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SEPARATION PRINCIPLE FOR NONLINEAR SYSTEMS
USING A BILINEAR APPROXIMATION

Mohamed Ali Hammami and Hamadi Jerbi

In this paper, we study the local stabilization problem of a class of planar nonlinear
systems by means of an estimated state feedback law. Our approach is to use a bilinear
approximation to establish a separation principle.

1. INTRODUCTION

State observation of nonlinear dynamic systems is becoming a growing topic of in-
vestigation in the specialized literature. The reconstruction of the time behaviour of
state variables remains a major problem in both control theory and process diagno-
sis. For linear systems and for the local case, the Luenberger-like observer solve this
problem. Nevertheless, the design of asymptotically stable observers remains a hard
task in the nonlinear case. For bilinear systems, one can design an observer provided
that the inputs are small. It is well known that for nonlinear systems, there exists
a local exponential observer if and only if the linear approximation of the system at
the origin is detectable. If moreover it is stabilizable by a state feedback, the prob-
lem of feedback stabilization with state detection is solvable with a linear observer
and a linear control law. In this paper we consider the planar nonlinear systems of
the form {

ẋ = f(x) + ug(x)
y = h(x) (1)

where x ∈ U is a neighborhood of the origin in IR2, u is a scalar input and f , g are
smooth vector fields and h is a real analytic function on IR2, such that f(0) = g(0) =
0 and h(0) = 0. Many authors [2, 7] investigate the stabilizability problem when
g(0) 6= 0. However few results are known in the case where g(0) = 0, [1, 4, 5, 11].
The principal difficulties arise from the fact that the linearized system is independent
of the control and the vector field g is not locally rectifiable. Our approach is to
consider the bilinear approximation system of (1):

{
ẋ = Ax+ uBx

ỹ = Cx
(2)
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where

A =
∂f

∂x
(0), B =

∂g

∂x
(0) and C =

∂h

∂x
(0)

to study the stabilizability of the system (1) by means of a state estimated feed-
back law. In [6], the author studied the problem of finding a global state space
transformation to transform a given single-input homogeneous bilinear system to
a controllable linear system. A local state space transformation and a complete
analysis of globally state linearizable bilinear systems in the plane are given. The
authors, in [3, 8, 10], solved the problem of stabilizing in observer design for some
classes of nonlinear systems. Suppose that we have a stabilizable and observable bi-
linear system with states x. We use a state feedback law u = u(x) to asymptotically
stabilize the system (1). If the states are not available, we must construct a bilinear
observer for (2) which is expected to produce the estimation x̂(t) of the state x(t). It
turns out that for planar systems, one can consider bilinear systems with bad inputs
(inputs for which the system is not observable). There is at most only one input
which is constant that makes the system unobservable. Then we apply the feedback
u = u(x̂) which not nearly to the bad one to show that the system is asymptotically
stabilizable.

2. STABILIZATION USING STATE DETECTION

Consider the single-input single-output nonlinear systems of the form (1). Since
f, g, h are of C1, one can write

f(x) = Ax+ f1(x)
g(x) = Bx+ g1(x)

and
h(x) = Cx+ h1(x)

where f1, g1 and h1 satisfy

‖f1(x)‖ ≤M1‖x‖, ‖g1(x)‖ ≤M2‖x‖ and ‖h1(x)‖ ≤M3‖x‖, ∀x ∈ U ′ ⊂ U (3)

with M1, M2 and M3 some positive constants. We shall call (2), the approximating
system for the system (1).

If the states of the bilinear system are available, we can formulate the stabiliza-
tion problem of the system (1) as follows: Consider the system (1) defined on a
neighborhood of the origin of IR2, where we suppose that f(0) = g(0) = 0.

A function ϕ is said to be positively homogeneous of degree m ≥ 0, if for any
vector x and any real positive λ, we have

ϕ(λx) = λmϕ(x).
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If the bilinear approximation system (2) is stabilizable by means of a positively
homogeneous feedback of degree zero and of class C1 on IR2 \ {0}, then the system
(1) is locally stabilizable.

Indeed, let u(x) be a positively homogeneous stabilizing feedback of degree zero
for system (2). Set

F (x) = Ax+ u(x)Bx

and
G(x) = f1(x) + u(x) g1(x).

Since u is of class C1 on U ′ \ {0} then F and G are locally Lipschitz. Moreover,

|u(x)| ≤M0

for every x and using (3),

‖G(x)‖ ≤ (M1 +M0M2)‖x‖

for all x ∈ U ′. It follows from Massera’s theorem [14] that the origin of the differential
equation

ẋ = F (x) +G(x)

is asymptotically stable equilibrium point.

Notice that, in [4] the authors gave a complete classification of planar homoge-
neous bilinear systems, where for stabilizable bilinear systems, a smooth on IR2 \{0}
homogeneous of degree zero feedback u is given.

Stabilization of a class of planar bilinear system:

In a suitable basis of IR2, the matrices A and B can be written as

A =
(
a b
c d

)
B =

(
λ µ
−µ λ

)
.

First of all, we wish to write the matrices A and B as simply as possible. Consider
the linear change of coordinates whose transformation matrix is given by

T =
(

e1 e2
−e2 e1

)
where e1 = (a− d)−

√
(b+ c)2 + (a− d)2 and e2 = b+ c.

Under this transformation, matrix B remains unchanged whereas matrix A becomes

A =
(

ã (b− c)/2
(c− b)/2 d̃

)
where

ã = (ae21 + (c+ b) e1e2 + de22)/(e
2
1 + e22)

d̃ = (ae22 − (c+ b) e1e2 + de21)/(e
2
1 + e22).

Suppose that the following assumption holds:

(i) Tr(A) ≥ 0 Tr(B) = 0 and −ãd̃ = (b+ c)2 − 4ad > 0.
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Proposition 1. Under the above assumption, the following feedback law:

u(x1, x2) =
t1x

2
1 + (d̃− ã)x1x2 + t2x

2
2

µ(x2
1 + x2

2)
+
c− b

2µ
where t1 > 0 t2 > 0

and

d̃

√
t1
t2

+ ã > 0

stabilizes the system (2).

P r o o f . Consider the following system:
(
ẋ1

ẋ2

)
=

(
Y1(x1, x2)
Y2(x1, x2)

)
=

(
x2

1 + x2
2

) [
A

(
x1

x2

)
+ u(x1, x2)B

(
x1

x2

)]
.

Y is a homogeneous vectors fields of degree three. Since
(
x2

1 + x2
2

)
is definite positive,

then it is not hard to see that, there is equivalence between stability of (2) and the
above system. Set

F (x) = x1Y2(x1, x2)− x2Y1(x1, x2)

a simple computation gives

F (x1, x2) = −(t1x2
1 + t2x

2
2) (x2

1 + x2
2).

Furthermore, F has not a linear factor then the phase portrait of Y is determined
by the flow near (0,0). It is a global centre if I = 0, and it is a global stable (resp.
unstable) focus if and only if I < 0 (resp. I > 0), (for the proof see [13], where I is
given by

I =
∫ +∞

−∞

Y1(1, x)
F (1, x)

dx = − π

t2

d̃t+ ã

t(t+ 1)
where t =

√
t1
t2
.

Observer design:

Consider now the system (1). If the linear pair is observable, the bilinear system is
also observable for small controls. In this case, one can design an observer for (2) of
the form

˙̂x = Ax̂+ uBx̂− L(Cx̂− y) (4)

where L is the gain matrix such that Relλ(A − LC) < 0, then there exists P =
PT > 0 such that

P (A− LC) + (A− LC)TP = −I
which is possible by observability of the pair (A,C). Let e = x̂ − x, a Lyapunov
function can be chosen as:

V (e) = eTPe.

The derivative of V along the trajectories of the error equation

ė = Ae+ uBe− LCe
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is given by
V̇ (e) = −eT e+ 2ueTPBe.

Thus,
V̇ (e) ≤ −‖e‖2 + 2|u|‖PB‖‖e‖2

V̇ (e) ≤ (−1 + 2|u|‖PB‖)‖e‖2.
It follows that for u sufficiently small u < u0 = 1

2PB , when e 6∈ KerPB, (otherwise
if e ∈ KerPB one gets V̇ (e) ≤ −‖e‖2). It follows that, the origin of the error
equation is globally exponentially stable. Hence the system (4) is an exponential
observer for (2) with the following estimate:

‖e(t)‖ ≤ λ1‖e(0)‖e−λ2t, λ1, λ2 > 0. (5)

Stabilization in the presence of the bad input:

In the two dimensional case, there is at most only one input ub which is constant
that makes the bilinear system unobservable. It is given by the linear equation

det
(

C
C(A+ uB)

)
= 0.

From [12], for bounded and analytic (on IR2 \ {0}) stabilizing feedback law u(x),
there exists δ > 0 such that

u(x) > ub − δ and u(x) < ub + δ, ∀x ∈ IR2,

where ub is the bad input. Assume that there exists a bounded and analytic (on
IR2 \ {0}) stabilizing law u(x) for (2) such that, for any bad input ub, there exists
ε > 0 such that

u(x) 6∈ (ub − ε, ub + ε), ∀x ∈ IR2

and u(x) is homogeneous of degree zero. Then, the system (2) is globally asymptot-
ically stabilizable. Indeed, since the feedback law u(x1, x2) is bounded and analytic
(on IR2 \ {0}) then there exists δ > 0, such that

−δ < u(x1, x2) < ub − ε, ∀ (x1, x2) ∈ IR2

or
ub + ε < u(x1, x2) < δ, ∀ (x1, x2) ∈ IR2

where x = (x1, x2). Suppose that,

ub + ε < u(x1, x2) < δ, ∀ (x1, x2) ∈ IR2,

(the same proof in the second case), then, under a change in the input space of the
form

u→ u+ δ
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the system (2) becomes
{
ẋ = Ãx+ uBx

ỹ = Cx
where Ã = A+ δB.

Denoting ũb the only bad input of the above system, and ũ(x1, x2) the stabilizing
feedback law, then

ũb = ub − δ and ũ(x1, x2) = u(x1, x2)− δ.

However, ũ(x1, x2) is a homogeneous feedback of degree zero which satisfies

|ũ(x1, x2)| < |ũb| − ε < |ũb|.

A separation principle:

Now, in order to investigate the stabilizability problem in observer design, one can
consider the observer (4) for the bilinear system. For the stabilization purpose, we
shall suppose that,

(H) : There exists a homogeneous feedback law of degree zero u(x), (u(λx) = u(x)
for λ 6= 0), and of C1 (on U \ {0}), stabilizing the bilinear system (2).

It can be remarked that, by the assumption (H), the closed-loop system

ẋ = Ax+ u(x)Bx

is a continuous homogeneous vector field of degree one. Therefore, according to [9],
there exists a homogeneous Lyapunov function V for the above differential equation.
Since, its partial derivatives are also homogeneous, it follows that, there exists a
positive constant α such that

‖∇V (x)‖ ≤ α(1 + V (x)).

Theorem 1. Suppose that the pair (A,C) is observable. Then, under the assump-
tion H, the following system:

{
ẋ = Ax+ u(x− e)Bx

ė = (A+ u(x− e)B − LC) e (6)

is globally asymptotically stable.

P r o o f . By (5), there exist λ1 > 0 and λ2 > 0 such that, ‖e(t)‖ ≤ λ1‖e(0)‖e−λ2t.
Taking into account, this estimation which implies the global exponential stability of
the error equation and the fact that the system ẋ = F̃ (x) = Ax+u(x)Bx is globally
asymptotically stable, then the system (6) is locally asymptotically stable [16]. In
order to show the global asymptotic stability, by using the argument of Seibert–
Suarez [15], it suffices to prove the boundedness of any trajectories (e(t), x̂(t)), t ≥
0, of the system (6). Since e(t) given in (5) is bounded, then it suffices to show
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the boundedness of the component x̂(t). From H and using the fact that F̃ is a
homogeneous vector fields, there exists a C1-homogeneous Lyapunov function V
such that

V (x) > 0, ∀x 6= 0, V (0) = 0 and V̇ (x) = ∇Vx(F̃ (x)) < 0, ∀x 6= 0

and α > 0 such that

‖∇Vx‖ ≤ α(1 + V (x)), ∀x ∈ IRn.

These properties can be found in [9]. Therefore, the derivative of V along the
trajectories of time varying differential equation

˙̂x = F̃ (x̂)− LCe(t)

satisfies

V̇ (x̂) = ∇Vx̂(F̃ (x̂)−∇Vx̂(LCe(t)).

Since ∇Vx̂(F̃ (x̂) < 0, it follows that

V̇ (x̂) ≤ ‖∇Vx̂‖ · ‖LC‖ · ‖e(t)‖.
Then, one obtains

V̇ (x̂) ≤ µe−λ2t(1 + V (x̂)), µ > 0.

Therefore, Log(1+V (x̂)) is bounded by a positive constant. Hence, x̂(t) is bounded.
It follows that, (6) is globally asymptotically stable. 2

Now, let us consider the equation

˙̂x = Ax̂+ uBx̂− L(Cx̂− y) (7)

where we take y = h(x) as the output of the original system (1). Letting ε = x− x̂,
where x is the state of (1) and x̂ satisfies the above equation (6). The derivative of
the error ε is given by

ε̇ = f(x) + ug(x)−Ax̂− uBx̂+ L(Cx̂− y)
= Ax+ f1(x) + uBx+ ug1(x)−Ax̂− uBx̂+ L(Cx̂− Cx− h1(x))
= (A+ uB)ε+ f1(x) + ug1(x)− LCε− Lh1(x)
= (A+ uB − S−1tCC)ε+ f1(x) + ug1(x)− Lh1(x).

Then, the latter expression in conjunction with the system (1) in closed-loop with
the estimated feedback law

u = u(x− ε) (8)

yields
(

ẋ

ε̇

)
=

(
(A + u(x− ε)B)x

(A + u(x− ε)B − LC)ε

)
+

(
f1(x) + u(x− ε) g1(x)

f1(x) + u(x− ε) g1(x)− Lh1(x)

)
.
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Set

φ(x, ε) =
(

(A+ u(x− ε)B)x
(A+ u(x− ε)B − LC)ε

)

and

ψ(x, ε) =
(

f1(x) + u(x− ε) g1(x)
f1(x) + u(x− ε) g1(x)− Lh1(x)

)
.

Since u is C1 on U ′ \ {0}, it can be seen that φ and ψ are locally Lipschitz.
Moreover, there exists M0 such that

|u(z)| ≤M0 for every z.

Furthermore, it can be seen that φ is homogeneous of degree one, and by using (3),
one can verify that ψ satisfies

‖ψ(x, ε)‖ ≤M‖(x, ε)‖, ∀ (x, ε) ∈ U ′ × U ′

where M is a positive constant which depends on M0, M1, M2, M3, η and ‖C‖.
It follows from a theorem of Massera [14], that the solution (x, ε) = (0, 0) of the
differential equation

t(ẋ, ε̇) = φ(x, ε) + ψ(x, ε)

is asymptotically stable.

Hence, using this fact, one can state the following theorem.

Theorem 2. If the approximating system (2) is observable for any input and
stabilizable by means of a homogeneous feedback u(x) of degree zero and of a class
C1 on U \ {0}, then it is stabilizable by means of a state estimate feedback given
by the bilinear observer (4), and that the feedback law u = u(x − ε) given in (8),
makes the origin of the original system (1) locally asymptotically stable.

Proposition 2. If the (i) condition is met then, the system (2) is stabilizable
thanks to a homogeneous feedback of degree zero which is analytic on IR2 \ {0}.

P r o o f . There is at most only one input ub which is constant that makes the
system unobservable. Furthermore for t1 positive constant large enough and d̃

√
t1
t2

+
ã > 0, then the following proposition is useful

|u(x1, x2)| > |ub|+ 1. 2

(Received April 20, 2000.)
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