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CYCLIC CONTROL OF ROBOT ARMS1

Pasquale Lucibello and Stefano Panzieri

The problem of moving a rigid robot arm along a finite sequence of equilibrium points,
with the last point coincident with the first one, is investigated. Such a sequence, referred
to as a cycle, is to be repeated over and over in time, and a controller is sought which
improves system performance by using positioning errors. Differently from learning control,
no system initialization is required at the end of trial. After high gain feedback linearization
of the robot dynamics, it is shown that linear, robust, finite dimensional algorithms can
be set up to accomplish this task for unconstrained robots and robots subject to smooth
bilateral constraints for which hybrid force control is of interest. An experiment on a
two-link robot arm illustrates algorithm applicability.

1. INTRODUCTION

The problem of operating robots on repetitive or periodic tasks has been largely
addressed in the literature. Typically, the task considered consists in tracking a
trajectory: in repetitive control [20], the periodic and continuous trajectory to be
tracked is defined over the entire time axis; while in learning control [3] the trajec-
tory to be tracked is defined over a finite time interval, at the end of which system
re-initialization is allowed and the same task repeated. In the first case, one is
faced with a classic control problem, in the sense that asymptotic output tracking
is sought as the time goes to infinity. In the second case, one searches convergence
as the number of task repetitions (trials) tends to infinity. The learning dynamics
are then defined over the countable set of trials and as such are of the discrete type.
In both cases, and as long as continuous time systems are considered, one has to
deal with a state space which is infinite dimensional. In repetitive control, this is
linked with the assumption that the periodic trajectory to be tracked may not be
generated by a finite dimensional exosystem, while in learning control to the fact
that the space of interest is the set of all output trajectories on the time interval
considered [11]. Even if the available solutions to the repetitive [20] and learning con-
trol [1, 2, 3, 4, 5, 6, 8, 11] problems are in principle exact, proposed implementations of
these algorithms are only approximate owing to the infinite dimension of their state
spaces. In some instances, however, instead of trajectory tracking, repositioning is
required. Moving rigid robots between equilibrium points is apparently a sub-task

1This paper has been partly supported by Murst 40 % funds.
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of trajectory tracking. One may argue that by tracking a trajectory connecting the
equilibrium points repositioning is obtained. But this control strategy is indirect and
then intrinsically not robust. For instance, it may happen that during a trial the
robot reaches one of the desired equilibrium points even if the selected trajectory is
not exactly tracked. This would however cause the update of the control for the next
trial and the robot could no longer reach that desired equilibrium point during this
new trial. In general, output tracking and state steering are quite different control
problems which require different algorithms. On this basis, the problem of steering
the state of a control system by learning has been investigated and some algorithms
proposed [12, 13, 14, 15, 17, 18]. As opposed to algorithms for trajectory tracking,
learning algorithms for state steering are finite dimensional. However system re-
initialization is still needed at the end of a trial and this prevents the possibility of
continuously operating the system on a task defined by a finite sequence of equi-
librium points, with the first and the last one coincident. For this reason, in this
paper a new type of servo-system for robot arms is introduced to specifically address
this control problem, named cyclic control. A linear algorithm is presented, which
asymptotically forces the robot to execute a given cycle to be repeated over and
over in time. System re-initialization is not required, thus avoiding any time delay
associated to this operation. Both the cases of unconstrained robots and robots
subject to smooth bilateral constraints, for which hybrid force control is of interest,
are considered.

To show the feasibility of the proposed control system the results of an experiment
carried on a two link robot arm are reported. Has been required to the robot to
move cyclically between three equilibrium points defined by having state derivatives
null.

2. CYCLIC CONTROL OF UNCONSTRAINED ROBOTS

Let an open chain robot arm, with n rigid links connected by lower kinematic pairs,
be given. If unconstrained, its equations of motion are of the type

B(q(t)) q̈(t) + c(q̇(t), q(t)) + d(q̇(t), q(t), t) = f(t) (1)
q(0) = q◦, q̇(0) = q̇◦,

where q(t) ∈ Rn is the vector of joint variables, B(·) is the positive definite inertia
matrix, c(·) is the vector of centripetal, Coriolis and gravitational terms, d(·) takes
into account unknown disturbances and f(t) is the vector of joint forces delivered
by the actuators, one for each joint. All functions are assumed smooth and d(·) is
periodic with respect to the time.

Suppose that the robot has to be operated along a finite sequence of r equilib-
rium points {qd

1 , . . . , qd
r}, to be attained at the end of the consecutive time intervals

{δ1, . . . , δr}. From the last assigned equilibrium point, the robot has to move to the
first one and re-start the “cycle”. For synchronization purposes, it is also required
that at the instants hT , with h = 0, 1, 2, . . ., the robot equilibrium point is the one
corresponding to q = qd

r , that at the instants δ1 + hT the one corresponding to
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q = qd
1 and so on, with T the cycle period given by

T =
r∑

i=1

δi.

The period of d(·) is assumed to be equal to T .
Apply the following high gain control

f(t) = −1
ε
(q̇(t)− η(t)), ε > 0

where the new control η(t) has a continuous derivative. By letting ε → 0, the robot
system is singularly perturbed (see e. g. [10]) and splits in a fast system given by

dp(τ)
dτ

= −D(q∗(t)) p(τ),

where τ is the fast time, p(τ) is the fast transient of the velocity and D(·) is the
inverse of the inertia matrix, and in the slow system

q̇(t) = η(t), q(0) = q◦,

whose smooth solution is denoted by q∗(t).
Since D(·) is positive definite, the fast system is exponentially stable and Ti-

khonov’s theorem applies. Tikhonov’s theorem states that for small ε the following
approximation holds

q(t) = q∗(t) + o(ε), t ∈ [0,∞). (2)

Moreover, since η(t) is differentiable and the robot dynamics are smooth, for a
sufficiently large t′ > 0 one has that

q̇(t) = q̇∗(t) + o(ε), q̈(t) = q̈∗(t) + o(ε) t ∈ [t′,∞). (3)

In order to guarantee the differentiability of η(t), a double integrator is added, that
is we set

η̈(t) = u(t).

Define

t1,1 = δ1

th,k+1 = th,k + δk+1, h ∈ N, k ∈ {1, . . . , r}
th,r+1 = th+1,1, h ∈ N,

with k the number identifying the equilibrium points and h the number of cycle
repetitions. Set

u(t) = λk(t− th,k + δk)wh,k, t ∈ [th,k − δk, th,k]
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where wh,k ∈ R3×n and λk : [0, δk] → Rn×R3×n is a piece-wise continuous function
such that the mapping Pk : R3×n × R3×n defined by

Pk =
∫ δk

0

eA(δk−t)V λk(t) dt,

where

A =




0 I 0
0 0 I
0 0 0


 , V =




0
0
I


 ,

is invertible. Note that by changing the functions λk(·) the trajectories that the
state of the system follows change.

Refer as robot position at time th,k

zh,k =




q(th,k)
q̇(th,k)
q̈(th,k)


 .

Defining

Lk = eAδk = I + Aδk + A2 δ2
k

2
,

one has
zh+1,1 = L1zh,r + P1wh+1,1, (4a)

zh+1,k = Lkzh+1,k−1 + Pkwh+1,k, 2 ≤ k ≤ r, (4b)

This system is periodic and controllable since each Pk is invertible. This implies
that there exist controls wh,k which guarantee the convergence of each zh,k on

zd
k =




qd
k

0
0




as h →∞ at the slow level.
Under the stated assumption on the unknown disturbance function d(·), exact

tracking controls are constants. Hence, according to the new formulation of the
Internal Model Principle proposed in [16], the inclusion in the closed loop of a
discrete integrator for each control channel guarantees robustness with respect to
T -periodic disturbances, provided that the closed loop is asymptotically stable. An
example of this type of robust control law is the following

wh+1,1 = P−1
1 (αh+1,1 − L1zh,r)

αh+1,1 = αh,1 + E1(zd
1 − zh,1)

(5a)

wh+1,k = P−1
k (αh+1,k − Lkzh+1,k−1)

αh+1,k = αh,k + Ek(zd
k − zh,k),

|I − Ek| < 1, 1 ≤ k < r.

(5b)
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Other geometrically stable control laws, incorporating an integrator for each con-
trol, can be derived by using a time invariant reformulation of the system. Set

ϕh =




zh,1

...
zh,r


 , νh =




wh,1

...
wh,r




Ω =




P1 · · · 0

0
. . . 0

0 · · · Pr


 , Φ =




0 · · · L1

...
. . .

...
0 · · · 0




Γ =




I 0 0 · · · 0 0
−L2 I 0 · · · 0 0

0 −L3 0 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · −Lr I




,

φ, ν ∈ R3×n×r, Ω, Φ, Γ ∈ R(3×n×r)×(3×n×r)

one has

Γϕh+1 = Φϕh + Ωνh+1.

Since both Γ and Ω are invertible, this is a well defined time-invariant controllable
linear system. For another time-invariant reformulation, which makes use of the
state transition matrix of the discrete-time periodic system, the interested reader
may refer to [7] and to the references therein quoted.

For what concerns asymptotic stability for ε 6= 0 but small, from Tikhonov’s
theorem, (eqs. (2) and (3)), one has that, for sufficiently large t′, the differences
between slow position, velocity and acceleration solutions and the actual ones are
smooth functions of ε, vanishing at ε = 0. The perturbation due to the fast dynamics
is then small. In addition, under the hypothesis that a control

ν =




w1

...
wr


 ∈ R3×n,

solving the cyclic control problem exists, this perturbation is not persistent, since
if the robot exactly execute the cycle the control is no longer updated. Now, the
geometric convergence to zero of the error sequences (zk

d−zh,k), for ε = 0 and h →∞,
implies that sufficiently small nonpersistent perturbations are rejected [9]. Hence,
provided that a control ν exists, the algorithm is also convergent for sufficiently
small ε.

A proof of the existence of such a control can be given by using the implicit func-
tion theorem. Suppose that the robot is exactly initialized at time t = 0, that is that
q(0) = qd

1 and that velocity and acceleration are zero at t = 0. Then condition (3)
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holds with t′ = 0. Chosen the functions λk, the mapping Λ : R×R3×n×r → R3×n×r,
which assigns to a pair (ε, ν) the position, velocity and acceleration of the robot at
the instants tk, is well defined and smooth. Now, by construction the derivative of Λ
with respect to ν is full rank for ε = 0. Hence there exists a neighborhood of ε = 0
such that Λ is one to one for each given ε. In particular this is true for a vector ν of
components w0

k satisfying the equations

zd
1 = L1z

d
r + P1w

0
1,

zd
k = L1z

d
k−1 + Pkw0

k, 2 ≤ k ≤ r.

But for this value of ν, repositioning is accomplished for ε = 0. Hence, for sufficiently
small ε the required control exists.

As the selection of the small parameter ε and of the mappings λk, which affect
system performance, is concerned, it is suggested to select mappings λk such that a
given performance index, smoothly dependent on system trajectories, is satisfactory,
eventually optimal, with respect to the slow motion. The smallest is ε, compatibly
with hardware limitations, the closest is the actual value of the performance index to
the one computed using the slow solution. Indices which take into account the torque
can also be considered. For, the applied torque and the one computed by substituting
the slow solution in the equation of motion are within an ε-approximation, owing to
the fact that the ε–approximation holds for the acceleration too. This in particular
allows to check control torque feasibility by means of the slow solution.

Given mappings λk and ε, it could be of interest to compute the region of conver-
gence, that is the neighborhood of the zero in the error space such that convergence
takes place for all initial errors in it. Since for small ε the error dynamics are of the
perturbed linear type, the region of convergence can be estimated [9] by using the
Lyapunov function associated to the linear system. Among other calculations, this
approach requires the computation of the map Λ. This map can be developed in a
power series of ε and, in addition to the term of (2.4), only the linear term retained
for estimating the region of convergence.

3. CONSTRAINED ROBOTS

Suppose now that the robot interacts with the environment and let the model of
this interaction be given by the geometric bilateral constraint

v(q(t)) = 0, t ∈ R, (6)

with v : Rn → Rm, m < n, smooth and ∂v/∂q full rank, ∀ q(t) ∈ Rn. Under
these hypothesis, the implicit function theorem guarantees the existence of a smooth
function s : Rn−m → Rn, such that s(0) = 0 and v(s(ζ)) = 0, ∀ ζ ∈ Rn−m.

In addition to ζ, we also wish to control the reaction force component which does
not make work on δq, i. e. the force normal to the surface S defined by (6). In
the sequel, the formulation for hybrid force control given in [19] is used. When no
confusion is possible, functional dependency is omitted for notational simplicity.
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Let χ ∈ Rm denote the normal force at a point q of S, the corresponding joint
force is given by (the apostrophe denotes transposition)

rn =
[
∂v

∂q

]′
χ.

The control objective is the control of the pair (χ, ζ) and is a well posed problem.
Indeed, decomposes the total reaction force as r = rn + rt, with rt the joint force
component due to the reaction force tangent to S, one has

B(q) q̈ + c(q̇, q) = f + rn + rt,

and, by substitution of q(t) = s(ζ(t)),

B
∂s

∂ζ
ζ̈ + γ = f + rn + rt, (7)

with

γi = ci + si,jk ζ̇j ζ̇k,

where a subscript denotes a vector component, the indexes after a comma denote
partial derivatives with respect to components of ζ, and the Einstein summation
convention has been adopted. Pre-multiply (7) by [∂s/∂z]′ to obtain

[
∂s

∂ζ

]′
B

[
∂s

∂ζ

]
ζ̈ +

[
∂s

∂ζ

]′
γ =

[
∂s

∂ζ

]′
f +

[
∂s

∂ζ

]′
rt, (8)

where the matrix
[

∂s

∂ζ

]′
B

[
∂s

∂ζ

]
= M

is positive definite and hence invertible, and by [∂v/∂q] to get
[
∂v

∂q

]
B

[
∂s

∂ζ

]
ζ̈ +

[
∂v

∂q

]
γ (9)

=
[
∂v

∂q

]′
f +

[
∂v

∂q

]
rt +

[
∂v

∂q

] [
∂v

∂q

]′
χ.

Let

N =
[
∂v

∂q

]
B

[
∂s

∂ζ

]
, R =

[
∂v

∂q

] [
∂v

∂q

]′
, G =

[[
∂s
∂ζ

]′
∂v
∂q

]
,

and combine (8) and (9) to get
[
M 0
N R

] [
ζ̈
χ

]
+ G(γ − rt) = Gf.
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Notice that G is invertible as well as the matrix
[
M 0
N R

]

since the matrix R is positive definite. This proves that the control problem ad-
dressed is well posed. Consider the application of the following high gain feedback

f(t) = −1
ε

[
∂s(ζ(t))

∂ζ
(ζ̇(t)− uζ(t)) +

[
∂v(q(t))

∂q

]′
(χ(t)− uχ(t))

]
, ε > 0. (10)

By letting ε → 0, one obtains the fast system

dξ(τ)
dτ

= −M−1(ζ∗(t)) Q(ζ∗(t)) ξ(τ),

Q =
[

∂s

∂ζ

]′ [
∂s

∂ζ

]
,

where ζ∗(t) is the solution of the slow system. Since both M and Q are positive
definite, the fast system is globally exponentially stable and Tikhonov’s theorem
applies. The slow system is given by

∂s(ζ(t))
∂ζ

(ζ̇(t)− uζ(t)) +
[
∂v(q(t))

∂q

]′
(χ(t)− uχ(t)) = 0,

which is equivalent to

ζ̇(t) = uζ(t), χ(t) = uχ(t),

since the matrix

G′ =

[
∂s

∂ζ

[
∂v

∂q

]′]

is full rank.
The problem to be solved consists of finding a control law such that the robot

executes a cycle characterized by given value of ζ and χ:

{ζd
1 , . . . , ζd

r }, {χd
1, . . . , χ

d
r}.

As for the unconstrained case, a control scheme working at the slow level is devel-
oped. In order to guarantee that the slow solutions are within an ε-approximation
of the actual ones, set

üζ(t) = σζ(t), u̇χ(t) = σχ(t).

Next, set

σζ(t) = λk(t− th,k + δk)wh,k, t ∈ [th,k − δk, th,k],
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where λk : [0, δk] → Rn−m × R3×n−m is a piece-wise continuous function such that
for each mapping Pk : R3×n−m → R3×n−m defined by

Pk =
∫ δk

0

eA(δk−t)V λk(t) dt,

is invertible. Here A and V , given the appropriate dimensions, are defined as in the
previous section. Similarly, set

σχ(t) = µk(t− th,k + δk)ωh,k, t ∈ [th,k − δk, th,k],

where ωh,k ∈ R3×m, µk : [0, δk] ∈ Rm×R3×m is piece-wise continuous and such that
each mapping Πk : R3×m → R3×m defined by

Πk =
∫ δk

0

µk(t) dt,

is invertible. Set

ρk =




ζk

ζ̇k

ζ̈k


 , ρd

k =




ζd
k

0
0


 , φk =




χk

χ̇k

χ̈k


 , φd

k =




χd
k

0
0


 .

At the slow level, once more we obtain a periodic and controllable, discrete time,
linear system:

ρh+1,1 = L1ρh,r + P1wh+1,1

ρh+1,k = Lkρh+1,k−1 + Pkwh+1,k 2 ≤ k ≤ r,

φh+1,1 = φh,r + Π1ωh+1,1

φh+1,k = φh+1,k−1 + Πkωh+1,k 2 ≤ k ≤ r

with

Lk = eAδk = I + Aδk + A2 δ2
k

2
.

Hence, there exist controls wh,k and ωh,k such that convergence is achieved at the
slow level.

Under the stated hypothesis of smoothness of the constraining function v(·), con-
vergence of an algorithm defined by a robust control law of the type given in the
previous section can be proven, for sufficiently small ε, by using the same arguments
of the previous section. If the constraining surface is not exactly known, the high
gain control (10) looks like

f = −1
ε

[
∂s̃

∂ζ
(ζ̇ − uζ) +

[
∂ṽ

∂q

]
(χ− uχ)

]
, ε > 0,

where the tilde denotes an approximation of the true function. Even if these func-
tions approximate true ones, for consistency they must satisfy the requirement that
the matrix

G̃′ =

[
∂s̃

∂z

[
∂ṽ

∂q

]′]
(11)
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is full rank. The fast system is now given by

dξ(τ)
dτ

= −M−1(ζ∗(t))Q◦(ζ∗(t)) ξ(τ),

Q◦ =
[

∂s

∂ζ

]′ [
∂s̃

∂ζ

]
,

and, as long as Q◦ is positive definite, it is exponentially stable and Tikhonov’s
theorem applies. Stability then depends on a sufficient good knowledge of the con-
straining surface. At the slow level one has

∂s̃

∂ζ
(ζ̇ − uζ) +

[
∂ṽ

∂q

]′
(χ− uχ) = 0,

and, since the matrix G̃ is full rank, the same algorithm is still convergent.

4. EXPERIMENTAL RESULTS ON A TWO–LINK ARM

A scheme of the experimental robot used is shown in Figure 1.

Fig. 1. The two-link robot arm.

It is an open chain planar arm with two links and two revolute joints. The
lengths of the links are equal to 0.3 m and 0.7 m, respectively for the first and the
second one. The moments of inertia of the links are equal to J1 = 0.447 Kg m2 and
J2 = 0.303 Kg m2, the static moments to 0.1114 Kg m and 0.5369 Kgm, respectively
for the first and the second link. The mass of the second link is equal to 1.8 Kg.

Each joint is actuated by a direct drive dc motor and is equipped with an encoder
and a tachometer. The encoders resolution is equal to π/10000 rad.

The robot is digitally controlled by means of a personal computer using a sampling
frequency of 200 Hz for each signal. Analog feedbacks from the tachometers signals
are closed at the joints. Denoting by f(t) the motor torques, by θ1(t) and θ2(t) the
components of vector q(t) (see Fig. 1), and with η(t) the control input generated by
the computer, one has

f(t) = −
[
kd1 0
0 kd2

] [
θ̇1(t)
θ̇2(t)

]
+ η(t), (12)
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with kd1 = 2 Nm sec/rad and kd2 = 0.8 Nm sec/rad. In addition, a proportional loop
has been implemented using the computer to stabilize the robot around a desired
reference signal

η1(t) = −Kp1(θ1(t)− r1(t)),
η2(t) = −Kp2(θ2(t)− r2(t)),

with Kp1 = 20 Nm sec/rad and Kp2 = 2 Nm sec/rad. An integrator for each channel
has been added to smooth the control r(t).

Since the robot is moving on a plane orthogonal to the gravity vector, instead of
requiring that the velocities and the accelerations are null, it is sufficient to impose
a zero value for the velocities and the control torques. This implies a change of
coordinates and then a straightforward modification of the algorithm presented.

The algorithm has been tested on the following cycle

q1 =
[

π
4
−π

4

]
, q2 =

[
π
4
0

]
, q3 =

[
0
0

]

δ1 = 1 s, δ2 = 1 s, δ3 = 1 s.

as depicted in Figure 2.

Fig. 2. The test cycle.

The control law (5) has been used with Ek = 0.5 ∀ k, and by setting L1 = 0
in (5a) to simplify calculations. This approximation has not destroyed the stability
of the algorithm. The mappings P1 = P2 = P3 and L2 = L3 have been calculated
by using a simple linear model of the robot in which the coupling terms between the
two links have been neglected:

[
J1 + J2 0

0 J2

] [
θ̈1

θ̈2

]
=

[
f1(t)
f2(t)

]
.

For each equilibrium point six state variables are to be steered. Denoting with z
the state vector and with zd

1 , zd
2 , zd

3 the three desired equilibrium points, the defined
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cycle implies

z =




θ1

θ̇1

r1

θ2

θ̇2

r2




, zd
1 =




π/4
0

π/4
−π/4

0
−π/4




, zd
2 =




π/4
0

π/4
0
0
0




, zd
3 =




0
0
0
0
0
0




.

Then, as functions λk(t), the following six polynomials have been chosen

[
λ1(t) . . . λ6(t)

]
=

[
t t2 t3 0 0 0
0 0 0 t t2 t3

]
.

The joint velocities have been estimated by a high gain differentiation of the
encoders signals, which at steady state leads to a negligible error.

In Figures 3 and 4 positions and velocities of the two joints during 47th iteration
are reported. Note that the trajectory followed are quite smooth as a consequence
of the polynomial class of functions chosen for the control input. In Figure 5, the
torques applied during the same cycle are shown. These are zero in correspondence
of the time instants 1,2 and 3 seconds that, together with the zero values of velocities
at the same instants, imply the equilibrium of the robot at the three points of the
cycle.

Fig. 3. Link positions during 47th cycle.
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Fig. 4. Link velocities during 47th cycle.

Fig. 5. Motor torques during 47th cycle.

Finally in Figures 6, 7 and 8 the sum of square of the positions, velocities and
torques errors during the iterations is reported for the three equilibrium points.
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Fig. 6. Sum of square of position errors at the three equilibrium points:

∗ = 1, x = 2, o = 3.

Fig. 7. Sum of square velocity errors at the three equilibrium points:

∗ = 1, x = 2, o = 3.
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Fig. 8. Sum of square torque errors at the three equilibrium points: ∗ = 1, x = 2, o = 3.

5. CONCLUSIONS

A new type of servo system has been introduced to deal with cyclic control of robot
arms. A finite dimensional linear algorithm has been developed which asymptotically
forces the robot to execute a cycle defined by a sequence of equilibrium points to be
attained at assigned time instants. As opposed to learning algorithms, no system
initialization is needed at the end of a cycle, and continuous system operation is
allowed. No prior knowledge of robot’s parameters is required for controller design.
Complete rejection of periodic plant disturbance of period equal to the cycle period
has been proven and illustrated by means of an experiment on a two link robot arm.
Robustness with respect to other type of disturbances is the one typical of high gain
feedback.

(Received February 14, 1996.)
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“Roma Tre”, Via della Vasca Navale, 84, 00146, Roma. Italy.


	INTRODUCTION
	CYCLIC CONTROL OF UNCONSTRAINED ROBOTS
	CONSTRAINED ROBOTS
	EXPERIMENTAL RESULTS ON A TWO--LINK ARM
	CONCLUSIONS

