Parametrization and Reliable Extraction of Proper Compensators.

Ferdinand Kraffer; Petr Zagalák

Abstract: The polynomial matrix equation $X_lD_r + Y_lN_r = D_k$ is solved for those X_l and Y_l that give proper transfer functions $X_l^{-1}Y_l$ characterizing a subclass of compensators, contained in the class whose arbitrary element can be cascaded to a plant with the given strictly proper transfer function $N_rD_r^{-1}$ such that wrapping the negative unity feedback round the cascade gives a system whose poles are specified by D_k .

The subclass is navigated and extracted through a conventional parametrization whose denominators are affine to row echelon form and the centre is in a compensator whose numerator has minimum column degrees. Applications include stabilization of linear multivariable systems.

Keywords:

AMS Subject Classification: 93B;