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NONREGULAR DECOUPLING WITH STABILITY
OF TWO–OUTPUT SYSTEMS1

Javier Ruiz-León, Jorge A. Torres Muñoz and Francisco Lizaola

In this paper we present a solution to the decoupling problem with stability of linear
multivariable systems with 2 outputs, using nonregular static state feedback. The problem
is tackled using an algebraic-polynomial approach, and the main idea is to test the con-
ditions for a decoupling compensator with stability to be feedback realizable. It is shown
that the problem has a solution if and only if Morse’s list I2 is greater than or equal to the
infinite and unstable structure of the proper and stable part of the stable interactor of the
system. A constructive procedure to find a state feedback, which achieves decoupling with
stability, is also presented.

1. INTRODUCTION

The row-by-row decoupling of linear multivariable systems by static state feedback
has been extensively studied since the 1960’s. This problem has been solved for the
case of systems with the same number of inputs and outputs, or square systems
(see for instance [5] and [1]), which is usually referred to as the regular decoupling
problem. The regular decoupling problem with stability by static state feedback has
been solved in [8] and [10].

Regarding the decoupling of systems with more inputs than outputs, or non-
regular decoupling problem, even though there exist solutions for particular cases,
namely, systems with 2 outputs [2, 7], and systems whose essential orders are all
equal [3], the problem remains unsolved in its full generality.

The aim of this paper is to study the nonregular decoupling problem with stability
for linear systems with two outputs. We present a solution to this problem in terms
of structural information of the system. It is shown that a linear system with 2
outputs and 3 or more inputs is decouplable with stability if and only if Morse’s list
I2 [9] is greater than or equal to the infinite and unstable structure of the proper
and stable part of the stable interactor of the system. The problem is tackled using
an algebraic-polynomial approach, and the main idea is to test the conditions for a
decoupling compensator with stability to be feedback realizable.

1This work was supported by the National Council of Science and Technology of Mexico (CONA-
CYT) through grant No. 31844-A.
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The problem statement is presented in Section 2. In Section 3, we introduce
the main ingredients in the study of this problem, namely: the stable interactor,
the extended system, the extended stable interactor, and feedback realization of
precompensators. The main result is presented in Section 4, which relies also on
technical results presented in Appendix 1 and Appendix 2. The problem statement
and preliminaries will be presented in a general setting for linear systems with p
outputs and m inputs, and the assumption of p = 2 will be made evident until
Section 4. An example is presented in Section 5, which illustrates the procedure
to obtain a nonregular state feedback, which decouples with stability a 2-output
system. Finally, we end up with some conclusions.

2. PROBLEM STATEMENT

We consider in this work linear multivariable controllable systems described by

(A,B,C)

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

where x ∈ IRn, u ∈ IRm and y ∈ IRp are, respectively, the state, input and output
vectors of the system. Further, in Section 4 we will restrict ourselves to systems
(A,B, C) with 2 outputs and 3 or more inputs, i. e., p = 2 and m ≥ 3.

The system (A,B, C) is said to be row by row decouplable with stability by static
state feedback if there exists a state feedback

(F,G) : u(t) = Fx(t) + Gv(t)

where F ∈ IRm×n and G ∈ IRm×p are constant matrices, rank G = p (nonregular
static state feedback), and v(t) is a new input vector, such that the input vi(t)
controls the output yi(t), i = 1, . . . , p, without affecting the other outputs, and the
closed-loop system (A + BF, BG, C) is internally stable, i. e., the eigenvalues of the
matrix A + BF are located in the open left half complex plane.

From the input-output point of view, the previous formulation is equivalent to
the existence of a state feedback (F, G) such that the transfer function TF,G(s) of
the closed-loop system (A + BF, BG, C) is of the form

TFG(s) = C(sI −A−BF )−1BG = diag{w1(s), . . . , wp(s)} =: W (s) (1)

and the closed-loop system (A + BF,BG, C) is internally stable, which implies also
that wi(s) 6= 0, i = 1, . . . , p, are strictly proper and stable rational functions.

We can suppose without loss of generality that the system (A,B, C) is stable; if
not, there always exists a preliminary state feedback, which stabilizes the system,
since we are considering it to be controllable. Thus, the transfer function matrix of
the system, T (s) = C(sI −A)−1B, is a strictly proper and stable rational matrix.
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3. PRELIMINARIES

3.1. The stable interactor

Let u(t) = Fx(t) + Gv(t) be a regular static state feedback applied on the stable
system (A,B, C), such that the closed-loop system (A + BF, BG, C) is internally
stable. The closed-loop transfer function is given by

TFG(s) = C(sI −A−BF )−1BG.

After some manipulations we obtain

TFG(s) = C(sI −A)−1B[I − F (sI −A)−1B]−1G = T (s)R(s)

where T (s) = C(sI −A)−1B is the transfer function of the system (A,B, C), and

R(s) := [I − F (sI −A)−1B]−1G.

Since the closed-loop system is supposed to be stable, then R(s) must be clearly
a proper and stable rational matrix. Further, from

R−1(s) = G−1[I − F (sI −A)−1B] =
1

det(sI −A)
G−1[I − F Adj(sI −A)B]

it can be seen that R−1(s) is also proper and stable, since (A, B,C) is stable. Then,
we have the following result.

Remark 1. Let T (s) be the transfer function of the stable system (A, B,C). Then,
the effect of a regular static state feedback u(t) = Fx(t) + Gv(t) which preserves
internal stability can be represented in transfer function terms as a biproper and
bistable matrix postmultiplying T (s).

This can be considered as the matrix interpretation of the fact that we are neither
allowed to introduce unstable poles nor to cancel out unstable zeros in order to keep
the internal stability of the closed-loop system.

At this stage, it is important to consider the information of the system (A,B, C)
which remains invariant under the action of biproper and bistable compensation,
and consequently, invariant under the action of a regular state feedback which pre-
serves internal stability. This information is contained in the stable interactor (or
π-interactor) of the system, defined below ([4, 10]).

In the study of problems involving stability from an algebraic point of view, it
is important to consider the properties of the ring of proper and stable rational
functions IRps(s). This set is known to be a Euclidean ring [11], the degree of a
proper and stable rational function f(s) ∈ IRps(s), hereafter denoted degps f(s),
taken as the number of infinite plus unstable zeros of f(s).
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Lemma 1. Let T (s) be the transfer function of (A,B, C). Then, there exist a
biproper and bistable matrix B(s) ∈ IRm×m

ps (s) and a nonsingular lower triangular
matrix Φ−1

s (s) ∈ IRp×p
ps (s), unique up to units of the ring IRps(s), such that

T (s)B(s) =
[

Φ−1
s (s) 0

]
, (2)

where

Φ−1
s (s) =




ϕ11(s) (0)
...

. . .
ϕp1(s) . . . ϕpp(s)


 , (3)

and the rational functions ϕij(s) ∈ IRps(s) satisfy, for i > j,

ϕij(s) = 0, or degps ϕij(s) < degps ϕii(s),

and they are of the form

ϕii(s) =
αii(s)
πnii

ϕij(s) =
αij(s)
πnij

,

where αii(s) ∈ IR[s] is a polynomial with only unstable roots (antistable polynomial),
π = s + β is a stable term and αij(s) ∈ IR[s] is a polynomial.

Notice that the proper and stable rational matrix Φ−1
s (s) is actually the column

Hermite form of T (s) over the ring of proper and stable rational functions IRps(s).
The rational matrix Φs(s), which is the inverse of Φ−1

s (s), is known as the sta-
ble interactor of the system, and it contains the information of the system that is
invariant under a regular state feedback which preserves internal stability. In par-
ticular, it contains the infinite zeros and unstable zeros of the system, information
that plays a key role in the decoupling problem with stability. While the classical
system interactor Φ(s) is a polynomial matrix with certain properties [12], the stable
interactor Φs(s) is in general a nonsingular lower triangular rational matrix having
only unstable poles. That Φs(s) has only unstable poles can be seen from the fact
that the numerator of the determinant of Φ−1

s (s) is the product of the antistable
polynomials αii(s), i = 1, . . . , p. Observe also that if the system (A,B,C) has no
unstable zeros, then Φs(s) is a polynomial matrix.

Let T (s) ∈ IRp×m
ps (s) be the transfer function of (A,B,C) and let Φs(s) be its

stable interactor. Factorize Φs(s) as

Φs(s) = Γs(s) diag
{

1
g1(s)

, · · · ,
1

gp(s)

}
(4)

where gi(s), i = 1, . . . , p, are proper and stable rational functions of the least possible
degree, such that the elements of the ith column of Γs(s) have no unstable or infinite
poles. In other words, gi(s) ∈ IRps(s) are the least degree proper and stable rational
functions such that Γs(s) is a proper and stable rational matrix.
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The integers
nie,s := degps gi(s), i = 1, . . . , p,

are called the s-essential orders of the system (A,B, C) and the matrix Γs(s) is called
the proper and stable part of the stable interactor Φs(s) (see [4]).

The non null degrees of the proper and stable rational functions in the Smith
form of Γs(s) over IRps(s), denoted {δi}, will be called the infinite and unstable
structure of Γs(s).

3.2. The extended system and the extended stable interactor

Besides the information about the infinite and unstable zeros of the system, in
the nonregular decoupling problem with stability is also important the information
about Morse’s list I2 [9]. To make this information appear, it is necessary to define
a so-called extended system.

Consider
T (s) = C(sI −A)−1B = N(s)D−1(s),

where N(s), D(s) is a right coprime matrix fraction description of the system
(A,B, C). Let U(s) be a unimodular matrix such that

N(s)U(s) =
[

Q(s) 0
]

where Q(s) ∈ IRp×p[s] is a nonsingular polynomial matrix (which can be considered
lower triangular without loss of generality), and define

K(s) :=
[

Q(s) 0
0 Im−p

]
U−1(s).

The matrix U(s) can be chosen such that Te(s) = K(s)D−1(s) is strictly proper.
Since we are supposing the system to be stable, it follows that Te(s) is a strictly
proper and stable rational matrix. The matrix Te(s) is called an extension of T (s),
and a realization of Te(s) with the same order of the system (A,B, C) is called an
extended system [6].

Lemma 2. (Ruiz et al [10]) Let T (s) be the transfer function of the system
(A,B, C), and let Te(s) be the transfer function of its associated extended sys-
tem. Then there exist a biproper and bistable matrix B1(s) and a nonsingular lower
triangular matrix Φ−1

es (s), such that

Te(s)B1(s) = Φ−1
es (s), (5)

and the stable interactor Φes(s) of Te(s) has the form

Φes(s) =

[
Φ1,s(s) 0

Φ2,s(s) Φ3,s(s)

]
(6)

where Φ1,s(s) is the stable interactor of T (s), and the matrix Φ3,s(s) is given by

Φ3,s = diag {πσ1 , . . . , πσm−p} (7)

where {σi} is Morse’s list I2 of the system.
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3.3. Feedback realization of precompensators

A given proper compensator C(s) is said to be feedback realizable on the system
(A,B, C) if there exists a state feedback (F, G) such that

C(s) = [I − F (sI −A)−1B]−1G.

The following result states the conditions for a full column rank proper compen-
sator to be realizable by a nonregular static state feedback, which preserves internal
stability.

Lemma 3. [10] Let the matrices N1(s) and D(s) be a right coprime matrix
fraction description of the system (A,B, In), i. e., T (s) = CN1(s)D−1(s), and let
C(s) ∈ IRm×m

ps (s) be a proper and stable compensator. Then C(s) is realizable on
(A,B, C) by a static state feedback which preserves internal stability if and only if
there exists a biproper and bistable matrix V (s) ∈ IRm×m

ps such that

— V (s)C(s) =
[

Ip

0

]
, and

— V (s)D(s) is a polynomial matrix.

It is clear that if we propose a compensator such that the compensated system
is decoupled with stability, then solving the decoupling problem with stability by
state feedback amounts to find the conditions for this compensator to be feedback
realizable. This idea will be used in the proof of Theorem 1. First, we have the
following result, which can be deduced from the previous Lemma 3.

Lemma 4. The system (A,B, C) is decouplable with stability by a nonregular
static state feedback, such that the transfer function of the closed-loop system is
given by

TFG(s) = C(sI −A−BF )−1BG = diag{g1(s), . . . , gp(s)}
where {gi(s)} are the proper and stable rational functions in (4), if and only if there
exists a biproper and bistable matrix V (s) ∈ IRm×m

ps (s) such that

— V (s)
[

Γs(s)
X(s)

]
=

[
Ip

0

]
, and (8)

— V (s)Φes(s)K(s) is a polynomial matrix, (9)

where Γs(s) is the proper and stable part of the system interactor Φ1,s(s), and X(s)

is a proper and stable matrix such that
[

Γs(s)
X(s)

]
is column biproper and bistable.

Regarding the feedback realization of precompensators, the following result shows
that there always exists a state feedback such that Φ−1

es (s) is the closed-loop transfer
function of a extended system.
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Lemma 5. The matrix B1(s) appearing in (5) is realizable by regular state feed-
back.

P r o o f . With K(s), D(s) being a right coprime matrix fraction description of
Te(s), and from Lemma 3, the matrix B1(s) will be proved to be feedback realizable
if the product B−1

1 (s)D(s) is polynomial.
From (5) we have that

Te(s)B1(s) = K(s)D−1(s)B1(s) = Φ−1
es (s).

Then, it follows that
B−1

1 (s)D(s) = Φes(s)K(s)

is polynomial, since Φes(s) is a rational matrix with only unstable poles, B1(s) is
biproper and bistable, and D(s) is stable. 2

The fact that the product Φes(s)K(s) is polynomial will be also used in the
procedure to find a realizable compensator that decouples a system with stability.

4. MAIN RESULT

In this section we present as main result the necessary and sufficient conditions for a
linear multivariable system with 2 outputs and more than 3 inputs to be decouplable
with stability. Roughly speaking, the problem is solvable if and only if Morse’s list
I2 is big enough to compensate the unstable and infinite zero structure of the proper
and stable part of the stable interactor of the system.

Theorem 1. Let (A,B, C) be a linear multivariable system with 2 outputs and
3 or more inputs m. Let {σ1, σ2, . . . , σm−2} be Morse’s list I2 of the system, and
δ1 be the infinite and unstable structure of the proper and stable part of the stable
interactor. Then, the system (A,B, C) is decouplable with stability if and only if

δ1 ≤
m−2∑

i=1

σi. (10)

P r o o f . The necessity of the result is proved as follows: From Lemma 4, there

exists a biproper and bistable matrix V (s) =
[

V11(s) V12(s)
V21(s) V22(s)

]
fulfilling conditions

(8) and (9). Since
[

Γs(s)
X(s)

]
is column biproper and bistable, then there exist proper

and stable matrices R12(s) and R22(s) such that
[

Γ (s) R12 (s)
X (s) R22 (s)

]
is biproper and

bistable. Then, from
[

Ip 0

V21(s) V22(s)

][
Γ(s) R12(s)

X(s) R22(s)

]
=

[
Γ(s) R12(s)

0 Im−p

]
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it can be seen that the infinite and unstable structure of V22(s) is equal to δ1.
From this, and since the product

[
V11(s) V12(s)

V21(s) V22(s)

][
Φ1,s(s)Q(s) 0

Φ2,s(s)Q(s) Φ3,s(s)

]

is polynomial, and Φ3,s = diag {πσ1 . . . , πσm−2}, then we have that (10) holds.
For the sufficiency, given that δ1 ≤

∑m−2
i=1 σi, we will show how to obtain a state

feedback which decouples the system with stability. First, the case of systems with
3 inputs will be considered, and afterwards it will be shown how to reduce the case
of more than 3 inputs to the case of systems with 3 inputs.

Consider that (A,B, C) has 2 outputs and 3 inputs. For these systems we have
only one element in Morse’s list I2, namely σ1, and (10) becomes

δ1 ≤ σ1.

The extended interactor in this case has the general form

Φes(s) =




α11(s)
πn1

0 0

α21(s)
πn21

α22(s)
πn2

0

α31(s)
πn31

α32(s)
πn32

1
πσ1




−1

(11)

=




πn1

α11

− α21

α11α22
πn1+n2−n21

α21α32

α11α22
πσ1+n1+n2−n21−n32 − α31

α11
πσ1+n1−n31

0 0

πn2

α22
0

−α32

α22
πσ1+n2−n32 πσ1




where α11, α22 are antistable polynomials, and because of the properties of Φ−1
es (s)

in Lemma 1 we have that

— n21 < n2,

— n31 < σ1, n32 < σ1,

— n1 ≤ n2.

Observe also that:

i) The lowest power of π in the elements (2, 1) and (3, 1) of Φes(s) is greater than
n1 (since n21 < n2, n32 < σ1, and n31 < σ1).

ii) The lowest power of π in the element (3, 2) of Φes(s) is greater than n2 (since
n32 < σ1).
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The matrix K(s) is given by

K(s) =
[

Q(s) 0
0 1

]
U−1(s) =




q11(s) 0
q21(s) q22(s)

1


 U−1(s). (12)

Since α11(s) contains the unstable zeros of the first row of T (s) and q11(s) contains
the stable and unstable zeros of the first row of T (s), then α11(s) divides q11(s),
denoted as α11(s) | q11(s). The same holds for α22(s) and q22(s), i. e., α22(s) | q22(s).

Finding a biproper and bistable matrix V (s) that satisfies condition (8) is not
so difficult, the problem is that this matrix must also satisfy the polynomiality
condition (9). Based on the previously stated forms and properties of the extended
interactor Φes(s) and matrix K(s), a general procedure is provided in Appendix 1 to
find a biproper and bistable matrix V (s) (see (18)) and a decoupling precompensator
satisfying conditions (8) and (9) for systems with 2 outputs and 3 inputs.

Once the biproper and bistable matrix V (s) and the decoupling precompensator
satisfying (8) and (9) have been found following the procedure in Appendix 1, then a
nonregular state feedback which decouples the system with stability is obtained from
a constant solution X, Y , with X nonsingular, to the polynomial matrix equation

XD(s) + Y N1(s) = V (s)Φes(s)K(s),

as

F = −X−1Y, G = X−1

[
I2

0

]
,

where N1(s), D(s) is a normal external description of the system.
To complete the proof of Theorem 1, in Appendix 2 it is shown how the case of

a system (A,B, C) with 2 outputs and more than 3 inputs can be reduced to the
previously considered case of a system with 2 outputs and 3 inputs using nonregu-
lar state feedback, thus solving the decoupling problem with stability for linear
multivariable system with 2 outputs. 2

5. EXAMPLE

Let the system (A,B, C) be given by

A =




−3 −3 −1 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 −1 0 −4 −6 −4 −1 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −2 −1
0 0 0 0 0 0 0 1 0




, B =




1 0 1
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 0




,
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C =
[

1 2 1 0 0 0 0 −1 −2
1 2 1 0 0 1 −2 −1 −2

]
,

and whose transfer function is

T (s) = C(sI −A)−1B

=




1
s + 1

0 0

s6 + 6s5 + 15s4 + 20s3 + 14s2 + 8s + 1
(s + 1)7

s− 2
(s + 1)4

s− 2
(s + 1)8


 .

After some computations, the stable interactor of the system (A,B, C) and the
associated extended stable interactor for π = s + 1 result to be

Φs(s) =




s + 1 0

− (s + 1)4

s− 2
(s + 1)4

s− 2


 =




s− 2
(s + 1)3

0

−1 1




︸ ︷︷ ︸
Γs(s)




s− 2
(s + 1)4

0

0
s− 2

(s + 1)4




−1

,

Φes(s) =




s + 1 0 0

− (s + 1)4

s− 2
(s + 1)4

s− 2
0

s(s + 1)2 0 (s + 1)4




,

where it can be seen that
δ1 = 3, σ1 = 4

and since δ1 < σ1, then the system is decouplable with stability.
Following the procedure from Appendix 1, the decoupling compensator with sta-

bility C(s) (state feedback realizable) and the biproper and bistable matrix V (s)
satisfying conditions (8) and (9) are found as

C(s) =




s− 2
(s + 1)3

0

−s4 + 4s3 + 6s2 + 4s + 2
(s + 1)4

1

2s2 + 1
(s + 1)2

0




,

V (s) =




1
4

2s + 5
(s + 1)2

0
1
4

(s + 2)(2s2 + 6s + 7)
(s + 1)3

1
4

2s2 + 3s + 5
(s + 1)3

1
1
4

2s4 + 12s3 + 29s2 + 33s + 18
(s + 1)4

2s2 + 1
(s + 1)2

0 − s− 2
(s + 1)3




.
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From a constant solution to a polynomial matrix equation, we obtain the state
feedback (F, G),

F =




2 5/2 1/2 0 0 0 0 −2 −2
0 1 0 0 0 0 0 0 −1

−1 −7/2 −5/2 0 0 0 0 −1 −1


 , G =




0 0
−1 1

2 0


 ,

which produces the closed-loop decoupled and stable system (A+BF, BG,C), whose
transfer function is

TFG(s) = C(sI −A−BF )BG =




s− 2
(s + 1)4

0

0
s− 2

(s + 1)4


 .

6. CONCLUSIONS

In this paper a solution to the nonregular decoupling problem with stability for
linear systems with 2 outputs has been presented. The structural solution is stated
in terms of Morse’s list I2, and the infinite and unstable structure of the proper and
stable part of the stable interactor of the system. A constructive procedure to find
a state feedback, which achieves decoupling with stability has also been presented.

Even though this is a partial result in the sense that only applies to linear systems
with 2 outputs and 3 or more inputs, to our knowledge it is the first result that
provides necessary and sufficient conditions in the case of nonregular decoupling
with stability.

APPENDIX 1

Computation of a biproper and bistable matrix and a decoupling precompensator
satisfying conditions (8) and (9) for a linear system (A,B,C) with 2 outputs and 3
inputs.

Given that δ1 ≤ σ1, the following procedure allows to find a biproper and bistable
matrix V (s) and a decoupling precompensator

C(s) =
[

Γs(s)
X(s)

]

satisfying conditions (8) and (9) for a linear system (A,B,C) with 2 outputs and 3
inputs.

Consider the forms and properties of the extended stable interactor Φes(s) and
matrix K(s) given by (11) and (12). A first choice for the feedback realizable de-



564 J. RUIZ LEON J. A. TORRES MUÑOZ AND F. LIZAOLA

coupling compensator is

C0(s) =
[

Γs(s)
X(s)

]
=




α22

πδ1
0

−α21

πk
1

1 0




(13)

where Γs(s) is the proper and stable part of the stable system interactor, X(s) is
a proper and stable matrix such that C0(s) is column biproper and bistable, and
k = deg α21(s).

In such a case, the simplest biproper and bistable matrix satisfying condition (8)
is the following

V0(s) =




0 0 1

0 1
α21

πk

1 0 −α22

πδ1




. (14)

Next, we have to prove the polynomiality condition (9). Observe that the poly-
nomiality of the matrix V (s)Φes(s)K(s) is equivalent to the polynomiality of the
matrix V (s)Φes(s)M(s), where

M(s) :=
[

Q(s) 0
0 Im−p

]
,

since
Φes(s)K(s) = Φes(s)M(s)U−1(s)

and U(s) is a unimodular matrix.
It can be seen that the only elements in the matrix V0(s)Φes(s)M(s) that could

be no polynomials are the (2, 1) and (3, 1) entries, the first one containing terms of
the form

α21(s)p4(s)π−k+σ1+n1−n32−n21+n2

α21(s)p5(s)π−k+σ1+n1−n31

and the second one containing terms of the form

α22(s)p4(s)π−δ1+σ1+n1−n32−n21+n2

α22(s)p5(s)π−δ1+σ1+n1−n31

where

p4(s) =
q11(s)α21(s)α32(s)

α11(s)α22(s)
, and

p5(s) = −q11(s)α31(s)
α11(s)

Depending on the values of n1 and δ1 we can have one of the following two cases:
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— If
n1 ≥ δ1

then the entries (2, 1) and (3, 1) of the matrix V0(s)Φes(s)M(s) are also polyno-
mials, and the proposed compensator C0 and the biproper and bistable matrix
V0(s) satisfy conditions (8) and (9); end of the search.

— If
n1 < δ1

then we have to find a pair of unimodular matrices UR(s) and UL(s) such that

V (s) := UL(s)V0(s)UR(s)

and
C(s) := U−1

R (s)C0(s) (15)

satisfy conditions (8) and (9).

For simplicity, let us make the change of variables

π = s + β −→ s = π − β.

The polynomials entries (2, 1) and (3, 1) of the matrix Φes(π)M(π), denoted re-
spectively as (ΦesM)21(π) y (ΦesM)31(π) have the general form

(ΦesM)21(π) = τ0π
n1+1 + τ1π

n1+2 + · · ·+ τr1π
w1

(ΦesM)31(π) = θ0π
n1+1 + θ1π

n1+2 + · · ·+ θr2π
w2

where θi and τj are real numbers, and w1, w2 are integers such that w1 ≥ n1 + 1 ,
w2 ≥ n1 + 1. Then, we can factorize these polynomials as

(ΦesM)21(π) = u21(π)πn1 + ϕ̃21(π)

(ΦesM)31(π) = u31(π)πn1 + ϕ̃31(π)

where

u21(π) =
δ1−n1−1∑

i=1

τiπ
i

u31(π) =
δ1−n1−1∑

i=1

θiπ
i

ϕ̃21(π) = τρ1π
δ1 + τρ1+1π

δ1+1 + · · ·+ τr1π
w1

ϕ̃31(π) = θρ2π
δ1 + θρ2+1π

δ1+1 + · · ·+ θr2π
w2 .

We will suppose that the system has no stable zeros, thus implying that α11(s) =
q11(s) and α22(s) = q22(s). Observe that this is not an important restriction since
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stable zeros do not affect the conditions for decoupling with stability. Then, the
product Φes(π)M(π) can be written as

Φes(π)M(π) =




1 0 0
u21 1 0
u31 0 1




︸ ︷︷ ︸
U−1

R (s)




πn1 0 0

ϕ̃21 πn2 0

ϕ̃31 ϕ32 πσ1




︸ ︷︷ ︸
Ω(s)

Let us propose now

V1(π) = V0(π)UR(π) =




−u31 0 1

−u21 − α21π
−ku31 1 α21π

−k

1 + α2π
−δ1u31 0 −α2π

−δ1


 , (16)

where V1(π)Φes(π)M(π) is a polynomial matrix.
Then we will have that

C(π) = U−1
R (π)C0(π) =




α2π
−δ1 0

u21α2π
−δ1 − α21π

−k 1

1 + α2π
−δ1u31 0


 (17)

is such that

V1(π)C(π) =




1 0
0 1
0 0


 .

However, it can be noticed that V1(π) is not biproper because of the entries (1, 1)
and (2, 1) of V1(π). To overcome this difficulty, let

UL(π) =




1 0 ω13 (π)
0 1 ω23 (π)
0 0 1




be a unimodular matrix, where

ω13(π) =
u31

1 + α2π−δ1u31

ω23(π) =
u21 + α21π

−ku31

1 + α2π−δ1u31
.

Thus, the matrix
V (π) = UL(π)V1(π) (18)

is biproper and bistable, and satisfies

V1(π)C(π) =
[

I2

0

]
.
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From V (π) and C(π), and using π = s + β, we obtain the matrices V (s) and
C(s), which are respectively the biproper and bistable matrix and the decoupling
precompensator satisfying conditions (8) and (9).

APPENDIX 2

A nonregular feedback reduction of a 2-output system with more than 3 inputs to
the case of 3-input channels.

The purpose of this section is to show that a system with 2 outputs and more
than 3 inputs can be reduced to the case of 2 outputs and 3 inputs using nonregular
static state feedback, concatenating thus all the structural information of Morse’s
list I2 in only one index σ.

Proposition 1. Let T (s) be the transfer function of the system (A,B,C) with
2 outputs and m inputs, m > 3, and Morse’s list I2 = {σ1, σ2, . . . , σm−2}. Then,
there exists a nonregular static state feedback, such that the transfer matrix of
the closed-loop system has 3 inputs and Morse’s list I2 with an unique index σ =
σ1 + σ2 + · · ·+ σm−2.

P r o o f . Since the matrix B1(s) in (5) is state feedback realizable, we can suppose
without loss of generality that the transfer matrix of the extended system is Φ−1

es (s).
Then, Te(s) may be written as follows,

Te(s) = Φ−1
es (s) = K(s)D−1(s) (19)

where (K(s), D(s)) is a right coprime polynomial factorization of the extended sys-
tem.

Let us consider first the case of 4 inputs, m = 4, in which case the inverse of the
extended interactor may be written as

Φ−1
es (s) =




ϕ̃11(s) 0 0 0

ϕ̃21(s) ϕ̃22(s) 0 0

ϕ̃31(s) ϕ̃32(s) π−σ1 0

ϕ̃41(s) ϕ̃42(s) 0 π−σ2




. (20)

To prove Proposition 1, we find first a precompensator C̃(s) realizable by regular
static state feedback and then we complete it with a constant nonregular input
matrix gain G.

Consider the following precompensator,

C̃(s) =




1 0 0 0
0 1 0 0

−ϕ̃41(s) −ϕ̃42(s) 1 −π−σ2

0 0 0 1




−1

. (21)
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In the product C̃−1(s)Φes(s) the nontrivial terms are the (3, 1) and (3, 2) en-
tries, which can be reduced respectively to ϕ31(s), and ϕ32(s) due to the fact that
Φes(s)Φ−1

es (s) = I. Then, we have that

C̃−1(s)Φes(s) =




ϕ11(s) 0 0 0

ϕ21(s) ϕ22(s) 0 0

ϕ31(s) ϕ32(s) πσ1 −1

ϕ41(s) ϕ42(s) 0 πσ2




. (22)

Now, from this expression and from (19) it can be seen that the product,

C̃−1(s)D(s) = C̃−1(s)Φes(s)K(s)

is polynomial. Moreover, since C̃(s) is by construction a biproper and bistable
matrix, then it is realizable by regular static state stabilizing feedback.

To complete the desired nonregular feedback it is convenient to introduce a non-
regular constant input matrix gain G given by,

G =




1 0 0
0 1 0
0 0 0
0 0 1


 .

In this way the transfer matrix of the closed-loop system TeCG(s) is given by

TeCG(s) =




ϕ̃11(s) 0 0

ϕ̃21(s) ϕ̃22(s) 0

ϕ̃31(s) + ϕ̃41(s)π−σ1 ϕ̃32(s) + ϕ̃42(s)π−σ1 π−σ1−σ2




Clearly, the corresponding extended interactor Φ̃es(s) is

Φ̃es(s) =




ϕ11(s) 0 0

ϕ21(s) ϕ22(s) 0

ϕ31(s)πσ2 + ϕ41(s) ϕ32(s)πσ2 + ϕ42(s) πσ1+σ2


 .

Observe that using nonregular feedback amounts to cancel some inputs, in the
previous case the third one, and as a consequence in order to get the new extended
interactor one has to eliminate a virtual output after closing the loop. Also no-
tice that Φ̃es(s) has the structure of an extended interactor, having only one term
corresponding to the list I2 of value σ1 + σ2.

The above procedure can be repeated as many times as needed for the general
case where the number of inputs m > 4 and as result one would obtain an extended
interactor with a unique index in list I2 of value σ1 + σ2 + . . . + σm−2 as claimed. 2
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The proof of Proposition 1 is in some sense the generalization of an equivalent
statement for the problem without stability requirements and using a precompensa-
tion approach, which is more suitable in the context of the present work (see [7]).

The above result can be interpreted as a nonregular static state feedback action
on the triplet (A,B, C) of the system in such a way that the resulting closed-loop
system will have only one controllability chain in the maximal controllability output
nulling subspaceR∗, which is the result of concatenating all the controllability chains
inside it.

(Received March 29, 2002.)
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