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Managing Editors:

Karel Sladký
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ON GEOMETRIC ERGODICITY AND PREDICTION
IN NONNEGATIVE NON–LINEAR AUTOREGRESSIVE
PROCESSES

Petr Zvára

A non-linear AR(1) process is investigated when the associated white noise is positive.
A criterion is derived for the geometric ergodicity of the process. Some explicit formulas
are derived for one and two steps ahead extrapolation. Influence of parameter estimation
on extrapolation is studied.

Keywords: geometric ergodicity, non-linear autoregression, least squares extrapolation

AMS Subject Classification: 62M10, 62M20

1. INTRODUCTION

When one predicts in parametric AR time series models, usually the autoregressive
functional form is assumed to be known, the order and parameters are estimated and
the point prediction with a predictive interval are obtained using estimated order
and parameters as the true ones. In this paper, we study the effect of uncertainty
in parameters on prediction.

The paper is organized as follows. In Section 2 some Markov chain terminology
is introduced and conditions for geometric ergodicity are derived in Theorem 2.
Section 3 is used to review some estimation methods for nonnegative non-linear AR
processes. The least squares extrapolation is studied in Section 4, some explicit
formulas for extrapolation and bias of estimated prediction are derived.

Consider a non-linear AR(1) process {Xt, t ≥ 0} (abbreviated as NLAR(1)) given
by

Xt = λ(Xt−1 |θ) + et, t = 1, . . . , n, (1)

where λ is a Borel measurable function, θ ∈ Rk is a vector of parameters, {et, t ≥ 1}
is a sequence of i.i.d. variables with finite variance and a density g, and X0 is a
given random variable independent of {et}. In what follows we assume that the
white noise distribution is known and need not be estimated.

The least squares predictor of Xt+m given a past history, Xt, Xt−1,..., is given by

Km,t(x) = E [Xt+m |Xt = x] . (2)
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Functions Km,t(x) are independent of t. They satisfy, with subscript t already
dropped, the recurrent relationship

K0(x) = x, Km(x) =
∫ ∞

−∞
Km−1(y)g [y − λ(x |θ)] dy. (3)

A proof can be found in Tong [12] when {Xt} is stationary and in Anděl, Dupač [3] for
the nonstationary, general autoregressive model. An estimate of Km(x) is obtained
by plugging in the estimated regression parameters θ̂n into λ(· |θ) in (3). We study
the bias of this estimate in Section 4.

2. GEOMETRIC ERGODICITY AND STATIONARY DISTRIBUTION

When we consider the time series models, because of its importance in the statistical
inference of the stochastic process, their stationarity properties are to be studied
carefully. In many papers, for example, Tjøstheim [11], Bhattacharya and Lee [5],
Cline and Pu [6], Lee [9], general non-linear models have been studied and many
suitable tools and criteria are given, but the usual assumption for the innovation
process {et} is that it has a positive density function g(x) > 0, x ∈ (−∞,−∞) on
the real line with respect to Lebesgue measure. The methods developed here provide
modifications of sufficient conditions for geometric ergodicity for non-linear AR(1)
models and specific types of distribution of {et}.

We start with some Markov chain terminology drawn from the papers by Tjøstheim
[11], Bhattacharya and Lee [5], Lee [9] and the book by Tong [12].

Let {Xt, t ≥ 0} be a homogeneous Markov chain taking values in (E, E), where
E is a countably generated σ-algebra of subsets of E. In this paper usually E = R1

and E is the σ-algebra of Borel sets. Denote the n-step transition probabilities by

Pn(x,A) = P [Xn ∈ A |X0 = x] , x ∈ E, A ∈ E ,

with P (x,A) = P 1(x,A).
The Markov chain {Xt} is said to be ϕ-irreducible if, for some nontrivial σ-finite

measure ϕ on (E, E), ∑
n

Pn(x,A) > 0

for all x ∈ E and every A ∈ E with ϕ(A) > 0.
Let {Xt} be a ϕ-irreducible chain. A set B ∈ E with ϕ(B) > 0 is said to be small

(with respect to ϕ) if for all A, ϕ(A) > 0

inf
x∈B

m∑
n=1

Pn(x,A) > 0

for some m ≥ 1. It can be shown (Tjøstheim [11]) that in the model (1) with λ
a measurable function and {et} having a positive density g on the real line with
respect to Lebesgue measure l1, {Xt} is l1-irreducible and a compact set is small if
λ is bounded on it.
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A measure π on E is called the invariant for the process {Xt} if, for all sets B ∈ E ,

π(B) =
∫
P (y,B)π(dy).

A ϕ-irreducible Markov process is said to be geometrically ergodic if there exists
a probability measure π and ρ ∈ (0, 1), such that

sup
B∈E

ρ−n |Pn(x,B)− π(B)| → 0, as n→∞,∀x ∈ E.

Suppose {Xt} is geometrically ergodic. Then, if the initial distribution of X0 is π,
{Xt} is strictly stationary (Tong [12]).

The following lemma provides the so called h-step criterion of geometric ergodicity
(Tjøstheim [11]), which will be used later in this section.

Lemma 1. Assume that {Xt} is an aperiodic ϕ-irreducible chain, and let v be a
nonnegative measurable function on E (test function). The chain {Xt} is geometri-
cally ergodic if there exist a positive integer h, a small set K ∈ E with complement
KC , and ε > 0,M <∞, R > 1, such that

RE [v(Xt+h) |Xt = x] ≤ v(x)− ε, x ∈ KC , (4)

and

E
[
v(Xt+h)I(Xt+h ∈ KC) |Xt = x

] ≤M, x ∈ K, (5)

where I(·) is the indicator function.

Taking v(x) = |x| and h = 1, one can prove the following theorem (Tjøstheim
[11]):

Theorem 1. Let {Xt} be given by (1), where density g of {et} is positive every-
where. If E|et| <∞ and if the function λ of (1) is bounded on compact sets, and if
there exists an r > 0 such that

sup
|x|>r

∣∣∣∣
λ(x)
x

∣∣∣∣ < 1, (6)

then {Xt} is geometrically ergodic.

In the next sections, NLAR(1) models with positive values and positive innovation
terms will be studied. Therefore, the conditions on g need to be relaxed. We will
prove following theorem:
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Theorem 2. Let {Xt} given by (1) be a nonnegative process, that is Xt ≥ 0 a.s.,
t = 0, 1, . . . . If the function λ of (1) is measurable on [0,∞), bounded on compact
sets, λ(x) ≥ 0 for x ≥ 0, and if there exists an r > 0 such that λ satisfies (6), then
each of the following conditions is sufficient for geometric ergodicity of {Xt}:
1) Density g of {et} is positive on (0,∞).
2) λ is concave, strictly increasing and has continuous derivative on [0,∞) and g is
positive on some (a, b), where 0 ≤ a < b <∞.

P r o o f . Assume that condition 1) is satisfied.
First we verify irreducibility of the process. Let ϕ be the Lebesgue measure

restricted to the interval [r,∞), ϕ([a, b]) = max(b, r) − max(a, r), where r is from
(6). Since we assume now g(x) > 0, x > 0, then λ(x0) ≤ r implies that P (x0, A) > 0
for every A,ϕ(A) > 0. Assume x0 > r, define α = sup|x|>r

∣∣∣λ(x)
x

∣∣∣ and let x1 = λ(x0),

xk = λ(xk−1) = λ(k)(x0). Then we have xh ≤ αhx0, if xk > r, 0 ≤ k ≤ h.
Hence, for every x ≥ 0, there exists a finite m, such that λ(m)(x) < r and therefore
Pm(x,A) > 0 for every A, ϕ(A) > 0 and thus irreducibility is verified.

Further we discuss small sets. For s > r choose a set K = {x : r < x < s}. Since
λ is bounded on K, for some finite M is λ(x) ≤M , x ∈ K. There exists an m large
enough, such that αmM < r. For such an m, for every x ∈ K, is λ(h)(x) < r for some
1 ≤ h ≤ m. It follows that for every A, ϕ(A) > 0 is

∑m
n=1 P

n(x,A) > 0, ∀x ∈ K
for some m ≥ 1, which shows that K is small set.

Finally, we deal with h-step criterion. Take v(x) = x, h = 1, and choose K =
{x : r < x < s}. For x ∈ KC , we have

E [Xt+1 |Xt = x] = λ(x) + E et ≤ αx+ γ,

where γ = E et. Choose R > 1 such that Rα < 1. Then

E [Xt+1 |Xt = x] ≤ x+ (Rα− 1)x+Rγ,

and it follows that (4) is satisfied by taking a small set K with s large enough.
For x ∈ K, we have

E
[
Xt+1I(Xt+1 ∈ KC) |Xt = x

] ≤ λ(x) + γ ≤M + γ,

which shows (5) and completes geometric ergodicity of {Xt}.
Now, assume that condition 2) is satisfied. Anděl [2] has studied the model

Xt = ωXq
t−1 + et, where ω > 0, q ∈ (0, 1), and et has a rectangular distribution et

with parameters a, b, 0 ≤ a < b <∞. Our situation is a generalized version of this
model.

Again, first we verify irreducibility of the process. We show, that for each z > 0
the equation x = λ(x) + z has a unique positive root xz and xz is an increasing
function of z.

Since λ(0) ≥ 0 and λ is continuous, there exists a δ ∈ (0, z), such that λ(x) + z−
x > 0 for 0 ≤ x ≤ δ. Further, λ(x) ≤ αx for x > r, where 1 > α = supx>r

∣∣∣λ(x)
x

∣∣∣.
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Since α−1 < 0, there exists M > 0 such that (α−1)M+z < 0. Thus λ(x)+z−x <
(α− 1)x+ c < 0 for x > M .

Hence for each z > 0 we have found 0 ≤ δ < M <∞ such that λ(x) + z − x > 0
for 0 ≤ x < δ and λ(x) + z − x < 0 for x > M . Therefore there exists x = xz such
that xz = λ(xz) + z.

Since λ is increasing and concave, the slope of the λ curve at xz must be from
interval (0, π

4 ) (that is 0 < λ(xz)′ < 1) and xz is unique.
According to implicit function theory, x′z = − 1

λ′(xz)−1 > 0, thus xz is an increas-
ing function of z.

Let ϕ be the Lebesgue measure restricted to the interval [xa, xb), ϕ([u, v]) =
min(max(v, xa), xb) − min(max(u, xa), xb). If x < xa and x > λ(x), then there
exists a positive number c < a, such that x = λ(x) + c, since xz is an increasing
function of z, and we have x = λ(x)+c < λ(x)+a. Hence, with positive probability,
Xt+1 > Xt + (b − a)/2, if Xt < xa. Similarly, Xt+1 < Xt − (b − a)/2, if Xt > xb.
Therefore Xt reaches (xa, xb) in a finite number of steps with positive probability.

If xa < x < xb, then there exists a d ∈ (a, b), such that x = λ(x) + d. Thus we
have

xa = λ(xa) + a < λ(x) + a < x = λ(x) + d < λ(xb) + b = xb.

This implies that if Xt ∈ (xa, xb), then Xt+1 ∈ (xa, xb) with probability 1 and there
is positive probability that Xt+1 < Xt and that Xt+1 > Xt. Therefore {Xt} is
ϕ-irreducible.

Further we discuss small sets. Let [u, v] be a subset of [xa, xb]. Let A = [xa, xa+ε],
where ε is small positive number. Define v1 = λ(v) + a, vk = λ(vk−1) + a. Clearly,
{vk} is a decreasing sequence and vk → xa as k →∞. There exists an m such that
vm < xa + ε. Hence

inf
x∈[u,v]

m∑
n=1

Pn(x,A) =
m∑

n=1

Pn(v,A) > 0,

which implies that any interval [u, v] is small set.
Finally, proof of the h-step criterion is the same as in 1). 2

3. PARAMETER ESTIMATION

Let Xn = (X1, X2, . . . , Xn)T denote a sample of n consecutive observations from the
series {Xt : t ∈ Z}. Assume that Xn has a probability density pn(x1, . . . , xn |θ, x0),
which depends on θ ∈ Rk and X0 = x0 ∈ R1. Let Ln(θ) denote the conditional
log-likelihood, that is log pn(x1, . . . , xn |θ, x0). In the model (1) is

Ln(θ) =
n∑

t=1

log g [Xt − λ(Xt−1 |θ)] . (7)

We define the maximum likelihood estimator θ̂n as a global maximizer of (7),

θ̂n = arg maxθ

n∑
t=1

log g [Xt − λ(Xt−1 |θ)] . (8)
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Distributional properties of θ̂n are known in some situations.

Assume that

(i) Ln(θ) is differentiable w.r.t. θ,

(ii) Eθ

[
∂Ln

∂θ (θ)∂Ln

∂θ (θ)T
]
<∞ for each n, and

(iii)
∫
pn(x1, . . . , xn; θ) dxn can be differentiated twice w.r.t. θ under the integral

sign.

Define L0(θ) = 0. Let ui(θ) be the column vector of the first partial derivatives
of Li(θ) − Li−1(θ). Further define In(θ) by

∑n
i=1 Eθ

[
ui(θ)ui(θ)T |Xi−1

]
. Then,

under some additional technical conditions on In(θ), we have (Tong [12], p. 295)

θ̂n
d−→

n→∞ N(θ, In(θ)−1).

However, there is a bias of order n−1, which will be discussed later.

Example 1. Consider the model discussed by Anděl [2]

Xt = ωXq
t + et, t = 1, . . . , n, 0 < q < 1 known, (9)

where ω ≥ 0 and et is a gamma distributed sequence of i.i.d. variables with known
parameters α and β, i. e. with density g(y) = 1

Γ(α)βα y
α−1 exp{− y

β }, y > 0. Then

we have k = 1, θ = ω. Calculations give ui(ω) = Xq
i−1

(
1
β − α−1

Xi−ωXq
i−1

)
and

In(ω) =




n

EX2q
1

(α− 2)β2
, α > 2,

does not exist, α ≤ 2.
(10)

Expectation is taken with respect to the stationary density of {Xt}, which exists
according to Theorem 2. Hence ω̂n which is solution of the equation

n∑

i=1

Xq
i−1

(
1
β
− α− 1
Xi − ωXq

i−1

)
= 0 (11)

is asymptotically normally distributed with mean ω and variance

var asω̂n =
(α− 2)β2

nEX2q
1

,

if α > 2.

In a simulation study we set q = 1/2, ω = 0.1, 1, and 10. The innovations have
mean 1 and variance 1/3, i. e. α = 3, β = 1/3. Properties of the estimator for sample
size n = 100 are summarized in Table 1. The bias and variance of the estimator are
computed by Monte Carlo simulations based on 10, 000 replications. The solution
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of equation (11) was obtained numerically using globally convergent combination of
bisection and Newton–Raphson method (Numerical Recipes in C). The stationary
density of {Xt} used for computation of var asω̂n was calculated numerically as the
limit of conditional densities (Moeanaddin and Tong [10]).

Table 1. Bias and variance of the parameter estimate in the model

Xt = ω
√

Xt−1 + Γ(3, 1/3), t = 1, . . . 100.

ω E[ω̂n − ω] 100 ∗ var ω̂n (Asymptotic)
0.1 0.005 0.119 (0.101)
1 0.003 0.052 (0.043)

10 0.0005 0.001 (0.001)

Datta, Mathew and McCormick [7] studied models of the form

Xt =
p∑

i=0

φifi(Xt−1) + et, (12)

where φ = (φ0, . . . φp)T is an unknown parameter vector, fi are known functions and
et are nonnegative i.i.d. innovations. Their linear programming estimator (LPE) of
φ is essentially the maximum likelihood estimator when the innovation distribution
is exponential. Let U(t) = (f0(Xt−1), . . . , fp(Xt−1))

T and consider the set of φ
values

Fn = {φ ∈ Rp+1 : Xt − φTU(t) > 0, 1 ≤ t ≤ n}.
Furthermore, let f̄(n) = (f̄0(n), . . . , f̄p(n))T be the vector of means, with f̄i(n) =
n−1

∑n
t=1 fi(Xt−1), 0 ≤ i ≤ p. Then the LPE of φ maximizes the objective function

φT f̄(n) over Fn, i. e.
φ̂n = arg maxφ∈Fn

φT f̄(n). (13)

The limiting distribution of φ̂n is rather complicated and explicit formula for its
density is not known to our knowledge. Only random samples can be taken from
this distribution. It requires knowledge of expectations νi = E fi(Xt) taken with
respect to the stationary distribution. Details can be found in Datta, Mathew and
McCormick [7].

Example 2. Consider the model

Xt = ωXq
t−1 + et, t = 1, . . . , n, 0 < q < 1 known, (14)

where ω ≥ 0 and et is exponentially distributed with a known parametr a, i. e. with
density g(y) = a−1 exp{− y

a}, y > 0. In this setting U(t) = f0(Xt−1) = Xq
t−1 and

ω̂n = min Xt

Xq
t−1

.

For the simulation we set q = 1/2 and ω = 0.1, 1, and 10. The innovations have
mean 1 and variance 1, i. e. a = 1. Properties of the estimator for sample size n = 100
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are summarized in Table 2. The bias and mean square error are calculated by
Monte Carlo simulation based on 10, 000 replications. The asymptotic counterparts
are computed by simulating 2, 000 values from the asymptotic distribution. Datta,
Mathew and McCormick [7] have observed that their results are close to the ones
predicted by limit theory for n = 200 and higher. According to our simulation
for n = 100, the bias and mean square error of estimator is underestimated by
asymptotic theory when ω = 0.1. For higher ω, i. e. ω = 1 and ω = 10 are the
results in close agreement with asymptotic theory.

Table 2. Bias and variance of the parameter estimate in the model

Xt = ω
√

Xt−1 + Exp(1), t = 1, . . . 100.

ω E[ω̂n − ω] (Asymptotic) 100 ∗ E[(ω̂n − ω)2] (Asymptotic)
0.1 0.011 (0.008) 0.023 (0.014)
1 0.006 (0.006) 0.008 (0.007)

10 0.001 (0.001) 0.0002 (0.0002)

Consider an AR(1) process {Xt} defined by

Xt = bXt−1 + et, t = 1, . . . , n, (15)

where 0 ≤ b < 1, e1, . . . , en are i.i.d. Exp(a) variables and X0 ∼ Exp(a/(1 − b)).
Then the expectation is preserved and the maximum likelihood estimator is b̂ =
min

(
X1
X0
, . . . , Xn

Xn−1

)
. The exact distribution of b̂ is according to Anděl [1]

P (b̂ < v) = 0 (v ≤ b)
P (b̂ < v) = 1− (1− b)[{v + (1− b)}{v2 + (1− b)(1 + v)} . . .

× {vn−2 + (1− b)(1 + v + · · ·+ vn−3)}
× {vn−1 + (1− b)(1 + v + · · ·+ vn−2)− b}]−1 (v > b).

(16)

Example 3. Consider the model (15) with a = 1. We calculate theoretical bias
and variance of the estimator b̂ using Gauss–Legendre quadrature formula. We
simulated 10, 000 replications of the model (15) with n = 100 for values b = 0.1, 0.5
and 0.9. The empirical bias and variance together with their theoretical counterparts
are summarized in Table 3. The simulated quantities reflect well the theoretical ones
except the mean square error of b̂ when b = 0.9. This might be caused by the error of
numerical quadrature method, because the integrand is almost a singular function.

Table 3. Bias and variance of the parameter estimate in the model

Xt = bXt−1 + Exp(1), X1 ∼ Exp(1/(1− b)), t = 1, . . . 100.

b E b̂− b (Theoretical) 100 ∗ E[(b̂− b)2] (Theoretical)
0.1 0.009 (0.009) 0.017 (0.016)
0.5 0.005 (0.005) 0.005 (0.005)
0.9 0.001 (0.001) 0.0002 (0.003)
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4. INFLUENCE OF ESTIMATED PARAMETERS
ON LEAST SQUARES PREDICTION

Let Km(x) be the true unknown least squares predictor of Xt+m given Xt = x in
the NLAR(1) model (1). Define the estimate K̂m(x) of Km(x) by plugging in the
estimated regression coefficients θ̂n into λ(· |θ) in (3) instead of unknown θ. For
m = 1, we have

K̂1(x) = λ(x | θ̂n) + γ, (17)

where γ is the expectation of the innovations. We state the formula for bias of K̂1(x)
in the following theorem.

Theorem 3. Let K̂1(x) be the estimated 1-step prediction (17) in the process (1).
Let the parameter θ̂n be any estimate of θ in (8) such that

E
[
(θ̂ni − θi)(θ̂nj − θj)(θ̂nl − θl)

]
= O(n−3/2). (18)

Then we have

E[K̂1(x)−K1(x)] =
k∑

i=1

E[θ̂ni − θi]
∂λ

∂θi
(x |θ) (19)

+
1
2

k∑

i=1

k∑

j=1

E
[
(θ̂ni − θi)(θ̂nj − θj)

] ∂2λ

∂θi∂θj
(x |θ) +O(n−3/2)

provided λ(x |θ) has bounded third derivatives w.r.t. θ.

P r o o f . Taylor expansion of K̂1(x) around K1(x) up to third order terms gives

K̂1(x)−K1(x) =
k∑

i=1

[θ̂ni − θi]
∂λ

∂θi
(x |θ)

+
1
2

k∑

i=1

k∑

j=1

[
(θ̂ni − θi)(θ̂nj − θj)

] ∂2λ

∂θi∂θj
(x |θ)

+
1
6

k∑

i=1

k∑

j=1

k∑

l=1

[
(θ̂ni − θi)(θ̂nj − θj)(θ̂nl − θl)

] ∂3λ

∂θi∂θj∂θl
(x |θ∗),

where θ∗ = θ +ψ(θ̂n−θ), 0 < ψ < 1. Since the expectation of the last term on the
right side is of order O(n−3/2), the theorem follows. 2

Assumption (18) is valid for example in linear Gaussian AR models (Bhansali [4]).
Explicit expressions for bias of the estimated higher-step predictions are available
only in special cases.
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In the model (9) of Example 1, we have K̂1(x) = ω̂nx
q + αβ, where α and β

are characteristics of the innovation distribution and ω̂n is the maximum likelihood
estimate, i. e. solution of equation (11). Hence we have

E[K̂1(x)−K1(x)] = E[ω̂n − ω]xq. (20)

We see that the higher is x, the more biased is the one-step prediction. The extent
of this bias depends on how precisely we estimate ω.

It can be shown after long and tedious calculation that the two-step ahead pre-
diction in the model (9) is

K2(x) = αβ +
ωβq exp

{
ωxq

β

}

(α− 1)!
(21)

×
∑

k=0

α− 1
(
α− 1
k

)[
−ωx

q

β

]α−1−k

Γ(k + q + 1)[1− Γ∗ωxq

β
(k + q + 1)],

when α ∈ N+. Function Γ∗x(m) = 1
Γ(m)

∫ x

0
tm−1e−t dt denotes the incomplete gamma

function. The estimate K̂2(x) is obtained by plugging in ω̂n into (21).

Table 4. Bias of the one- and two-step prediction estimate in the model

Xt = ω
√

Xt−1 + Γ(3, 1/3), t = 1, . . . 100.

ω x K1(x) E[K̂1(x)−K1(x)] (As.) K2(x) E[K̂2(x)−K2(x)]
0.1 0.522 1.072 0.004 (0.004) 1.100 0.006

1.101 1.105 0.006 (0.005) 1.102 0.006
1.679 1.130 0.007 (0.006) 1.103 0.007

1 1.993 2.412 0.005 (0.004) 2.543 0.007
2.601 2.613 0.005 (0.005) 2.607 0.007
3.210 2.792 0.006 (0.005) 2.663 0.007

10 98.50 100.25 0.005 (0.005)
101.88 101.94 0.005 (0.005)
105.26 103.60 0.006 (0.006)

For the simulation we use the same parameter values as in Example 1. Bi-
ases of K̂1(x) and K̂2(x) are summarized in Table 4. The quantities are computed
by Monte Carlo simulation based on 10, 000 replications. We calculate Ki(x) and
E[K̂i(x)−Ki(x)], i = 1, 2 at three different x: stationary mean− stationary standard
deviation, stationary mean and stationary mean + stationary standard deviation.
The asymptotic approximations of E[K̂1(x)−K1(x)] are obtained by plugging in the
numerical values of E[ω̂n − ω] from Table 1 into (20).

The results are in very good agreement with the theory. All quantities are close
to their asymptotic counterparts. Note that the bias in prediction is negligible, it
accounts in maximum for 0.4% of the absolute predicted value. We did not calculate
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the two-step ahead predictions in the model with ω = 10, because of singularity of
the required integrands.

Consider the zero mean Gaussian AR(1) model (22).

Xt = ωXt−1 + et, t = 1, . . . , n, (22)

Here we have Km(x) = ωmx and K̂m(x) = ω̂m
n x for m ≥ 1. Taylor expansion up to

the second order term around ω and results (23) (Bhansali [4])

E[ω̂n − ω] =− 2ω
n

+O(n−3/2),

var ω̂n =
1− ω2

n
+O(n−3/2)

(23)

yield

E[K̂m(x)−Km(x)] = −2mωm

n
+
m(m− 1)(1− ω2)ωm−2

2n
+O(n−3/2)

for m ≥ 2.
It is interesting to note that predictor K̂m(x) in the linear Gaussian model (22)

is biased estimator of Km(x), however it is unbiased estimator of future value Xt+m,
i. e. E[Xt+m − K̂m(Xt)] = 0 (Fuller and Hasza [8]).
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