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FIXED POLES OF H2 OPTIMAL CONTROL
BY MEASUREMENT FEEDBACK

Jean-François Camart1, Basilio del-Muro-Cuéllar
and Michel Malabre

This paper is concerned with the flexibility in the closed loop pole location when solving
the H2 optimal control problem (also called the H2 optimal disturbance attenuation prob-
lem) by proper measurement feedback. It is shown that there exists a precise and unique set
of poles which is present in the closed loop system obtained by any measurement feedback
solution of the H2 optimal control problem. These “H2 optimal fixed poles” are character-
ized in geometric as well as structural terms. A procedure to design H2 optimal controllers
which simultaneously freely assign all the remaining poles, is also provided.

1. INTRODUCTION

The H2 optimal control problem, which amounts to minimizing the H2 norm of the
closed-loop transfer from a disturbance input to the output by a stabilizing con-
troller, has been considered since the works of [10, 11] and [7], without regularity
assumptions and the question of flexibility in closed-loop pole placement has ap-
peared challenging. By making use of decompositions of the system in a particular
basis (the so-called Special Coordinate Basis), [4] characterized the H2 optimal fixed
poles for the state feedback case and, in the case of measurement feedbacks, [8] stud-
ied the flexibility in closed loop poles for the following design method: select a state
feedback matrix and use an observer so that the resulting compensator is solution of
H2 optimal control problem. This method exhibits some “fixed poles” which depend
on the class of observers as well as on the preliminary selected state feedback matrix
but there is no guaranty that they correspond to the H2 optimal fixed poles, the
latter being present in the closed loop system obtained by any solution of the H2

optimal control problem, whatever may be the type of measurement feedback proper
compensator.

The disturbance rejection problem, which amounts to canceling the closed-loop
transfer between the disturbance and the output is obviously one particular case of
the H2 optimal control problem (when the optimum is zero) for which many works
contributed to explain the geometric structures of the system involved in the problem

1This work has been done while the author was working within IRCCyN.
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solvability ([1, 13]). In this context, [3] characterize, when the disturbance can be
rejected by measurement feedback, the so-called Disturbance Rejection Fixed Poles,
namely poles which are present in the closed loop system with any measurement
feedback solution, whatever be the way used to find the compensator. A transfor-
mation has been proposed by [10], completed by [11], which revealed that solving
the H2 optimal control problem is equivalent to solving the disturbance rejection
problem on a modified system. Starting from that transformation and the study of
[3] on the Disturbance Rejection Fixed Poles, the aim of the present paper is mainly
to characterize the fixed poles of the H2 optimal control problem by measurement
feedback. The characterization will be geometric as well as structural (in terms of
invariant zeros) for strictly proper systems under some mild minimality assumption.
Additionally, a procedure is provided to construct H2 optimal compensators which
are also “optimal” in the sense of pole placement, i. e. which freely assign all the
poles except the H2 optimal fixed poles.

The detailed formulation of the problem and the notation are stated in Section 2.
In Section 3, the characterization of the Disturbance Rejection Fixed Poles and the
system transformation which converts an H2 optimal problem into a disturbance
rejection problem are recalled. The main results, i. e. the H2 optimal fixed poles
characterizations and the constructive procedure for H2 optimal compensators are
presented in Section 4. We conclude in Section 5 with some possible extensions of
this work.

2. PROBLEM FORMULATION

We consider linear time-invariant systems described by:

Σ :





ẋ(t) = Ax(t) + Bu(t) + Dh(t)

z(t) = Ex(t)

y(t) = Cx(t)

(1)

where x(t) ∈ X ≈ Rn is the state, u(t) ∈ U ≈ Rm is the control input, h(t) ∈
H ≈ Rq is the disturbance input, z(t) ∈ Z ≈ Rr is the output to be controlled and
y(t) ∈ Y ≈ Rp is the measured output. B,D, C, and E respectively denote Im B,
Im D, Ker C and Ker E, ∪̇ stands for the union with repeated common elements.

We make the following assumptions:

A.1: (A, [BD]) is controllable,
([

C
E

]
, A

)
is observable;

A.2: (A,B) is stabilizable, (C, A) is detectable.

These assumptions are not restrictive: (A.1) corresponds to a minimal description
of the system with respect to all the external variables. (A.2) is necessary to control
the system with stability. Nevertheless the system description (1) is not as general
as in [8] where feedthrough matrices (from input or disturbance to controlled output
or measurement) are present. The main reason for restricting our study to strictly
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proper systems like (1) is that the available geometric characterizations of the DRP
fixed poles (see Section 3) have been proposed up to now just for this particular
class of systems. On the other hand, for the study of such “exact” control problems,
classical tricks exist (addition of some integrators) for replacing the proper system
by an extended strictly proper one (see for instance, [5, 6]). However, it is not yet
guaranteed that such a simple trick is applicable for the H2 optimal control case.

The proper compensator Γ is generically described by:

Γ :

{
ẇ(t) = Nw(t) + My(t)

u(t) = Lw(t) + Ky(t)
(2)

where w(t) ∈ W ≈ Rν is the state of the compensator.
The compensator internally stabilizes the system if the eigenvalues of

Ae :=
[

A + BKC BL
MC N

]
(3)

are all stable (i. e. are in the open left half-plane, denoted by C−). The resulting
compensated system is denoted by (Σ × Γ), its associated transfer function matrix
is denoted by

TΓ(s) :=
[

E 0
]
(sI(n+ν) −Ae)−1

[
D
0

]
(4)

and the H2 norm of TΓ(s) is:

‖TΓ(s)‖2 :=
(

1
2π

∫ ∞

−∞
tr

(
TΓ(jω)TT

Γ (−jω)
)
dω

) 1
2

(5)

where the transposition and the trace of a matrix are respectively denoted by ·T
and tr(·). The optimum of the H2 norm over all internal stabilizing compensators
is defined as follows:

γopt := inf
Γ

{‖TΓ(s)‖2|σ(Ae) ⊂ C−
}

(6)

where σ(·) stands for the spectrum.
We are now able to formulate the H2 optimal control problem (referred sometimes

also as H2 optimal disturbance attenuation problem) by measurement feedback.

Definition 1. Let a system Σ be given, the H2 Optimal Control Problem by
measurement feedback (H2OCP) amounts to finding, if possible, a stabilizing com-
pensator Γ such that

‖TΓ(s)‖2 = γopt. (7)

When this problem is solvable, one also says that the optimum is attained. A
compensator solution to this problem is said to be an H2 optimal compensator.
When this problem is not solvable, one is faced to consider sub-optimal problems,
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which may amount to approaching the optimum as close as possible, or selecting
compensators for which the norm is less than a prespecified number (see [11]).

The H2OCP for the particular case when the optimum is zero corresponds to the
Disturbance Rejection Problem with Stability, designed here by DRPS. Contrary to
the H2OCP for which the stability requirement affects the value of the infimum, it
is pertinent to define the Disturbance Rejection Problem without requiring stability,
denoted here as DRP, since the two requirements are independent.

The DRP thus corresponds to:

Definition 2. Let a system Σ be given, the Disturbance Rejection Problem by
measurement feedback (DRP) amounts to finding, if possible, a compensator Γ such
that TΓ(s) = 0.

The DRPS (DRP with internal Stability) has the same definition plus the re-
quirement σ(Ae) ⊂ C−.

Let us remark that the fact that γopt = 0 does not assure the DRPS or the DRP
to be solvable. It only indicates that the so-called H2 Almost Disturbance Rejection
Problem with Stability is solvable. This problem introduced by [12] amounts to
finding a sequence of controllers whose limit (possibly not attained) gives the optimal
solution γopt = 0.

The notion of fixed poles of a Problem (which may stand for either the DRP or
the H2OCP) is precisely formulated in the following definition:

Definition 3. Let a system Σ as well as a Problem be given and let us denote
Θ(Problem) the set of measurement feedback compensators Γ which are solutions of
the Problem. Then, the Problem fixed poles are defined by:

Problem fixed poles :=
⋂

Γ∈Θ(Problem)

σ(Ae). (8)

3. BACKGROUND

3.1. Geometric tools

In this section are briefly recalled some elements of the geometric approach. The
interested reader which would like to have more details might refer to [14] and [1]
for the basic notions and to [3] for the DRP fixed poles characterizations.

Given two subspaces T ⊂ X and L ⊂ X , we will denote:

— V∗(T ,L) : the supremal (A, T )-invariant subspace contained in L.

— S∗(L,T ) : the infimal (L, A)-invariant subspace containing T .

— R∗(T ,L) = V∗(T ,L) ∩ S∗(L,T ) : the supremal (A, T )-controllability subspace con-
tained in L.
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— N ∗
(L,T ) = V∗(T ,L) + S∗(L,T ) : the infimal (L, A)-complementary observability

subspace containing T .

Let V be an (A,B)-invariant subspace, then F(V) denotes the set of matrices F
that satisfy (A+BF )V ⊂ V. Let S be a (C, A)-invariant subspace, then G(S) denotes
the set of matrices G that satisfy (A + GC)S ⊂ S. A (C, A,B)-pair is defined [9] to
be a pair of subspaces of X , say (S,V), where S is a (C, A)-invariant subspace, V is
an (A,B)-invariant subspace and S ⊂ V.

Let us now recall the geometric definition of the set of invariant zeros for the
triple (A,B, E), but the definition is also valid for each subsystem of Σ represented
by state-input-output matrices.

Definition 4. The invariant zeros of the system (A,B, E), denoted as Z(A,B, E),
are equal to the eigenvalues of the map induced by (A + BF ) in the quotient space
V∗(B,E)/R∗(B,E) i. e.:

Z(A, B,E) := σ

(
A + BF

∣∣∣
V∗(B,E)

R∗(B,E)

)
, (9)

where F ∈ F(V∗(B,E)).

Note that a dual equivalent definition is expressed in terms of (C, A)-invariant
subspaces.

Of particular importance in the present design procedure of H2 optimal compen-
sators, is the so-called notion of (S,V)-based compensator introduced by [1]. Such
a compensator is of full order (ν = n) and based on a selected (C, A,B)-pair, say
(S,V). The matrices (K,L, M, N) of Γ (2) are obtained by:





N = A + GC + BFL2

M = −G + BFL1

L = FL2

K = FL1

(10)

with matrices L1 and L2 such that:

— L1C + L2 = In

— ker L2 ⊕ (S ∩ C) = S.

It has been shown by [1] that σ(Ae) = σ(A + BF ) ∪̇σ(A + GC), which enhances
the fact that this type of compensator may be seen as designed in two parts: a full
order observer and an estimated state feedback.

Let us insist on the fact that, even if a special type of compensator is used here for
simultaneously solving either the H2OC or the DR Problem and achieving maximal
pole assignment, the results concerning fixed poles characterizations are valid for
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any type of compensator Γ (generically expressed in (2)), provided only that it is
proper and that the compensator input is the system measurement output.

Let us recall the basic geometric solvability condition of the DRP by dynamic
measurement feedback (see [9] and [13]):

Theorem 5. Let a system Σ be given, the DRP is solvable if and only if:

S∗(C,D) ⊂ V∗(B,E). (11)

Let us denote R∗ := R∗(B,E), R∗c := R∗(B+D,E), N ∗ := N ∗
(C,D), N ∗

c := N ∗
(C∩E,D).

[1] obtained geometric solvability conditions of the DRPS by dynamic measurement
feedback involving the subspaces R∗c and N ∗

c . DRPS solvability is equivalent to the
fact that the set of the DRP fixed poles is stable. The knowledge of the location
of the fixed poles obviously gives more dynamic information (distance to instability,
minimal possible damping,. . .).

Theorem 6. Let the system Σ be given and let us assume that the DRP is solvable.
Then, the DRP Fixed Poles are given by:

DRP fixed poles = σ

(
A + BF

∣∣∣R
∗
c

R∗
)

∪̇ σ

(
A + GC

∣∣∣ N ∗

N ∗
c ∩R∗c

)
(12)

where F ∈ F(R∗c), G ∈ G(N ∗
c ∩R∗c) and all the remaining poles of the compensated

system can be placed at any (symmetric) desired location by a suitable choice of the
parameters K, L,M, N in (2). Moreover, a structural characterization is given by:

DRP fixed poles =
n
Z(A,B,E)−Z

“
A,
h

B D
i
,E
”o

∪̇
8
<
:Z(A,D,C)−Z

0
@A,D,

2
4 C

Ec

3
5
1
A
9
=
; (13)

where Ec is defined by kerEc = R∗c .

3.2. The system transformation

Here is recalled the transformation from the original system Σ to a modified system
ΣPQ on which the DRPS is studied. This transformation has been introduced by
[10] for strictly proper compensators and generalized in [11] to proper compensators.

Let us define P and Q, respectively, as the largest symmetric solutions1 of the
following linear matrix inequalities:

Φ(X) :=
(

AT X + XA + ET E XB
BT X 0

)
≥ 0 (14)

1largest in the sense that any X (resp. Y ) such that Φ(X) ≥ 0 (resp. Ψ(Y ) ≥ 0) satisfies
(P −X) ≥ 0 (resp. (Q− Y ) ≥ 0)
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Ψ(Y ) :=
(

AY + Y AT + DDT Y CT

CY 0

)
≥ 0 (15)

The existence and uniqueness of P and Q are guaranteed by assumptions (A.2).
The most common way to compute these matrices is to use LMI techniques (see for
instance [2]). A constructive procedure to compute these matrices is also presented
in [11] using decomposition in the so-called Special Coordinate Basis (SCB). EP and
DQ are derived from: [

ET
P

0

] [
EP 0

]
= Φ(P ). (16)

and [
DQ

0

] [
DT

Q 0
]

= Ψ(Q). (17)

The modified system ΣPQ is then defined as follows:

ΣPQ :





ẋ(t) = Ax(t) + Bu(t) + DQh(t)

z(t) = EP x(t)

y(t) = Cx(t)

(18)

The formulation of [11] involves direct feedthrough matrices but one can see that
original strictly proper systems induce modified systems which are also strictly
proper.

The link between the H2 optimal control and the disturbance rejection problem
is stated in the following important theorem, established by [11]:

Theorem 7. Let the system Σ be given. We have the following equivalent asser-
tions:

(i) the compensator Γ solves the H2OCP for system Σ,

(ii) the compensator Γ solves the DRPS for system ΣPQ.

Moreover, the optimum of the H2 norm can be computed by:

γopt =
√

tr(DT PD) + tr(EP QET
P ) (19)

=
√

tr(DT
QPDQ) + tr(EQET ). (20)

4. MAIN RESULTS

One advantage of the following formulation is to consider at the same time the
solvability test for the H2OCP as well as the characterization of the H2 optimal
fixed poles.

From the above mentioned results, it is simple to derive the following theorem:
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Theorem 8. Let the system Σ be given, then the H2OCP is solvable if and only
if the two following conditions are satisfied:

(i) The DRP is solvable for system ΣPQ

(ii) The DRP fixed poles for system ΣPQ are stable, i. e. they lie in the open left
half-plane.

Moreover, if the H2OCP is solvable, the H2 optimal fixed poles for system Σ are the
DRP fixed poles for system ΣPQ and all the remaining poles of the compensated
system can be placed at any (symmetric) desired location by a suitable choice of the
parameters K, L,M, N in (2).

P r o o f . Thanks to Theorem 7, the H2OCP is solvable for system Σ if and only
if the DRPS is solvable for system ΣPQ. As the DRPS is equivalent to the DRP
plus the requirement that the DRP fixed poles are all stable, the first part of the
theorem is easily proved.

Now let us assume that the problem is solvable, i. e. the optimum γopt is attained
and let us denote σfix the DRP fixed poles of ΣPQ. Let us remark that E, EP , D,DQ

are not involved in the expression (3), which means that the closed loop poles of
(ΣPQ × Γ) and (Σ× Γ) are the same:

σ (ΣPQ × Γ) = σ (Σ× Γ) = σ(Ae). (21)

Thanks to this statement and Theorem 7, any H2 optimal compensator, say Γopt,
is solution to the DRPS for ΣPQ and σfix ⊂ σ (ΣPQ × Γopt) = σ (Σ× Γopt).

Reversing the argument, let us choose (by the procedure in [3] for instance) one
particular compensator, say ΓDRP , solving the Disturbance Rejection Problem with
Stability for the system ΣPQ with all the poles of σ (ΣPQ × ΓDRP ) freely located
except the DRP fixed poles σfix. We thus have found one H2 optimal compensator
for which the closed loop poles are all freely placed except σfix. We have consequently
proved that σfix represents the H2 optimal fixed poles. 2

Let us note the following properties (for which the proof is quite direct):

— R∗(B,E) = R∗(B,EP ) = R∗ and N ∗
(C,D) = N ∗

(C,DQ) = N ∗.

— (A, [BD]) is controllable implies that (A, [BDQ]) is controllable and dually([
C
E

]
, A

)
is observable implies that

([
C
EP

]
, A

)
is observable.

These remarks enable us to precise some characterizations of the set of H2 optimal
fixed poles, denoting for that purpose R∗c := R∗(B+DQ,EP ) and N ∗

c := N ∗
(C∩EP ,DQ)

where EP = Ker EP , DQ = Im DQ and EPQ is defined by ker EPQ = R∗c :

H2 optimal fixed poles = σ

(
A + BF

∣∣∣R
∗
c

R∗
)

∪̇ σ

(
A + GC

∣∣∣ N ∗

N ∗
c ∩R

∗
c

)
(22)
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where F ∈ F(R∗c), G ∈ G(N ∗
c ∩ R

∗
c). The following characterization is in terms of

invariant zeros:

H2 optimal fixed poles =
{Z (A, B,EP )−Z (

A,
[

B DQ

]
, EP

)}

∪̇
{
Z (A, DQ, C)−Z

(
A,DQ,

[
C
EPQ

])}
. (23)

Example. Let us sum up the different steps of the H2 optimal compensators design
procedure illustrated on the system described by:

A =

2
666664

−1 1 0 0
0 −1 0 0
0 0 −1 1
0 0 0 −1

3
777775

, B =

2
666664

0 0
1 0
0 0
0 1

3
777775

, D =

2
666664

2 0
0 0
0 1
0 −2

3
777775

E =
2
4 1 1 0 0

0 1 2 1

3
5, C =

2
4 0 0 0 1

0 1 2 0

3
5.

1. The computation of matrices P = 0 and Q =

2
666664

2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3
777775

respecting (14)

leads to the modified system ΣPQ with EP = E and DQ =
[

0 0 1 −2
]T .

2. The solvability conditions of the disturbance rejection problem on ΣPQ can be
checked thanks to

S∗(C,DQ) =

0
BBBBB@

0
0
1

−2

1
CCCCCA
⊂ V∗(B,EP ) =

0
BBBBB@

0 1
0 −1
1 0

−2 1

1
CCCCCA

,

as well as the stability condition of the DRP fixed poles = {−1,−1,−3},
computed for instance by (23), i. e.:

Z(A,B, EP ) = {−2,−3}, Z(A, [BDQ], EP ) = {−2},

Z(A,DQ, C) = {−1,−1} and Z
(

A,DQ,

[
C
EPQ

])
= ∅.

Then there does exist H2 optimal compensators.

3. For a desired symmetric set (σfree1∪̇σfree2), let us choose F ∈ F(R∗c) and
G ∈ G(N ∗

c ∩R
∗
c) with

σ (A + BF ) = σfree1∪̇ σ

(
A + BF | R

∗
c

R∗
)
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and

σ (A + GC) = σfree2∪̇ σ

(
A + GC | N ∗

N ∗
c ∩R

∗
c

)

The choice σfree1 = {−3,−1,−1} and σfree2 = {−3,−2} induces

F =
2
4 0 −2 0 0

0 0 0 −2

3
5, G =

2
666664

0 0
−0.3 −0.3
−1.6 −1.1
−0.5 0.5

3
777775

,

4. Applying (S,V)-based compensator formulas, we obtain the matrices

K =
2
4 0 0

−5
3

1
3

3
5, L =

2
4 0 −2 0 0

0 −1
3

−2
3

−1
3

3
5,

M =

2
666664

0 0
0.3 0.3
1.6 1.1
−7
6

−1
6

3
777775

, N =

2
666664

−1 1 0 0
0 −3.3 −0.6 −0.3
0 −1.1 −3.2 −0.6
0 1

6
1
3

−11
6

3
777775

.

The closed loop transfer function matrix (inducing ‖TΓ(s)‖2 = γopt =
√

2) is then

TΓ(s) =

[
2

s+1 0

0 0

]
.

5. CONCLUSION

We have presented some characterizations of the Fixed Poles of the H2 Optimal
Control Problem by measurement feedback as well as a constructive procedure to
obtain H2 optimal compensators while simultaneously assigning all the remaining
poles to arbitrary symmetric location.

These two results are obtained by taking advantage of two previous contribu-
tions: a system transformation introduced by [10] which transforms the H2 Optimal
Control Problem into a Disturbance Rejection Problem on a modified system and
the characterizations of the Fixed Poles of the Disturbance Rejection Problem by
Measurement Feedback given in [3].

We have considered here strictly proper systems, then a further step would be to
generalize the results to simply proper systems. The generalization does not appear
trivial since the situation when direct feedthrough matrices are present (from input
or disturbance to controlled output or measurement) is much more intricate, at
least for the geometric approach. One possible way is to use the classical trick as
introduced in [6], but it must be checked that it fully works in the present H2 optimal
control case.

Another possible extension would be to express the solvability conditions and
the fixed poles characterizations directly from the data of the original system before
computing the modified system.

(Received April 9, 2002.)
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