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SOME REMARKS ON MATRIX PENCIL COMPLETION
PROBLEMS

J. J. Loiseau, P. Zagalak, and S. Mondié

The matrix pencil completion problem introduced in [12] is reconsidered and the latest
results achieved in that field are discussed.

Keywords: matrix pencils, the Kronecker invariants, matrix completion, linear systems,
state feedback
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1. INTRODUCTION

A challenge concerning the Kronecker invariants assignment to a matrix pencil that
is completed by rows or columns has been introduced in [12]. This problem, called
the matrix pencil completion problem therein, covers many questions of algebra and
control theory, especially those describing the situations in which state feedback is
used for altering the system dynamics. Some particular cases illustrating this point
will be mentioned below.

The aim of the paper is to discuss some results achieved recently and complete
the picture of what has been done by some new results, and thus provide the reader
with deeper insight into this very interesting problem.

The notation used in the paper is standard; the basic symbols are R, C, R[s] that
denote the fields of real numbers, complex numbers, and the ring of polynomials (of
variable s) over R, respectively. Other symbols will be introduced in the text at the
place where they are needed.

1.1. Kronecker canonical form

Two matrix pencils sE1 − H1 and sE2 − H2, where E1,H1, E2, and H2 are r × c
matrices, are said to be strictly pencil equivalent (s.p.e.), or just equivalent if it
is clear from the context that the strict pencil equivalence is meant, if there exist
nonsingular matrices Q and P such that

sE1 −H1 = P [sE2 −H2]Q

The strict pencil equivalence, denoted by ∼, defines an equivalence relation on the
set of matrix pencils and the canonical form under this equivalence is the well–known
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Kronecker canonical form sEK−HK [3, 8] that consists of the blocks of the following
forms:

(1)




s + aj 1
. .

. .
. 1

s + aj



∈ Rkij×kij (2)




1 s
. .

. .
. s

1



∈ R(ni+1)×(ni+1)

(3)




s 1
. .

. .
. .

s 1



∈ Rci×(ci+1) (4)




1
s .

. .
. .

. 1
s



∈ R(ri+1)×ri

where the integers kij > 0, ni ≥ 0, ci ≥ 0, ri ≥ 0 and aj ∈ C is called a finite zero
of sE −H. The case ci = 0 (ri = 0) for some i’s means that there are zero columns
(rows) in sEK − HK . Very frequently the above blocks will also be referred to as
kij–, ni–, ci–, and ri–blocks.

Associated with these blocks there are four types of invariants, the Kronecker
invariants, which are defined by the above blocks, namely

(1) finite elementary divisors (f.e.d.) represented by kij –blocks, i. e. by the inte-
gers kij and complex numbers aj ,

(2) infinite elementary divisors (i.e.d.) represented by ni –blocks, i. e. by the
integers ni,

(3) column minimal indices (c.m.i.) given by the integers ci,

(4) and row minimal indices (r.m.i.) given by the integers ri.

More features and detail concerning the Kronecker canonical form can be found
for instance in [3]. It should be noted that the integers ni are called the infinite zero
orders in linear system theory and that f.e.d. of a pencil uniquely determine the
invariant polynomials of the pencil.

For a given r× c pencil sE−H there exists another special form, which could be
called a standard (or system) form since it reminds of the system matrix of a linear
system [20]. Denoting n := rank E then

sE −H ∼ sES −HS :=
[
sIn −A −B
−C −D

]

where the number of rows of [−C −D] is k, k + n = r, while t, n + t = c, is the
number of columns of [−BT −DT ]T . Such a form can be achieved, for example, by
applying the SVD (singular value decomposition) algorithm to the matrix E. Hence,
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any pencil sE −H defines a corresponding linear time–invariant system, defined by
the quadruple (A,B, C,D), governed by the equations

.
x = Ax + Bu
y = Cx + Du.

Following [20], the pencil sES −HS will be referred to as the system matrix.
It is further observed that the matrices (A, B,C, D) are of particularly simple

forms (having the least number of parameters) if sE−H is already in the Kronecker
form. The system (A, B,C, D) is then in the Morse form, [19].

Remark 1. Many features of the matrices A,B,C, D, and E can be stated in
terms of the Kronecker invariants of sE −H. The claims below immediately follow,
by inspection, from the Kronecker canonical form.

— n = rank E =
∑

i,j kij +
∑

ni +
∑

ci +
∑

ri,

— sE −H is right invertible ⇐⇒ sEK −HK has no ri–blocks,

rankE = r ⇐⇒ there are no ni –blocks and ri–blocks in sEK −HK ,

— [C D] = 0 ⇐⇒ there are no ni–blocks and ri = 0 ∀ i.

Remark 2. The column minimal indices of sE − H are the c.m.i. of the pencil
[sIn − A − B], or – as we shall also say – of the pair (A,B). They are also called
the controllability indices of (A,B) and can be obtained from a normal external
description (n.e.d.) of (A,B), which is defined below.

Let N(s), D(s) be polynomial matrices over R[s] such that

—
[

sIn −A −B
] [

N(s)
D(s)

]
= 0,

— Π(sIn −A)N(s) = 0 with Π being the maximal left annihilator of B (i. e. the
rows of Π form a basis for the left kernel of B),

— D(s) is column reduced (D(s) = Dhc diag {sκi}+ terms of lower degrees where
Dhc is of full rank; see for instance [7, 23] for detail).

Such matrices N(s), D(s) are said to form a normal (right) external description
(n.e.d.) of (A,B) [26] and the column degrees, κi, of D(s) are equal to ci.

Analogously, the r.m.i., ri, of
[
sIn −A
−C

]
are the column degrees of an n.e.d. of

(AT , CT ) and are called the observability indices of the pair (C, A).

1.2. Matrix pencil completion problem

The r×c pencil sE′−H ′ is said to be a subpencil of a given (r+ l)×(c+q) (l, q ≥ 0)
pencil sE −H if

sE −H ∼
[
sE′ −H ′ ?

? ?

]
, (1)
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where ?’s stand for unspecified pencils of compatible dimensions.

It is of interest to study the relationships between the pencil sE − H and its
subpencil sE′ −H ′. Particularly interesting is the question under which conditions
a given pencil sE′ − H ′ can be completed by some other pencils such that the
relationship (1) holds, that is to say, the pencil sE−H will have prescribed Kronecker
invariants. This problem is known as the matrix pencil completion problem; see [12]
for detail.

It has already been noted that the formulation of the matrix pencil completion
problem was motivated by some control-theoretical questions. As an illustration,
consider the problem of invariant polynomials assignment, which may be viewed as
one of the basic problems of linear control.

Example 1. Let a linear time-invariant system (A,B),

.
x= Ax + Bu, A ∈ Rn×n, B ∈ Rn×m, (2)

with the state feedback
u = Fx + v, F ∈ Rm×n, (3)

around be given. This gives a closed-loop system (A + BF, B) governed by

.
x= (A + BF )x + Bv. (4)

The only difference between the equations (2) and (4) is that the matrix A is replaced
by A+BF . And as the state trajectory of (2) is given in terms of the eigenstructure
(a synonym for the eigenvalue structure given by the Jordan form of A and the
structure of its right and left eigenvectors including the generalized ones) of the
matrix A – see [7] for instance, the relationship (4) shows that the state feedback
(3) will be a powerful tool when altering the behaviour of the system (2). Therefore
the question to what extent the eigenstructure of A + BF can be changed by F is
one of the fundamental questions of control theory. It will now be shown how this
question is expressed in terms of the matrix pencil completion problem.

Notice first that [sIn−A−BF,−B] ∼ [sIn−A,−B] and let Π denote the maximal
left annihilator of B. Then

Π[sIn −A−BF ] = Π[sIn −A],

which implies that the pencil Π[sIn − A] can be completed by rows (by a pencil
denoted by ?) such that

sIn −A−BF ∼
[
Π(sIn −A)

?

]
, (5)

which is a partial case of the matrix pencil completion problem (1).
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The question under what conditions the relationship (5) holds was answered by
[20] in the case of controllable systems, and a complete solution, when the system
(2) is possibly uncontrollable, can be found in [24].

The relationship (1) implies that any study of the matrix pencil completion prob-
lem will involve the Kronecker invariants of sE′−H ′ and those of sE−H, i. e. eight
lists of invariants. There exists a trick using which the number of these lists can be
lowered. The trick lies in applying the conformal mapping

s =
(1 + aw)

w
, (6)

where a is not a zero of both pencils, to these pencils. The mapping shifts the pencil
infinite zeros in the location 0, while keeping all other finite zeros in finite positions.
In this way the problem with finite and infinite elementary divisors is reduced to
that with finite elementary divisors only, see [16, 26] for detail. However, despite
this simplification the problem remains very complex and very difficult.

2. COLUMN COMPLETION OF RIGHT INVERTIBLE PENCILS

For the time being the most advanced results concerning the matrix completion
problem are established in the case of right invertible pencils (see Remark 1) where
just column completion is considered. More precisely, given right invertible pencils
sE −H and sE′ −H ′, the pencil sE′ −H ′ is to be completed in such a way that

sE −H ∼ [sE′ −H ′, ? ] . (7)

In the light of the conformal mapping introduced above, it can be seen that con-
ditions under which there exists a solution to this problem will be based on the
solvability conditions for the pencils without infinite elementary divisors. Such con-
ditions will just comprise the c.m.i. and f.e.d. of transformed pencils, which will
enable us to derive conditions for the original pencils.

2.1. Conditions for pencils of the form [sIn −A,−B]

It is natural to start our discussion with the results established in [1] for pencils of
the form [sIn − A − B], since these pencils are clearly right invertible, without
i.e.d., and therefore described by f.e.d. and c.m.i. only. Thus, let [sIn − A,−B]
and [sIn − A′,−B′], where A,A′ ∈ Rn×n, B ∈ Rn×(m+q) with rank B = m + q,
and B′ ∈ Rn×m with rank B′ = m, be given. It easily follows from the form of the
pencils that the pencil [sIn−A′,−B′] can be completed just by constant (containing
real numbers only) columns.

Remark 3. The reader familiar with linear control theory can recognize in that
case an application of the nonregular state feedback (a state feedback described by
u = Fx+Gv with G ∈ R(m+q)×m, rank G = m) to the system (2). More on the use



670 J. J. LOISEAU, P. ZAGALAK, AND S. MONDIÉ

of nonregular state feedback in linear control can be found for instance in [18] and
references therein. In this terminology, A′ = A + BF and B′ = BG.

Let further c1 ≥ c2 ≥ · · · ≥ cm+q, c′1 ≥ c′2 ≥ · · · ≥ c′m and α1(s), α2(s), · · · , αn(s),
α′1(s), α′2(s), · · · , α′n(s) denote the c.m.i. and invariant polynomials of [sIn−A,−B]
and [sIn − A′,−B′], respectively. It is also assumed that the invariant polynomials
are non–increasingly ordered, i. e. αn(s)| · · · |α2(s)|α1(s), where αi+1(s)|αi(s) means
that αi+1(s) divides αi(s) (similarly for the polynomials α′i(s)), and that N(s), D(s)
and N ′(s), D′(s) stand for normal external descriptions of (A,B) and (A′, B′).

With this notation (and that introduced above) we can now introduce the fol-
lowing four formulations of the matrix pencil completion problem. On the basis of
these formulations the results known until know will be presented and they also will
become a starting point for further considerations.

Proposition 1. Given pencils [sIn−A,−B] and [sIn−A′,−B′] having ci, αi(s) and
c′j , α′j(s) as their column minimal indices and invariant polynomials, respectively,
then the following statements are equivalent.

(a) There exist an (m+q)×n matrix F and an (m+q)×m matrix G, rank G = m,
such that c′1, c

′
2, · · · , c′m and α′1(s), α

′
2(s), · · · , α′n(s) are the c.m.i. and invariant

polynomials of the pencil [sIn −A−BF,−BG].

(b) There exist an n× q matrix over R, denoted by ?, such that

[sIn −A,−B] ∼ [sIn −A′,−B′, ?]

(c) There exist an integer k and polynomial matrices W (s) ∈ Rm×q[s], X(s) ∈
Rq×q[s], Y (s) ∈ Rq×k[s], and Z(s) ∈ Rk×k[s] with invariant factors α1(s), α2(s),
. . . , αk(s) such that

(1) the matrix [
D′(s) W (s)

0 X(s)

]
, (8)

when column reduced, has column degrees c1, c2, · · · , cm+q,

(2) and the matrix [
X(s) Y (s)

0 Z(s)

]
(9)

has invariant polynomials α′1(s), α
′
2(s), · · · , α′k+q(s).

(d) There exists an q × n matrix pencil, denoted again by ?, such that
[

?

Π(sIn −A)

]
∼ Π′[sIn −A′] (10)

where Π and Π′ denote the maximal annihilators of B and B′, respectively.
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P r o o f of Proposition 1. The assertion (a) means exactly that [sIn − A −
BF,−BG] ∼ [sIn−A′,−B′]. Since G is of full column rank, there exists an invertible
matrix, say H ∈ R(m+q)×(m+q), such that G = H[Im, 0q×m]T . Then it can readily
be verified that

[sIn −A,B] ∼ [sIn −A−BF,−BG, ?] ∼ [sIn −A′,−B′, ?]

and reversely, which establishes the equivalence between (a) and (b).
Similarly, if BG = B′, then there exists a matrix P of full row rank such that

Π = PΠ′, which implies

PΠ′[sIn −A′] = Π[sIn −A−BF ] = Π[sIn −A].

Further, since P is of full row rank, there exists an invertible matrix Q ∈ R(n−m)×(n−m)

such that P = [0(n−m−q)×q, In−m−q]Q and (d) follows.

Conversely, if there exist invertible matrices Q ∈ R(n−m)×(n−m) and T ∈ Rn×n

such that [
?

Π(sIn −A)

]
= QΠ′[sIn −A′]T

for some matrix pencil ?, then Π = [0(n−m−q)×q, In−m−q]QΠ′T , which implies that
there exists a matrix G ∈ R(m+q)×m, rank G = m, such that B′ = TBG and

ΠA = [0q, In−m−q]QΠ′A′T = ΠT−1A′T.

This gives that A′ = T [A + BF ]T−1, F ∈ R(m+q)×n, and the equivalence between
(a) and (d) follows.

Finally, the equivalence between (a) and (c) is proved in [15]. 2

Each of the above formulations has some strong points that suggest how the
problem could be tackled. At the first glance the statement (c) seems to be most
useful. Indeed, it reveals that the whole problem consists of two subproblems, (c1)
and (c2), which are mutually related since the same matrix X(s) appears in (8)
as well as in (9). We shall pay attention first to the subproblem (c1). In terms
of matrix pencils this completion problem was studied in [1], where necessary and
sufficient conditions of solvability were established, and then (later on and using the
polynomial matrix approach) the problem was reconsidered in [14].

Here, alternative conditions derived from those in [5] are presented. These con-
ditions are in certain sense simpler than the conditions established in [1, 16] and,
moreover, they provide a natural generalization of Rosenbrock’s and Heymann’s
results on the invariant polynomials and controllability indices assignment; see Re-
mark 4 below.

Lemma 1. When k = 0, the problems defined in Proposition 1 are solvable if and
only if

αi(s) = 1 for i = 1, 2, . . . , n, (11)
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∑

j | c′j≤i

c′j ≤
∑

j | cj≤i

cj , i = 1, 2, . . . , n, (12)

i∑

j=1

δj ≥
i∑

j=1

cj , i = 1, 2, . . . ,m + q, (13)

where equality holds for i = m + q and δ1 ≥ δ2 ≥. . .≥ δm+q is the non–increasingly
ordered list

{
deg α′j(s)

}
n
∪ {c′i}m.

For the p r o o f of Lemma 1 see [5].

Remark 4. It is worth pointing out that the solvability conditions (12) and ( 13)
reduce to some interesting particular cases. For instance, if m = 0, the condition
(12) vanishes and (13) becomes

i∑

j=1

deg α′j(s) ≥
i∑

j=1

cj , i = 1, 2, . . . , n (14)

where equality holds for j = n and, by convention, ci = 0 for i > q. These conditions
are due to [20] and were discussed many times in the control literature; see for
example [9, 10, 24, 26] and references therein.

Now if the list {α′i(s)}q is not specified, the condition (13) reduces to

i∑

j=1

c′j ≥
i∑

j=1

cj , i = 1, . . . ,m + q

These conditions are implied by (12). Therefore the conditions (12) are necessary
and sufficient. They were given by [6] for the controllability indices assignment by
non–regular state feedback; see also [1, 5, 10, 13, 18] and references therein.

The second subproblem gives rise to another kind of completion problems that
was considered in [21, 22].

Lemma 2. Let Z(s) ∈ Rk×k be as in Proposition 1, i. e. with the invariant poly-
nomials α1(s), α2(s), · · · , αk(s). Then there exist matrices X(s) and Y (s), as in
Proposition 1, such that the matrix (8) has α′1(s), α′2(s), · · · , α′k+q(s) as its invari-
ant polynomials if and only if

α′i+q(s) |αi(s) |α′i(s), i = 1, 2, . . . , k (15)

The only problem now is whether the conditions stated in Lemma 1 and Lemma 2
can be coupled together. This query is answered in [15].
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Lemma 3. If there exists a solution to the problems of Proposition 1, then the
invariant polynomials of the matrix X(s), say φ1(s), φ2(s), . . . , φq(s), satisfy the
condition

j∏

i=1

σi(s) is divided by
j∏

i=1

φi(s), j = 1, 2, . . . , q (16)

with equality for j = q, and where

σi(s) =
βi

1(s)β
i
2(s) . . . βi

n+i(s)
βi−1

1 (s)βi−1
2 (s) . . . βi−1

n+i−1(s)
, i = 1, 2, . . . , q (17)

and

βi
j(s) = lcm (αj(s), α′j+q−i(s)), i = 0, 2, . . . , q, j = 1, 2, . . . , n + i (18)

where αi(s) = 1, α′i(s) := 1 for i > n.

With the help of Lemmas 1 – 3 we are now able to establish new solvability con-
ditions for the problems stated in Proposition 1.

Theorem 1. The problems stated in Proposition 1 have a solution if and only if
the following conditions hold.

α′i+q(s) |αi(s) |α′i(s) , i = 1, . . . , n (19)

where by convention α′i(s) := 1 for i > n,
∑

j | c′j≤i

c′j ≤
∑

j | cj≤i

cj , i = 1, 2, . . . , n (20)

and
i∑

j=1

δ′j ≥
i∑

j=1

cj , i = 1, 2, . . . , m + q, (21)

with equality holding for i = m+q and where {δ′i}m+q denotes the non–increasingly
reordered list {c′i}m∪{deg σi}q. The polynomials σi(s) and βi

j(s) are defined in (17)
and (18).

P r o o f of Theorem 1. (A sketch). The conditions (19) and (20) are conditions
established in Lemma 1 and Lemma 2 for the subproblems that are a fortiori solved
in Proposition 1 implying that they must hold in this case, too. The conditions
(21) are based on the conditions (13) where {δi}m+q is now given by the reordered
list {c′i}m ∪ {deg φi}q where , as in Lemma 3, {φi(s)}q is the list of the invariant
factors of X(s). Observe that, since {δ′i}m+q is the reordered list {c′i}m ∪ {deg σi}q,
conditions (16) imply that

i∑

j=1

δ′j ≥
i∑

j=1

δj , i = 1, 2, . . . , m + q.

This leads to the necessity of conditions (21).
The sufficiency of the conditions (19) – (21) follows from a constructive procedure

that is similar to that in [5, 15]. 2
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Remark 5. The conditions (21) can also be written in the following form.

n+ti∑

j=1

deg βti
j (s) +

i−ti∑

j=1

c′j ≥
i∑

j=1

cj +
n∑

j=1

deg αj(s) , i = 1, 2, . . . , m + q (22)

where ti is the number of elements of the list {σj}q in the sublist {δ′j}i of {δ′j}m+q.
These inequalities were already derived in [16]. They avoid the calculation of σi(s),
i = 1, . . . , q, or at least their degrees, and hence they could be more convenient from
a computational point of view.

2.2. Conditions for right invertible pencils sE −H

Going back to the original problem, i. e. the column completion of right invertible
pencils, it can be seen that finding solvability conditions is just a matter of applying
the conformal mapping (6) to the pencils. The proposition below exactly describes
how the Kronecker invariants are transformed.

Lemma 4. Let (sE−H) be a right invertible matrix pencil with E, H ∈ Rn×(n+m+q)

whose Kronecker invariants are column minimal indices c1, c2, . . . , cm+q, invariant
polynomials α1(s), α2(s), . . . , αn(s), and infinite zero orders n1, n2, . . . , np that are,
by convention, non-increasingly ordered. The mapping C defined by

sE −H 7−→ C(sE −H) = wẼ − H̃ ,

where Ẽ = aE−H and H̃ = −E, is a one–to–one correspondence on Rn×(n+m+q)×
Rn×(n+m+q). If a is not a zero of sE−H, then the Kronecker invariants of wẼ−H̃ are
column minimal indices c1, c2, . . . , cm+q and invariant factors α̃1(w), α̃2(w), . . . , α̃n(w),

α̃i(w) = αi(
1 + aw

w
)wdeg αi(s)wni , (23)

where ni = 0 for i > p by convention.

Assuming now that [sE −H, ?] ∼ sM −N , it readily follows that [wẼ − H̃, ?̃]
∼ [wM̃ − Ñ ] and reversely. Hence, the problem of column completion of right
invertible pencils comes down to the problem of completing a pencil that has no
infinite elementary divisors, the case that is treated in Theorem 1. And as the
conformal mapping C is a one–to–one correspondence between matrix pencils, it is
also a one–to–one correspondence between their Kronecker invariants. This implies
that the necessary and sufficient conditions stated below can directly be deduced
from Theorem 1.

Theorem 2. Given a right invertible pencil sE′ −H ′ ∈ Rn×(n+m)[s] with invari-
ant polynomials α′i(s), i = 1, 2, . . . , n, column minimal indices c′i, i = 1, 2, . . . ,m,
and infinite zero orders n′i, i = 1, 2, . . . , p and a right invertible pencil sE − H ∈
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Rn×(n+m+q) with invariant polynomials αi(s), i = 1, 2, . . . , n, column minimal in-
dices ci, i = 1, 2, . . . , m + q, and infinite zero orders ni, i = 1, 2, . . . , p, then there
exists an n× q pencil ? such that

[sE′ −H ′, ?] ∼ sE −H

if and only if
α′i+q(s) |αi(s) |α′i(s) , i = 1, . . . , n (24)

where by convention α′i(s) := 1 for i > n,

n′i+q ≤ ni ≤ n′i , i = 1, . . . , p (25)

where n′i := 0 for i > p,

∑

j | c′j≤i

c′j ≤
∑

j | cj≤i

cj , i = 1, 2, . . . , n, (26)

i∑

j=1

δ′′j ≥
i∑

j=1

cj , i = 1, 2, . . . , m + q (27)

with equality holding for i = m + q, where
{
δ′′j

}
m+q

denotes the reordered list
{c′i}m ∪ {deg (σ̃i(w))}q and

σ̃i(w) =
β̃i

1(w)β̃i
2(w) . . . β̃i

n+i(w)

β̃i−1
1 (w)β̃i−1

2 (w) . . . β̃i−1
n+i−1(w)

, i = 1, . . . , q,

β̃i
j(w) = lcm (α̃j(w), α̃′j+q−i(w)), i = 0, . . . , q, j = 1, . . . , n + i

with α̃i(w) and α̃′i(w) being defined in (22).

Remark 6. Similarly, as in Remark 5, denoting t̃i the cardinality of the list {σ̃j}q

in the sublist {δ′′j }i of {δ′′j }m+q, the inequalities (27) can be rewritten in the form

n+t̃i∑

j=1

{deg β t̃i
j (s) + max(nj , n

′
j+q−t̃i

)}+
i−t̃i∑

j=1

c′j ≥
i∑

j=1

cj +
n∑

j=1

deg αj(s) +
p∑

j=1

ni

for i = 1, 2, . . . , m + q where βi
j(s) is defined in (18 ).

Remark 7. The fact that the pencil sE′ − H ′ as well as the completed pencil
sE − H are right invertible implies that p ≤ p′ ≤ p + q. An interesting particular
case is when the number of infinite elementary divisors is not modified. We have
indeed that when p = p′, the completion can be performed with a constant matrix
?, and reversely.
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3. ROW COMPLETION OF RIGHT INVERTIBLE PENCILS

The statement (d) of Proposition 1 reveals another particular case of the matrix
pencil completion problem that is called the row completion problem. The most
general case of this problem is described by the following relationship.

[
sE′ −H ′

?

]
∼ sE −H. (28)

In words, given pencils sE′−H ′ ∈ R(n+m)×n[s] and sE−H ∈ R(n+m+q)×n[s], find
conditions under which the pencil sE′ − H ′ can be completed by another pencil,
denoted by ?, such that the relationship ( 28) holds.

It is easy to see that, under the condition that the above pencils are left invertible,
the row completion problem (28) is just the dual version (taking transposition) of the
column completion problem solved in Theorem 2. Thus, the solvability conditions
for this problem are an obvious analog of the conditions (24) – (27).

Corollary 1. Given a left invertible pencil sE′−H ′ ∈ R(n+m)×n[s] with invariant
polynomials α′i(s), i = 1, 2, . . . , n, row minimal indices r′i, i = 1, 2, . . . , m, and infinite
zero orders n′i, i = 1, 2, . . . , p, and a left invertible pencil sE−H ∈ R(n+m+q)×n with
invariant polynomials αi(s), i = 1, 2, . . . , n, row minimal indices ri, i = 1, 2, . . . ,m+q
, and infinite zero orders ni, i = 1, 2, . . . , p, then there exists an q × n matrix pencil
? such that [

sE′ −H ′

?

]
∼ sE −H

if and only if
α′i+q(s) |αi(s) |α′i(s) , i = 1, . . . , n

where by convention α′i(s) := 1 for i > n,

n′i+q ≤ ni ≤ n′i , i = 1, . . . , p

where n′i := 0 for i > p,

∑

j | r′j≤i

r′j ≤
∑

j | rj≤i

rj , i = 1, 2, . . . , n,

i∑

j=1

δ′′j ≥
i∑

j=1

(rj + 1) , i = 1, 2, . . . , m + q

m+q∑

j=1

δ′′j ≥
m+q∑

j=1

(rj + 1) ,

where {δ′′i }m+q denotes the reordered list {η′i}m ∪ {deg (σ̃i(w))}q,

σ̃i(w) =
β̃i

1(w)β̃i
2(w) . . . β̃i

n+i(w)

β̃i−1
1 (w)β̃i−1

2 (w) . . . β̃i−1
n+i−1(w)

, i = 1, . . . , q,
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and
β̃i

j(w) = lcm (α̃j(w), α̃′j+q−i(w)) , i = 0, . . . , q, j = 1, . . . , n + i,

with α̃i(w) and α̃′i(w) defined analogously to (6).

But there exists another relationship between the row and column completion
problems, which is based on the equivalence of the statements (b) and (d) of Propo-
sition 1. To this end, suppose that the pencil sE − H is already in its system form
given by the matrices A,B, and C, i. e.

sE −H =

[
sIn −A −B

−C 0

]
,

and consider the pencil

sĒ − H̄ :=

[
Π(sIn −A)

−C

]

with Π being the maximal left annihilator of B. The pencil sĒ − H̄ will be called
the reduced pencil of sE −H. Thus, according to Remark 1, we consider just pencils
the ni–blocks of which are of sizes ni ≥ 1.

Remark 8.

(s1) If the pencil sE −H is right invertible, then the corresponding reduced pencil
sĒ − H̄ is right invertible, too.

(s2) If there exists another pencil

sE ′ −H′ =

[
sIn −A′ −B′

−C ′ 0

]
,

that can be completed by columns such that [sE −H, ?] ∼ sE ′ −H′, then the
pencil sĒ ′ − H̄′ can be completed by rows such that

[
sĒ ′ − H̄′

?

]
∼ sĒ − H̄

(s3) If the reduced pencil sĒ − H̄ of sE − H is described by the invariant factors
αi(s), column minimal indices ci, infinite zero orders ni, and row minimal
indices ri, then the pencil sE − H has the same invariant polynomials αi(s)
and row minimal indices ri, while its column minimal indices and infinite zero
orders are given by ci + 1 and ni + 1, respectively.

(s4) Any matrix pencil sE −H is equivalent to the reduced pencil sĒ − H̄ that is
defined by a triple A,B,C.
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Remark 8 summarizes the facts that will enable us to solve the matrix pencil
completion problem (28) for the right invertible pencils. Based on (s2) and (s4) of
Remark 7, this can be done by applying Theorem 2 to the pencils sE ′ − H′ and
sE −H. The resulting conditions can finally, using (s3), be rewriten in terms of the
Kronecker invariants of sĒ − H̄ and sĒ ′ − H̄′.

Theorem 3. Given a right invertible pencil sE′ −H ′ ∈ Rn×(n+m)[s] with invari-
ant polynomials α′i(s), i = 1, 2, . . . , n, column minimal indices c′i, i = 1, 2, . . . ,m,
and infinite zero orders n′i, i = 1, 2, . . . , p′ and a right invertible pencil sE − H ∈
R(n+q)×(n+m) with invariant polynomials αi(s), i = 1, 2, . . . , n, column minimal in-
dices ci, i = 1, 2, . . . , m − q, and infinite zero orders ni, i = 1, 2, . . . , p, then there
exists an q × (n + m) pencil, denoted by ?, such that

[
sE′ −H ′

?

]
∼ sE −H

if and only if
αi+q(s) |α′i(s) |αi(s) , i = 1, . . . , n,

where by convention α′i(s) := 1 for i > n,

ni+q ≤ n′i ≤ ni, i = 1, . . . , p′,

with ni := 0 for i > p,
∑

j | cj≤i

(cj + 1) ≤
∑

j | c′j≤i

(c′j + 1), i = 1, 2, . . . , n,

i∑

j=1

δ′′j ≥
i∑

j=1

c′j , i = 1, 2, . . . , m,

and m∑

j=1

δ′′j =
m∑

j=1

c′j ,

where {δ′′i }m+q denotes the reordered list {ci + 1}m−q ∪ {deg (σ̃i(w))}q,

σ̃i(w) :=
β̃i

1(w)β̃i
2(w) . . . β̃i

n+i(w)

β̃i−1
1 (w)β̃i−1

2 (w) . . . β̃i−1
n+i−1(w)

, i = 1, . . . , q,

β̃i
j(w) := lcm (α̃j(w), α̃′j+k−i(w)), i = 0, . . . , q, j = 1, . . . , n + i,

where α̃i(w) and α̃′i(w) are defined by

α̃i(w) := αi(
1 + aw

w
)wdeg αi(s)wni+1

and
α̃′i(w) := α′i(

1 + aw

w
)wdeg α′i(s)wn′i+1 .
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Remark 9. As the pencils sE′ − H ′ and sE − H are right invertible, it follows
that p′ ≤ p ≤ p′ + q. This implies, in case the number of infinite zero orders is
not modified, that p = p′, and the conditions of Theorem 3 are satisfied, i. e. the
completion can be realized with a q × (n + m) constant matrix only.

Analogously, when sE−H and sE′−H ′ are left invertible pencils, necessary and
sufficient conditions for the existence of a column completion such that (7) holds
can be obtained by a “dualization” of Theorem 3.

CONCLUSIONS

Several results concerning the matrix pencil completion problem, which were achieved
during the last five years, are discussed and summarized in the paper. The basic
results on which the paper is built up are introduced in Proposition 1, subsequent
lemmas, and Theorem 1. A generalization to the right invertible pencils is then
achieved in Theorem 2. The second line of generalization (row completion of right
invertible pencils) is based on the assertion (d) of Proposition 1. This approach is
somewhat novel and completes the picture about the right/left invertible pencils.

The matrix pencil completion problem is still unsolved in its full generality and
the authors of the paper believe that the reader interested in that problem will find
items of useful information in the above text.
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[15] S. Mondié and J. J. Loiseau: Structure assignment of state–output systems by choice
of the output equation. In: Proc. IFAC Conference on System Structure and Control,
Nantes 1995, pp. 172–177.
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