a row vector of dimensionality equal to that of (Jj)q. In particular,
if (Jj)q = (λ̂j)q, then sj = δj , (ρTij)q = ρijq

Tij =




ρij1 ρij2 · · · ρijδj

ρij1(λ̂j)1 ρij2(λ̂j)2 · · · ρijδj (λ̂j)sj

...
...

. . .
...

ρij1(λ̂j)δi−1
1 ρij2(λ̂j)δi−1

2 · · · ρijδj (λ̂j)
δi−1
δj



. (24)

It is remarked that, if we choose all the arbitrary elements ρij , for i 6= j equal to 0,
and all elements of each ρii equal to 1, relation (3.21) can be written as

F ∗ = −Φ̃∗ +RspΠ∗T−1
sp . (25)

In this case, the open-loop poles contained in the subsystem determined by Φ∗ii , when
closing the feedback, are shifted to the desired poles involved in the corresponding
block Πi. In order to determine the matrix Kf , substitute relation (3.21) in (3.8) to
yield

Kf = QT (−Φ̃∗ +RspΠ∗T−1
sp )TLT . (26)
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Using the matrix Kf as specified by (3.26), we can readily determine the controller
matrix F (t), by solving (2.3). Under Assumption 2.1, on the controllability of the
pair (A,B), a solution of (2.3) is the following [29]

F (t) = BT exp[AT (T0 − t)]W−1(A,B, T0)Kf (27)

where, W (A,B, T0) is the controllability Grammian on [0, T0] of the pair (A,B),
which has the form

W (A,B, T0) =
∫ T0

0

exp[A(T0 − λ)]BBT exp[AT (T0 − λ)] dλ.

Note that, the controllability Grammian W (A,B, T0) is nonsingular and hence a
solution of (2.3) of the form (3.27) exists if the pair (A,B) is controllable.

On the basis of (3.26) and (3.27), a solution of the pole placement problem using
GSHF control is given by

F (t) = BT exp[AT (T0 − t)]W−1(A,B, T0)QT (−Φ̃∗ +RspΠ∗T−1
sp )TLT . (28)

4. A SOLUTION OF THE POLE PLACEMENT PROBLEM APPROPRIATE
FOR THE ADAPTIVE CASE

In order to obtain a solution of the pole placement problem which will be more
appropriate for application in the case of systems with unknown parameters, we
slightly modify in the sequel the control strategy of Figure 1 as it is depicted in
Figure 2. In particular, we focus our attention on the special class of the time-
varying T0-periodic matrix functions F (t), for which every element of F (t), denoted
by fij(t), is piecewise constant over intervals of length Ti = T0/Ni, i. e.

fij(t) = fij,µ, ∀ t ∈ [µTi, (µ+ 1)Ti], µ = 0, 1, . . . , Ni − 1. (29)

Moreover, the persistent excitation signals vi(t), ∀ i ∈ Jm, are defined as

vi(t) = dTi (t) vi, dTi (t) = [(di)0(t) · · · (di)Ni−1(t)] . (4.2a)

Here, di(t) is the Ti-periodic vector function with elements having the form

(di)q(t) = (di)q,µ, for t ∈ [µTi, (µ+1)Ti], q = 0, 1, . . . , Ni−1, µ = 0, 1, . . . , Ni−1
(4.2b)

where (di)q,µ are constant taking the following values

(di)q,µ =

{
1, for µ = q

0, for µ 6= q
(3)

and where vi is as yet unknown. It is worth noticed that the additive term vi(t) =
dTi (t) vi, ∀ i ∈ Jm, in each one of the inputs of the continuous-time system, are used
only for identification purposes and as it will be shown later, they are selected so
that they will not influence the pole placement problem.

We are now able to establish the following Lemma.
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Lemma 4.1. Consider the controllable and observable system of the form (2.1),
controlled by GSHF of the form (4.1). Furthermore, consider that persistent excita-
tion signals of the form (4.2), (4.3) are introduced in each input of the system. Then,
the sampled closed-loop system takes the form

x[(k+1)T0] = (Φ+B̂F̂C)x(kT0)+B̃w(kT0)+B∗v, y(kT0) = Cx(kT0), for k ≥ 0
(4)

where
B̂=̂

[
b̂1 · · · ÂN1−1

1 b̂1 · · · b̂m · · · ÂNm−1
m b̂m

]
(4.5a)

Â=̂ exp(ATi) ≡ exp(A1iTN ),

b̂i=̂
∫ Ti

0

exp(Aλ) bidλ ≡
∫ 1iTN

O

exp(Aλ) bi dλ,

1i = N/Ni, TN = T0/N

(4.5b)

B∗ = B̂M, M =




M1

M2

...
Mm


 , Mj =




eσj

eσj−1

...
eσj−Nj+1


 (4.5c)

and where the m×p block matrix F̂ and the column vector v ∈ IRN∗ , N∗ =
∑m
i=1Ni,

have the forms

F̂ =




f̂11 · · · f̂1p
...

. . .
...

f̂m1 · · · f̂mp


 , f̂ij =



fij,Ni−1

...
fij,0


 (4.6a)

v =
[
vT1 vT2 · · · vTm

]T (4.6a)

while σj =
∑j
κ=1Nκ, where in general, the vector ei ∈ IRN∗ is the row vector whose

elements are zeros except for a unity appearing in the ith position.

P r o o f . To show that the sampled closed-loop system takes the form (4.4), we
start by discretizing system (2.1) with sampling period T0. This operation yields

x[(k + 1)T0] = Φx(kT0) +
∫ (k+1)T0

kT0

exp{A[(k + 1)T0 − λ]}Bu(λ) dλ. (7)

Observing that ui(t) = ri(t) + dTi (t) vi and taking into account the structure of the
control system in Figure 2, we obtain

ui(t) = fTi (t) y(kT0) + wi(kT0) + dTi (t) vi, for t ∈ [µTi, (µ+ 1)Ti) (8)
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where fTi (t) is the ith row of the controller matrix F (t) and wi(kT0) is the ith
element of w(kT0). Combining relations (4.7) and (4.8), we obtain the following
relationship

x[(k + 1)T0] = (Φ +KfC)x(kT0) + B̃w(kT0) + Γv (9)

where

Γ =
∫ (k+1)T0

kT0

exp{A[(k + 1)T0 − λ]}BD(λ) dλ, D(t)=̂ blockdiag
i∈Jm

{dTi (t)}.

Now, partition Γ as follows

Γ = [Γ1 Γ2 · · · Γm] .

Then, the (q + 1)th column of the matrix Γi, for i ∈ Jm, denoted by (Γi)q+1, for
q = 0, 1, . . . , Ni − 1, can be expressed as

(Γi)q+1 =
∫ T0

0

exp[A(T0 − λ)] bi(di)q(λ) dλ, for q = 0, 1, . . . , Ni − 1. (10)

Introducing relations (4.2a) and (4.3) in (4.10), we obtain

(Γi)q+1 =
Ni−1∑
µ=0

∫ (µ+1)Ti

µTi

exp[A(T0−λ) bi(di)q,µ dλ], for q = 0, 1, . . . , Ni−1. (11)

Relation (4.11) may further be written as

(Γi)q+1 =
Ni−1∑
µ=0

(di)q,µ exp[A(Ni − µ− 1)]Ti
∫ Ti

0

exp[A(Ti − λ)] bi dλ

=

(
Ni∑
ρ=1

(di)q,Ni−ρÂ
ρ−1
i

)
b̂i.

Making use of relation (4.3), we arrive at the following relationship

(Γi)q+1 = ÂNi−q−1
i b̂i.

Clearly Γ ≡ B∗. Application of the above algorithm to the first term of (4.9) yields
Kf ≡ B̂F̂ (see [4] for details). This completes the proof of the Lemma. 2

Thus far, we have established that the pole placement controller matrix Kf is
related to the matrix F̂ via the relation Kf = B̂F̂ . It remains to determine F̂ . To
this end, we need the following result, whose proof is given in [4].
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Lemma 4.2. Let (A,B) be a controllable pair. Let also ni, i ∈ Jm be a set
of locally minimum controllability indices of the pair (A,B). Define an analytic
function ψ(TN ) by

ψ(TN ) = det
[
b̂1 · · · Ân1−1

1 b̂1 · · · b̂m · · · Ânm−1
m b̂m

]
.

Then the set of zeros of ψ(TN ) does not have any limiting points except infinity,
and therefore, ψ(TN ) is not equal to zero for almost all TN (i. e., in a finite interval
[T 1
N , T

2
N ], there are at most a finite number of points such that ψ(TN ) = 0).

Applying Lemma 4.2, we can conclude that the matrix of the form

Ŝ =
[
b̂1 · · · Ân1−1

1 b̂1 · · · b̂m · · · Ânm−1
m b̂,

]
(12)

is nonsingular for almost all TN ∈ [T 1
N , T

2
N ]. Furthermore, if the input multiplicities

of the sampling Ni are chosen such that Ni ≥ ni, i ∈ Jm then, the matrices B̂ and
B∗ have full row rank n for almost all TN ∈ [T 1

N , T
2
N ].

Now, let E ∈ IRN∗×N∗ be the nonsingular permutation matrix with the property
E−1 ≡ ET , having the form

E = [E1 E2 ]T

where

E1 = [ε1 ε2 · · · εn1 εN1+1 εN1+2 · · · εN1+n2 · · · εN∗−Nm+1 εN∗−Nm+2 · · · εN∗−Nm+nm ]

and
E2 = [εn1+1 · · · εN1 εN1+n2+1 · · · εN1+N2 · · · εN∗−Nm+nm+1 · · · εN∗ ]

where, in general, εj ∈ IRN
∗

is the column vector whose elements are zeros except
for a unity appearing in the jth position. Also, let

B#=̂B̂E−1 = [ Ŝ Q̂ ]

where the matrix Ŝ is defined by (4.13) and matrix Q̂ is given by

Q̂ =
[
Ân1

1 b̂1 · · · ÂN1−1
1 b̂1 · · · Ânm

m b̂m · · · ÂNm−1
m b̂m

]
.

Furthermore, let ∆ ∈ IRN
∗×N∗ be the nonsingular permutation matrix with the

property ∆−1 ≡ ∆T , having the form

∆ = [∆1 ∆2 ∆3 ]T

where

∆1 = [ε1−n1+1 · · · εN1 εN1+N2−n2+1 · · · εN1+N2 · · · εN∗−nm+1 · · · εN∗ ]
∆2 = [εN1−n1 εN1+N2−n2 · · · εN∗−nm ]
∆3 = [ε1 · · · εN1−n1−1 εN1+1 · · · εN1+N2−n2−1 · · · εN∗−Nm+1 · · · εN∗−nm−1] .
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Finally, let

B̃#=̂B∗∆−1 ≡
[
Ŝ∗ Ân1

1 b̂1 · · · Ânm
m b̂m Q̂∗

]

where

Ŝ∗ =
[
Ân1−1

1 b̂1 · · · b̂1 · · · Âmn−1
m b̂m · · · b̂m

]
(13)

Q̂∗ =
[
ÂN1−1

1 b̂1 · · · Ân1+1
1 b̂1 · · · ÂNm−1

m b̂m · · · Ânm+1
m b̂m

]
.

Using these definitions, it is plausible to determine F̂ by mere inspection, as

F̂ = ET

[
Ŝ−1QT

(−Φ̃∗ +RspΠ∗T−1
sp )

0

T

LT

]
. (14)

It only remains to determine the appropriate vector v which guarantees that the
pole placement problem will not be dependent on the vector v. In other words

v ∈ kerB∗ or B∗v = 0.

An obvious selection of such v obtained also by inspection is the following

v = ∆T


 −Ŝ∗−1 (Ân1

1 b̂1 + · · ·+ Ânm
m b̂m)

ζ
ON∗−n−m


 (15)

where ζ ∈ IRm is the column vector whose elements are all equal to 1.
It is noted that the N∗-dimensional column vector v, eventhough does not affects

the discrete pole placement problem, it provides persistent excitation useful for the
consistent identification of the system, as will be shown in the following section.

Clearly, the modulating matrix function F (t) of Figure 2 can readily be deter-
mined by making use of relations (4.1), (4.6a), (4.14) and (3.28). More precisely,
the ith row fTi (t) of the matrix F (t) and the ith block row of the matrix F̂ are
interrelated as

fTi (t) = [fi1(t) · · · fip(t)] = eNi−µ
[
f̂i1 · · · f̂ip

]
, ∀ µT0

Ni
≤ t <

(µ+ 1)T0

Ni
(16)

for i ∈ Jm and for µ = 0, 1, . . . , Ni−1, where eNi−µ ∈ IRNi is the row vector defined
as eNi−µ = εTNi−µ. Note that, the controller matrix F (t), as specified by (4.16),
is largely affected by the multirate mechanism, while the controller matrix F (t) as
specified by relation (3.28) is not. Furthermore, the introduction of the excitation
signals vi(t) in the control loop, greatly facilitates the consistent estimation of the
plant parameters in the case of unknown systems. For these reasons, the control
strategy of Figure 2 is more appropriate than the control strategy of Figure 1 for
the development of the indirect adaptive control scheme presented in the following
section.
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5. CONTROL STRATEGY FOR THE ADAPTIVE CASE

The control scheme presented in Section 4 has a corresponding scheme in the case
where the system is unknown. For this case, the control strategy is largely based
on the computation of the matrix F̂ and of the vector v from estimates of the
plant parameters, and results in a globally stable closed-loop system whose poles
are located to the prespecified values λ̂1, λ̂2, . . . , λ̂n.

5.1. Plant parameters estimation algorithm

The algorithm proposed here for estimating the unknown plant parameters is as
follows: System (2.1), discretized with sampling period τ = T0/(6n−1)N , takes the
form

x[(v + 1) τ ] = Φτx(vτ) +Bτu(vτ), y(vτ) = Cx(vτ), v ≥ 0 (17)

where

Φτ = exp(Aτ), Bτ =
∫ τ

0

exp(Aλ)B dλ.

Clearly, u(vτ) takes constant values for vτ ∈ [ρTN , (ρ+ 1)TN ], ρ ≥ 0. This can
be easily shown by taking into account the action of the proposed controller. Hence,
iterating relation (5.1) 6n− 1 times, we obtain

x[(m+ 1)TN ] = ΦTN
x(mTN ) +BTN

u(mTN ), m ≥ 0

where

ΦTN
= (Φτ )6n−1, BTN

=
6n−2∑
ρ=0

ΦρτBτ . (18)

Using the same argument, we can easily conclude that

Âi = Φ1i

TN
, b̂i =

1i−1∑
ρ=0

ΦρTN
(BTN )i (19)

where (BTN
)i is the ith column of the matrix BTN

. Introducing relation (5.2) in
(5.3), yields

Âi = (Φτ )(6n−1) 1i , b̂i =
1i−1∑

j=0

(Φτ )(6n−1) j




(6n−2)∑
ρ=0

ΦρτBτ



i

. (20)

Moreover, the matrix Φ can be written as

Φ = ÂNi
i = ΦNTN

= (Φτ )(6n−1)N . (21)

Therefore, Φ, Â and b̂i (which are the only matrices involved in computing F̂ and
v) can be computed on the basis of Φτ and Bτ . For this reason, in what follows
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our aim will be the estimation of the matrix triplet (Φτ , Bτ , C). To this end, let the
matrix Ω be defined as

Ω = {Ωij}i=1,2,...,n
i=1,2,...,n , Ωij = CΦi+j−2

τ Bτ . (22)

Clearly, if one establishes estimates of the matrix Ω, then one may easily compute the
desired matrix triplet (Φτ , Bτ , C), using anyone of the minimal realization algorithms
reported in the literature (see for example those reported in [18, 28, 42]). To estimate
matrix Ω, one must resort to an input-output representation (also called ARMA
representation) of system (5.1). This representation is summarized in the following
Theorem:

Theorem 5.1. Suppose that there is a sampling period T0 ∈ IR+ and input mul-
tiplicities of the sampling Ni, i ∈ Jm, such that system (5.1), obtained by sampling
the controllable and observable system (2.1), is also controllable and observable.
Then, an alternative representation of system (5.1), is given by

Ψ(vτ) = J1Ψ[(v − 2n) τ ] + J2W (vτ) + VW [(v − n) τ ] + V ∗W [(v − 2n) τ ] (23)

where

Ψ(vτ) =




y[(v − n+ 1) τ ]
y[(v − n+ 2) τ ]

...
y(vτ)


 , Ψ[(v − 2n) τ ] =




y[(v − 3n+ 1) τ ]
y[(v − 3n+ 2) τ ]

...
y[(v − 2n) τ ]


 ,

W (vτ) =




u[(v − n+ 1) τ ]
u[(v − n+ 2) τ ]

...
u(vτ)




(5.8a)

W [(v − n) τ ] =




u[(v − 2n+ 1) τ ]
u[(v − 2n+ 2) τ ]

...
u[(v − n) τ ]


 ,

W [(v − 2n) τ ] =




u[(v − 3n+ 1) τ ]
u[(v − 3n+ 2) τ ]

...
u[(v − 2n) τ ]




(5.8b)

J1 = Ξ∗−1

[
Ĵ 0
0 0

]
Ξ∗, J2 =




0 · · · 0 0
CBτ · · · 0 0

...
. . .

...
...

CΦn−2
τ Bτ · · · CBτ 0


 ,

V = P ∗Σ and V ∗ = Ξ∗−1

[
V +

0

]
(5.8c)
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and where

Ĵ = P ∗1 Φ2n
τ P

∗−1
1 , P ∗ =




C
CΦτ

...
CΦn−1

τ


 , Σ =

[
Φn−1
τ Bτ · · ·ΦtBτ Bτ

]
(5.9a)

V + = P ∗1 Φnτ
[
Σ− ΦnτP

∗−1
1 U1

]
(5.9b)

while the nonsingular permutation matrix Ξ∗ ∈ IRnp×np, is such that Ξ∗ ∈ IRnp×np,
is such that

Ξ∗P ∗ =
[
P ∗1
0

]
(10)

where P ∗1 ∈ IRn×n is the nonsingular matrix whose rows are the linearly independent
rows of the matrix P ∗. Finally, U1 ∈ IRn×np is the matrix containing the first n
rows of the matrix

U = Ξ∗J2. (11)

P r o o f . In order to prove relation (5.7), we next generalize the approach pre-
sented in [35], to the multivariable case. More precisely, from relations (5.1) we
have

y[(v − n+ 1) τ ] = Cx[(v − n+ 1) τ ]
y[(v − n+ 2) τ ] = CΦτx[(v − n+ 1) τ ] + CBτu[(v − n+ 1) τ ]

...

y(vτ) = CΦn−1
τ x[(v − n+ 1) τ ] +

n−2∑
ρ=0

CΦρτBτu[(v − ρ− 1) τ ]

or more compactly,

Ψ(vτ) = P ∗x[(v − n+ 1) τ ] + J2W (vτ) (12)

where, Ψ(vτ) and W (vτ) are defined by (5.8a) and P ∗ and J2 are defined by (5.9a)
and (5.8c), respectively.

Since, by Assumption 2.2, the pair (Φτ , C) is observable, the matrix P ∗ has full
column rank. Hence, there exists a nonsingular permutation matrix Ξ∗ ∈ IRnp×np,
such that relation (5.10) to hold, where, as already mentioned, P ∗1 ∈ IRn×n is the
nonsingular matrix whose rows are the linearly independent rows of the matrix P ∗.
It is pointed out that matrix Ξ∗ can be defined as a product of two nonsingular



516 K.G. ARVANITIS, G. KALOGEROPOULOS AND I. K. KOOKOS

matrices Ξ̃ ∈ IRnp×np and Ξ̂ ∈ IRnp×np via the following chain of definitions

Ξ∗ = Ξ̃Ξ̂, Ξ̃ =




e1
e2
...
en
ω1

ω2

...
ωnp−n,




, Ξ̂ =




ej1
ej2
...
ejn
Ξ+

1




where Ξ+
1 ∈ IR(np−n)×np is the matrix produced by the nonsingular matrix Ξ+ ∈

IRnp×np of the form

Ξ+ =




e1
e2
...
enp




by dropping the row vectors ei, i = j1, j2, . . . , jn, where j1, j2, . . . , jn are the indices
of the n linearly independent rows of P ∗ defined as p∗Tjp , ρ = 1, 2, . . . , n. Note also
that ωk ∈ IRnp, k = 1, 2, . . . , np− n is the column vector of the form

ωk =


(λj1)k (λj2)k · · · (λjn)k 0 · · · 0 −1︸︷︷︸

(n+k)th position

0 · · · 0




where (λjp)k, ρ = 1, 2, . . . , n, k = 1, 2, . . . , np−n are the coefficients of the following
dependence relation holding for the rows of the matrix P ∗

n∑
ρ=1

(λjρ)k p∗Tjρ − p∗Tk = 0, k /∈ {j1, j2, . . . , jn}

where, p∗Tk , k /∈ {j1, j2, . . . , jn} is the kth row of the matrix P ∗.
Now, multiplying (5.12) from the left by Ξ∗, yields

Z∗(vτ) =
[
P ∗1
0

]
x[(v − n+ 1) τ ] + UW (vτ)

where
Z∗(vτ) = Ξ∗Ψ(vτ) (13)

and where U is defined by (5.11). Next, decompose Z∗(vτ) and U as follows

Z∗(vτ) =

[
Z∗1 (vτ)
Z∗2 (vτ)

]
, U =

[
U1

U2

]
(14)
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where Z∗1 (vτ) ∈ IRn, Z∗2 (vτ) ∈ IRn(p−1), U1 ∈ IRn×np and U2 ∈ IRn(p−1)×np.
Clearly,

Z∗1 (vτ) = P ∗1 ξ[(v − n+ 1) τ ] + U1W (vτ) and Z∗2 (vτ) = U2W (vτ). (15)

From (5.15), one may easily obtain the following relation

x[(v − n+ 1) τ ] + P ∗−1
1 [Z∗1 (vτ)− U1W (vτ)]. (16)

Furthermore, as it can be easily shown, the following relationship holds

x[(v − n+ 1) τ ] = Φ2n
τ x[(v − 3n+ 1) τ ] + ΦnτΣW [(v − 2n) τ ] + ΣW [(v − n) τ ] (17)

where W [(v − n) τ ] and W [(v − 2n) τ ] are given by (5.8b), and where Σ is defined
by (5.9a). Introducing appropriately relation (5.16) in relation (5.17), after some
algebraic manipulations, yields

Z∗1 (vτ) = U1W (vτ) + ĴZ∗1 [(v − 2n) τ ] + V +W [(v − 2n) τ ] + P ∗1 ΣW [(v − n) τ ] (18)

where Ĵ and V +, are defined as by (5.9a) and (5.9b), respectively. Combining
relations (5.11), (5.13) – (5.15) and (5.18), we readily obtain (5.7). This completes
the proof of the Theorem. 2

It is remarked at this point that matrix V and matrix Ω are related through the
following relationship

Ω = V Λ, Λ =




0 · · · 0 I
0 · · · I 0
...

. . .
...

...
I · · · 0 0


 . (19)

Relation (5.7) will be used in the sequel for the identification of the unknown matrices
J1, J2, V and V ∗. To this end, relation (5.7) is next written in the linear regression
form

Ψ(vτ) = Θφ(vτ)

where
Θ = [ J1 J2 V V ∗]

is the true value of the plant parameter matrix, and where

φT (vτ) =
[
ΨT [(v − 2n) τ ] WT (vτ) W [(v − n) τ ] WT [(v − 2n) τ ]

]
.

Next, define

Z(kT0) = [φ(kT0) φ(kT0 − τ) · · · φ[(k − 1)T0]]
Y (kT0) = [Ψ(kT0) Ψ(kT0 − τ) · · · Ψ[(k − 1)T0]]

Θ̂(kT0) = [J1(kT0) J2(kT0 − τ) V (kT0) V ∗(kT0)]
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where J1(kT0), J2(kT0), V (kT0) and V ∗(kT0), are the matrices J1, J2, V and V ∗

evaluated at kT0, through the identification procedure. Clearly, the following relation
holds

Y (kT0) = ΘZ(kT0).

We now choose the recursive algorithm for the estimation of Θ̂(kT0) as

Θ̂(kT0) = Θ̂[(k − 1)T0]−
[
Θ̂[(k − 1)T0]Z[(k − 1)T0]− Y [(k − 1)T0]

]

×ZT [(k − 1)T0]
[
αI + Z[(k − 1)T0]ZT [(k − 1)T0]

]−1
(20)

where α ∈ IR+ is arbitrary, Θ̂(kT0) is estimated parameter matrix Θ̂ at time t = kT0

and Θ̂0 = Θ̂(kT0)|k=0 is arbitrarily specified. It is pointed out that the term αI in
(5.20), is added in order to avoid numerical ill conditioning, arising in the identifi-
cation procedure based on the usual least-squares algorithm, when the determinant
of the matrix Z

[
[(k − 1)T0]ZT (k − 1)

]
takes small values.

Commenting on the nature of the adaptive law (5.20), we point out that, it
describes an on-line estimation procedure which deals with sequential data and in
which the parameter estimates are recursively updated within the time-limit imposed
by the sampling period T0. It is worth noticed, at this point that, in the present
case, it is presumed that, a complete block of information needed for the estimation
of the plant parameters, is not available prior to analysis and control, as in several
off-line estimation procedures. Therefore, in our case, identification and control of
the plant are performed concurrently. In order to calculate the parameters of the
desired GSHF based pole placement controller, it is necessary here to update the
plant parameter estimates using (5.20) and then solve the canonical equations of
Sections 3 and 4 for every time step k (see the following subsection for details).
This is in contrast, to the standard policy followed in cases where identification and
control of the plant are performed separately, in which we solve equations for the
plant and the controller parameters once, after an appropriate minimum number of
observations on the basis of which, a fixed model for the controlled plant is available
for further analysis (see [24, 41] for a comparative study of the two approaches).

It is worth of noticing, at this point, that, although exact solutions to the equation
schemes of the paper are possible, the convergence of the identification procedure
is crucial for our analysis. This is due to the fact that the adaptive law (5.20) is
chosen so that Θ̂(kT0) will satisfy equation Y (kT0) = ΘZ(kT0) (k ≥ 0) asymptoti-
cally with time, i. e., for k →∞, rather than at every time instant. In other words,
in the early stages of the on-line identification procedure, the estimated parameter
matrix Θ̂(kT0), obtained by (5.20), is usually far from its true value Θ and it is
expected that the plant parameter estimates (and consequently the controller pa-
rameter estimates) converge to their true values, only as k → ∞. Therefore, exact
determination of the desired GSHF based pole placement controller through the
procedures presented in Sections 3 and 4, is expected here, only after a certain step
of the overall control procedure. Before this step, the calculated controllers are far
from being those, which guarantee the desired performance of the closed-loop sys-
tem. However, it is a standard fact in all adaptive control schemes that, convergence
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of the parameter estimates to their true values, depends on the specific properties
of the particular identification procedure used and crucially affects the adaptation,
since, in cases where convergence of the estimated parameters to their true values,
is not guaranteed, either the calculated controllers are not the admissible ones or
they cannot be computed (for instance, if Θ̂(kT0), as obtained by the identification,
is unbounded). So the effectiveness of our method, depends on the convergence and
the boundedness properties of the of the proposed identification procedure. These
properties are summarized in the following Proposition.

Proposition 5.1. Let Θ̃(kT0) be the parameter estimation error, defined as

Θ̃(kT0) = Θ̂(kT0)−ΘT . (21)

Then, for the parameter estimation algorithm of the form (5.20), the following prop-
erties hold

(a)
∥∥∥Θ̂(kT0)

∥∥∥ ≤ µ, for some finite µ ∈ IR+.

(b) If limk→∞
∑k
ρ=0 λmin

(
Z(ρT0)ZT (ρT0)

)
= ∞ then limk→∞ Θ̂(kT0) = Θ

where λmin(·) denotes the minimum eigenvalue of a matrix.

P r o o f . (a) Taking the transpose of both sides in (5.20), introducing (5.21) in the
resulting relation and taking into account the fact that ZT (kT0)ΘT −Y T (kT0) = 0,
we readily obtain

Θ̃(kT0)=
{
I − [αI+Z[(k − 1)T0]ZT [(k − 1)T0]]−1Z[(k − 1)T0]ZT [(k − 1)T0]

}

Θ̃[(k − 1)T0]. (22)

On the basis of the Matrix Inversion Lemma, relation (5.22) may further be written
as

Θ̃(kT0) =
{
I +

1
α
Z[(k − 1)T0]ZT [(k − 1)T0]

}−1

Θ̃[(k − 1)T0]. (23)

Therefore,

Θ̃T (kT0) Θ̃(kT0)

= Θ̃T [(k − 1)T0]
{
I+

1
α
Z[(k − 1)T0]ZT [(k − 1)T0]

}−2

Θ̃[(k − 1)T0] (24)

≤
(

1+
λmin(Z[(k − 1)T0]ZT [(k − 1)T0])

α

)−2

Θ̃T [(k − 1)T0] Θ̃[(k − 1)T0].

By repeatedly using the above inequality, we obtain

Θ̃T (kT0) Θ̃(kT0) ≤
[
k−1∏
ρ=0

(
1 +

λmin(Z(ρT0)ZT (ρT0))
α

)]−2

Θ̃T
0 Θ̃0

≤
[
1 +

1
α

k−1∑
ρ=0

λmin(Z(ρT0)ZT (ρT0))

]−2

Θ̃T
0 Θ̃0 (25)
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where Θ̃0 = Θ̂T
0 − ΘT . Hence, ‖Θ̃(kT0)‖ is uniformly bounded by ‖Θ̃0‖, and since

Θ is finite, Θ̂(kT0) is also uniformly bounded by some finite µ ∈ IR+.

(b) If limk→∞
∑k
ρ=0 λmin(Z(ρT0)ZT (ρT0)) = ∞ then, from (5.24), it follows that

limk→∞ Θ̃(kT0), and therefore, limk→∞ Θ̂(kT0) = Θ. 2

Clearly, Proposition 5.1 states that for the convergence of the plant parameters
estimates Θ̂(kT0) to their true values Θ it is sufficient that the regression vector
Z(kT0) is persistently exciting to the amount that

lim
k→∞

k∑
ρ=0

λmin(Z(ρT0)ZT (ρT0)) = ∞.

Therefore, since adaptation and stability of the adaptive scheme depend on the
convergence of the parameter estimates to their true values, it is necessary to prove
excitation of Z(kT0). This done in Subsection 5.3, that follows (see Theorem 5.2,
therein).

Remark 5.1. It is pointed out that, although controllability and observability of
the sampled system (5.1) is instrumental for our analysis, no assumption is made,
in the present paper, on the canonical structure of the triplet (Φτ , Bτ , C). This
is in contrast to the standard policy of many known adaptive schemes, in which
controllability or observability canonical forms are assumed for the matrix triplet
involved in the estimation procedure (see for example [26, 37]). The reason for
avoiding here an assumption on the canonical structure for the triplet (Φτ , Bτ , C), is
mainly due to the fact that canonical forms for multivariable systems are interwoven
with the knowledge of a set of controllability or observability indices of the matrix
triplet sought (for example, in [26, 37] a set of observability indices is needed to
be known). As a consequence, when identification procedures based on canonical
structures are used, much more prior knowledge relative to the structure of the
controlled plant is necessary, as compared to our approach.

5.2. Algorithm for the synthesis of the adaptive controller

On the basis of the estimated parameter matrix Θ̂(kT0) obtained by (5.20), as well
as on the basis of the relations (5.4) – (5.6) and (5.19) and of anyone of the algo-
rithms reported in the literature for the construction of a minimal realization, one
can obtain the estimates which are necessary for the computation of the unknown
matrices Âi ≡ Âi(kT0), Φ(kT0) and the unknown vector b̂i ≡ b̂i(kT0) involved in
the algorithms presented in the previous sections. Moreover, since the matrices
Q, Φ̃∗, Rsp, Tsp, L, Ŝ and Ŝ∗ are constructed on the basis of Âi(kT0), Φ(kT0) and
b̂i(kT0), then provided that the matrix triplet (Φ(kT0), B̂(kT0), C(kT0)) is control-
lable and observable for any possible value of Θ̂(kT0), we can obtain the following
results sought:

F̂ ≡ F̂ (Θ̂(kT0)), v ≡ v(Θ̂(kT0)) (26)
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whereas no update is taken otherwise.
Overall, the procedure for the synthesis of the adaptive GSHF based adaptive

pole placer, consists of the ten steps given below:

Step 1. Choose the input multiplicities of the sampling Ni such that Ni ≥ ni and
the sampling period τ such that τ = T0/(6n− 1)N .

Step 2. Update the estimates of the matrix V using relation (5.20).

Step 3. Find the matrix Ω using relation (5.19).

Step 4. Obtain a minimal realization for the matrix triplet (Φτ , Bτ , C) using anyone
of the minimal realization algorithms reported in the literature (see e. g. the
algorithms in [18, 28, 42]).

Step 5. Find the matrices Âi and the vectors b̂i, as well as the matrix Φ using
relations (5.4) and (5.5), respectively.

Step 6. Use the algorithm presented in Section 3 to compute the controllability in-
dices δi of the pair (ΦT , CT ), as well as the values of the matrices L, Q, Φ̃∗, Rsp

and Tsp.

Step 7. Use (3.26) to compute the controller matrix Kf .

Step 8. Find the matrices Ŝ and Ŝ∗ using relation (4.12) and (4.13), respectively.

Step 9. Find the matrix F̂ and the vector v using relations (4.14) and (4.15), re-
spectively.

Step 10. Find the matrix F (t) of the GSHF based controller sought and the per-
sistent excitation signals vi(t) using relations (4.16) and (4.2a), (4.2b), (4.3),
respectively.

5.3. Stability analysis of the adaptive control scheme

We now investigate the stability of the closed-loop system for arbitrary initial condi-
tions on the plant. To this end, the following fundamental result, can be established.

Theorem 5.2. In the closed-loop adaptive control system the regressor sequence
φ(vτ) is persistently exciting, i. e. there is a δ > 0, such that

Z(kT0)ZT (kT0) =
(6n−1)N∑
v=0

φ(kT0 − vτ)φT (kT0 − vτ) ≥ δI. (27)
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P r o o f . In order to prove relation (5.27), we work as follows: Set ui(t) = dTi (t) vi.
Then, relation (5.7), yields

yi(τ) =
n−1∑
ρ=0

(J1)(n−1) p+i, (n−ρ−1) p+iyi[(v − 2n− ρ) τ ]

+
p∑

κ=1
κ 6=i

n−1∑
ρ=0

(J1)(n−1) p+i, (n−ρ−1) p+κyκ[(v − 2n− ρ) τ ]

+
m∑

j=1

n−2∑
ρ=0

(J2)(n−1) p+i, (n−ρ−2)m+juj [(v − ρ− 1) τ ]

+
m∑

j=1

n−1∑
ρ=0

(V )(n−1) p+i, (n−ρ−1)m+juj [(v − n− ρ) τ ]

+
m∑

j=1

n−1∑
ρ=0

(V ∗)(n−1) p+i, (n−ρ−1)m+juj [(v − 2n− ρ) τ ] (28)

where in general (J1)rq, (V )rq and (V ∗)rq, are the r − q elements of the matrices
J1, J2, V and V ∗, respectively. Introducing the pseudovariables βi,uj (vτ), j ∈ Jm
and βi,yκ(vτ), κ = 1, 2, . . . , p, κ 6= i, relation (5.28), can be decomposed as follows

βi,uj (vτ)−
n−1∑
ρ=0

(J1)(n−1) p+i, (n−ρ−1) p+iβi,uj [(v − 2n− ρ) τ ] = uj(vτ) (5.29a)

yi,uj (vτ) =
n−2∑
ρ=0

(J2)(n−1) p+i, (n−ρ−2)m+jβi,uj [(v − ρ− 1) τ ]

+
n−1∑
ρ=0

(V )(n−1) p+i, (n−ρ−1)m+jβi,uj [(v − n− ρ) τ ]

+
n−1∑
ρ=0

(V ∗)(n−1) p+i, (n−ρ−1)m+jβi,uj [(v − 2n− ρ) τ ], for j ∈ Jm (5.29b)

βi,yκ −
n−1∑
ρ=0

(J1)(n−1) p+i, (n−ρ−1) p+iβi,yκ [(v − 2n− ρ) τ ] = yκ(vτ), (5.29c)

yi,yκ(vτ) =
n−1∑
ρ=0

(J1)(n−1) p+i, (n−ρ−1) p+κβi,yκ [(v−2n−ρ) τ ], for κ = 1, 2, . . . , p, κ 6= i

(5.29d)
while

yi(vτ) =
m∑

j=1

yi,uj (vτ) +
p∑

κ=1
κ6=1

yi,yκ(vτ). (5.29e)
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From relations (5.29b) – (5.29e), we obtain

yi(vτ) =
(

1
p

) 



m∑

j=1

{
n−2∑
ρ=0

(J2)(n−1) p+i, (n−ρ−2)m+jβi,uj [(v − ρ− 1) τ ]

+
n−1∑
ρ=0

(V )(n−1) p+i, (n−ρ−1)m+jβi,uj
[(v − n− ρ) τ ]

+
n−1∑
ρ=0

(V ∗)(n−1) p+i, (n−ρ−1)m+jβi,uj [(v − 2n− ρ) τ ]

}

+
p∑

κ=1
κ6=i

n−1∑
ρ=0

(J1)(n−1) p+i, (n−ρ−1) p+κβi,yk
[(v − 2n− ρ) τ ] (30)

+
p∑

κ=1
κ6=i

{
βκ,yi

(vτ)−
n−1∑
ρ=0

(J1)(n−1) p+κ, (n−ρ−1) p+κβκ,yi
[(v − 2n− ρ) τ ]

}



whereas relation (5.29a), yields

uj(vτ) =
(

1
p

) p∑

i=1

{
βi,uj (vτ)−

n−1∑
ρ=0

(J1)(n−1) p+i, (n−ρ−1) p+iβi,uj [(v − 2n− ρ) τ ]

}
.

(31)
On the basis of relations (5.7), (5.30) and (5.31), the regressor vector φ(vτ), can also
be expressed as

φ(vτ) = Σ̂β̂(vτ)

where

β̂T (vτ) =
[
β̃(vτ) · · · β̃[(v − 6n− 2) τ ]

]

β̃(ρτ) =
[
β̃u1(ρτ) · · · β̃um (ρτ) β̃y1(ρτ) · · · β̃yp(ρτ)

]
, ρ = v − 6n+ 2, . . . , v

β̃uj (ρτ) =
[
β1,uj (ρτ) · · · βp,uj (ρτ)

]
, ρ = v − 6n+ 2, . . . , v, j ∈ Jm

β̃y1(ρτ) = [β2,y1(ρτ) · · · βp,y1(ρτ)] , ρ = v − 6n+ 2, . . . , v

β̃yκ(ρτ) = [β1,yκ(ρτ) · · · βp−1,yκ(ρτ)] ρ = v − 6n+ 2, . . . , v, κ = 2, 3, . . . , p

and where Σ̂ ∈ IR(3nm+np)×(6n−1) p(p+m−1) is a full row rank matrix. Clearly, the
vector φ(vτ) is persistently exciting if β̂(vτ) is also persistently exciting. So, in what
follows, it suffices to investigate excitation of β̂(vτ). To this end, observe that (5.31),
can be written as

uj(vτ) = ψTj β̂(vτ) (32)

where ψTj ∈ IR(6n−1)m(p+m−1) is a row vector whose elements are known. In order
to prove excitation of β̂(vτ), it suffices to prove that the following relationship holds



524 K.G. ARVANITIS, G. KALOGEROPOULOS AND I. K. KOOKOS

T0/τ∑
v=1

β̂(kT0 + vτ) β̂T (kT0 + vτ) ≥ εI (33)

for some ε > 0. To this end, observe that from relation (5.32), we can easily obtain

T0/τ∑
v=1

u2
j (kT0 + vτ) = ψTj




T0/τ∑
v=1

β̂(kT0 + vτ) β̂T (kT0 + vτ)



ψj . (34)

Observe also that the following relation holds

uj(kT0+vτ) =

{
0, if v = 1, 2, . . . , (6n− 1) (Nj − nj − 1) 1j − 1

1, if v = (6n− 1) (Nj − nj − 1) 1j , . . . , (6n− 1) (Nj − nj) 1j − 1

Hence, relation (5.34), can also be written as

(6n−1) 1j+
T0/τ∑

v=(6n−1) (Nj−nj) 1j

u2
j (kT0+vτ)=ψTj




T0/τ∑
v=1

β̂(kT0 + vτ) β̂T (kT0 + vτ)



ψj .

We can then conclude that

ψTj




T0/τ∑
v=1

β̂(kT0 + vτ) β̂T (kT0 + vτ)



ψj ≥ (6n− 1) 1j

and that

{
ψTj
‖ψj‖

}


T0/τ∑
v=1

β̂(kT0 + vτ) β̂T (kT0 + vτ)





{
ψj
‖ψj‖

}
≥ (6n− 1) 1j

‖ψj |2 .

It is now clear that, the vector ψj

‖ψj‖ , is a vector whose norm equals to unity.
Hence there is a unity norm vector such that

χT




T0/τ∑
v=1

β̂(kT0 + vτ) β̂T (kT0 + vτ)



χ− (6n− 1) 1j

‖ψj‖2 ≥ 0.

In conclusion, relation (5.33) holds. As a consequence, the vector β̂(vτ) is per-
sistently exciting. Therefore, φ(vτ) is also persistently exciting and hence there is a
δ > 0 (which, in general, depends on the matrix Σ̂), such that relation (5.27) holds.
This completes the proof of the Theorem. 2

We are now able to establish the stability of the adaptive control system.
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Proposition 5.2. The closed-loop adaptive control system presented above is glob-
ally stable, i. e. for arbitrary finite initial conditions all states are uniformly bounded,
and pole placement control is asymptotically attained. Furthermore, the proposed
adaptive scheme provides exponential convergence of the estimated parameters.

P r o o f . Since, according to Theorem 5.2, the regressor sequence is persistently
exciting, then the difference Θ̂(kT0) − Θ converges to zero. That is, the plant pa-
rameter estimates converge to their true values. As a consequence of this and of the
fact that Θ̂(kT0) uniformly bounded, the controller parameter estimates (5.26) also
converge to their true values. Therefore, at the sampling instants uniform bounded-
ness of all states and discrete pole placement follow on the basis of (4.4). Uniform
boundedness of u(t) and x(t) then follows from (2.1), (4.8) and (4.16) and from the
fact that w(kT0) is bounded by assumption. Finally, exponential convergence of the
plant parameter estimates follows form (5.23), which together with (5.27), ensures
that Θ̂(kT0) → Θ exponentially as k →∞. 2

Remark 5.2. Commenting on the assumptions needed here, in order to implement
the GSHF based adaptive pole placer presented above, we point out the following:

Assumption 2.1a, on the controllability and observability of the continuous-time
plant as well as on the knowledge of its order is a standard assumption in the
area of adaptive control. It is worth noticed that here, controllability of the pair
(A,B) is also necessary for obtaining a solution of the integral equation (3.2), with
respect to the controller matrix F (t). Note also that, uncontrollability (and/or
unobservability) of the pair (A,B) implies uncontrollability (and/or unobservability)
of the plants obtained from (2.1), by discretizing with sampling periods T0, TN , and
τ . From the previous analysis, however, it becomes clear that for the implementation
of the adaptive control scheme, these discretized plants must be controllable and
observable.

Assumption 2.1b, on the knowledge of a set of LMCI indices of the pair (A,B), is
instrumental for the implementation of the proposed adaptive scheme, since, on the
one hand, the forms of the multirate GSHF based controller (4.1) and the persistent
excitation signals (4.2a), (4.2b), (4.3) depend on the LMCI used, and on the other
hand, the control strategy in the case of unknown systems is based on the funda-
mental sampling period τ , which also depends of the knowledge of a set of LMCI.
Note also that, whenever Assumption 2.1b is not fulfilled, one can readily compute a
set of LMCI by estimating the continuous-time system matrices A and B. This can
be done either using a continuous-time counterpart of the identification procedure
presented in Section 5.1 or following the structural identification approach proposed
in [42]. For the sake of simplicity, we assume here that the initial information about
a set of LMCI of the pair (A,B) is available.

Assumption 2.2 on the existence of a sampling period , for which controllability
and observability of the matrix triplets (Φ, B̃, C) and (Φτ , Bτ , C) are guaranteed, is
also instrumental for our analysis. In particular, observability of the pair (Φ, C) must
be guaranteed, for being able to transform the pair (ΦT , CT ) in its input Luenberger
canonical form and for obtaining a solution of the pole placement control problem,
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in the case of known systems. On the other hand, controllability and observability
of the matrix triplet (Φτ , Bτ , C) is necessary for resorting to the equivalent input-
output representation (5.7), for the state space system of the form (5.1), as well as
for being able to apply anyone of the minimal realization algorithms presented in
[18, 28, 42], which are needed here to obtain the estimates of the triplet (Φτ , Bτ , C).
Note that, for ensuring controllability and observability of the triplets (Φ, B̃, C)
and (Φτ , Bτ , C), the fundamental sampling period T0 must be selected such that
simultaneously

(a)
2ρπj
T0

, ρ = 0, 1, . . . (j =
√−1) is not the difference

of any two eigenvalues of the matrix A. (5.35a)

(b)
2(6n− 1)Nρπj

T0
, ρ = 0, 1, . . . is not the difference

of any two eigenvalues of the matrix A. (5.35b)

(c) ψ(TN ) 6= 0. (5.35c)

This implies that, in the multirate adaptive case treated here, certain sampling
frequencies must avoided, as compared to the non-adaptive non-multirate case. It
is pointed out that, conditions (5.35a) and (5.35b), are standard conditions for the
selection of a regular sampling period, in order to avoid loss of controllability and
observability under sampling (see [31], for a detailed analysis of this issue).

Remark 5.3. The results of the present paper hold also in the special case where
N1 = N2 = · · · = Nm ≡ N0, taking into account several modifications needed in the
previous analysis, in order to fit this particular case. It is important to note that
in this case, less prior information is needed for the implementation of the adaptive
control scheme presented above, since there is no need of the prior knowledge of a
set of LMCI of the pair (A,B). We can simply take N0 ≥ n. With this choice, the
matrices Ŝ and Ŝ∗ have full row rank for almost all TN0 ∈

[
T 1
N0
, T 2

N0

]
. Then, the

matrix F̂ and the vector v have the following forms

F̂ = ET
[
Ŝ(ŜŜT )−1QT (−Φ̃∗ +RspΠ∗T−1

sp )T LT

0

]

v = ∆T



−Ŝ∗(Ŝ∗Ŝ∗T )−1 (Ânb̂1 + · · ·+ Ânb̂m)

ζ
0m(N0−m−1)


 , Â = exp(AT0 /N0).

6. CONCLUSIONS

The adaptive pole placement problem of linear time-invariant continuous-time multi-
input, multi-output systems has been investigated and an indirect adaptive control
scheme based on generalized sampled-data hold functions has been presented, for
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the first time. The proposed control strategy has, as compared to known related
techniques, the following main advantages:

(a) It is readily applicable to nostably invertible systems having arbitrary poles
and zeros and relative degree. This is due to the fact that the approach used here to
solve the adaptive pole placement problem does not rely on pole-zero cancellations.

(b) Following the proposed technique a gain controller is essentially needed to
be designed, as compared to dynamic compensators or state observers needed by
known indirect adaptive pole placement techniques. Consequently, the present ap-
proach avoids the problems of known adaptive pole placement techniques, interwoven
with the possibly unstable solutions of the Diophantine equation. Moreover, no ex-
ogenous dynamics are introduced in the control loop by our technique, whereas in
many known techniques the dynamics introduced are of high order. This fact im-
proves the computational aspect of the problem, since the proposed technique does
not require many on-line computations and its practical implementation requires
computer memory only for storing the modulating matrix function F (t) over one
period of time.

(c) It offers a solution to the problem of ensuring persistency of excitation of the
continuous-time plant under control, without imposing any special requirement on
the reference signal w(kT0) (except boundedness) and without making any assump-
tion concerning either the existence of specific convex sets in which the estimated
parameters belong or the coprimeness of the polynomials describing the ARMA
model.

The present paper gives some new insights to the adaptive pole placement prob-
lem of linear systems. The present results can be extended to solve other related
adaptive control problems, as for example the problems of model reference adap-
tive control and adaptive decoupling using multirate sampled-data hold functions.
Adaptive control schemes based on alternative parameter estimation algorithms (as,
for example, the algorithm proposed in [37]) and without the need of persistent
excitation signals are currently under investigation.

(Received September 28, 1998.)
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