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Published bi-monthly by the Institute of Information Theory and Automation of the
Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 4, 182 08 Praha 8.
— Address of the Editor: P.O. Box 18, 182 08 Prague 8, e-mail: kybernetika@utia.cas.cz.
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DISTURBANCE DECOUPLING OF NONLINEAR MISO
SYSTEMS BY STATIC MEASUREMENT FEEDBACK

Richard Pothin, Claude H. Moog and Xiaohua Xia

This paper highlights the role of the rank of a differential one-form in the solution of
such nonlinear control problems via measurement feedback as disturbance decoupling prob-
lem of multi-input single output (MISO) systems. For the later problem, some necessary
conditions and sufficient conditions are given.

1. INTRODUCTION

The disturbance decoupling problem by state feedback has been addressed in the
literature by several authors (see e. g., the historical accounts of [3, 6, 8]). In general,
most of the solutions assume that the state is available for measurement. When this
is not the case, two approaches may be followed: the reconstruction of the state by
means of an observer or the use of output feedback. Our objective is to investigate
solutions with the second kind of controller since it avoids approximations in the
estimated state and circumvents the superposition of controller and observer.

The few contributions which deal with the nonlinear disturbance decoupling prob-
lem via output or measurement feedback are now briefly mentioned. The disturbance
decoupling problem has been solved by a geometric approach in [7]. The same prob-
lem has also been considered in [9], and a necessary and sufficient condition has been
given using algebraic tools. For the multi-input multi-output (MIMO) case, there
just exists a sufficient condition in [1].

The purpose of this paper is to solve the disturbance decoupling problem via
measurement feedback for the class of MISO systems with a new approach based
on the rank of a differential one-form [4]. In the mean time through these results,
it allows to highlight the role of the rank of a differential one-form in the solution
of nonlinear control problem. For the disturbance decoupling problem via static
measurement feedback of MISO systems, some necessary conditions and sufficient
conditions are given. A complete solution is provided for a restricted class of such
systems.

The paper is organized as follows. In Section 2, some definitions and technical
tools useful are presented. Section 3 gives the main results of this paper and finally,



602 R. POTHIN, C.H. MOOG AND X. XIA

some conclusions are drawn in the last section.

2. DEFINITIONS AND BACKGROUND

Consider,

ẋ = f(x) + g(x)u + p(x)q
y = h(x) (1)
z = k(x),

where x ∈ IRn denotes the state, u ∈ IRm denotes the control, q ∈ IRν denotes the
disturbance, y ∈ IR denotes the output-to-be controlled, and z ∈ IRµ denotes the
measured output. Assume that f, g, p, h and k are meromorphic functions of their
arguments.

Let K denote the field of meromorphic functions of x, u, q, and a finite number
of derivatives of u and q and define the vector space E = spanK{dζ|ζ ∈ K}, X =
spanK{dx}, Z = spanK{dz, } and U = spanK{du, du̇, . . . , du(k), . . . }.

Definition 1. (Conte et al [3]) The relative degree r of the output y is set to be

r := min{k ∈ IN |dy(k) /∈ X}.

If such an integer does not exist, then one sets r := ∞.

As in [5], define the subspace Ω by

Ω =
{

ω ∈ X |∀k ∈ IN : ω(k) ∈ spanK{dx, dy(r), . . . , dy(r+k−1)}
}

.

The subspace Ω is instrumental for solving the disturbance decoupling problem and
may be computed as the limit of the following algorithm:

Ω0 = spanK{dx},
Ωk+1 =

{
ω ∈ Ωk|ω̇ ∈ Ωk + spanK{dy(r)}

}
, (k ∈ IN).

Problem Statement. (Disturbance decoupling problem by regular static measure-
ment feedback.)
Consider a nonlinear system of the form (1), find, if possible, a nonlinear feedback
of the form

u = α(z) + β(z)v (2)

where β(z) is invertible and such that the closed loop system satisfies:

(i) dy(k) ∈ spanK{dx,dv, . . . , dv(k−r)}, ∀ k ≥ r

(ii) dy(r) /∈ spanK{dx}.
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Condition (i) represents the noninteraction with the disturbances whereas condition
(ii) represents the output controllability. Invertibility of β(z) implies the existence
of an inverse matrix β−1(z) whose entries belong to K. Both β(z) and β−1(z) may
have singularities in IRn.

The following notations are borrowed from [4]. The originality of this paper
is mainly due to the fact that this definition is used for solving the disturbance
decoupling problem by static measurement feedback.

Let (dω)γ = dω ∧ · · · ∧ dω be a γ-fold product.

Definition 2. The rank of an one-form ω is γ if ω∧(dω)(γ) 6=0 but ω∧(dω)(γ+1) =0.

From [4], γ + 1 is the dimension of the smallest integrable space containing a
given one-form, i. e., γ +1 is the minimal number of exact one forms dα1, . . . , dαγ+1

such that

ω =
γ+1∑

i=1

ξidαi,

for some ξi ∈ K. In the sequel, we will call the set {dα1, . . . , dαγ+1} a basis of ω.
As shown in [2, 4], the Pfaff–Darboux Theorem can be used to construct such a

basis. Another matrix based construction is described in [4].
The rank of a differential form will be extensively used to give necessary and suffi-

cient conditions for the disturbance decoupling problem with measurement feedback.

3. MAIN RESULTS

A direct extension of the result in [9] allows to give a sufficient condition for the
solvability of the problem.

Theorem 1. The disturbance decoupling problem is solvable by static measure-
ment feedback if:

(i) dy(r) ∈ Ω + Z + U .

(ii) There exists a one-form ω ∈ Z + U s.t.dy(r) − ω ∈ Ω and s.t. rank (ω) = γ ≤
m− 1.

(iii) For any basis spanK{dα1, . . . , dαγ+1} of Ω, i. e., ω = β1dα1(z, u)+β2dα2(z, u)+
β3dα3(z, u) + · · ·+ βγ+1dαγ+1(z + u),

rank
∂

∂u
[αi(z, u)] = γ + 1, (i = 1, . . . , γ + 1). (3)
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P r o o f . Assume that condition (i) is fulfilled. Then there exists a one-form ω
such that dy(r) − ω ∈ Ω. From [4], ω can be written as follows

ω = β1dα1(z, u) + β2dα2(z, u)

+ β3dα3(z, u) + · · ·+ βγ+1dαγ+1(z, u).
(4)

When conditions (ii) and (iii) are satisfied, the γ +1 one-forms dαi are independent
in u. Since γ + 1 ≤ m, the following definitions

vi = αi(z, u),

for i = 1, . . . , γ +1 can be extended to define a static measurement feedback. Under
this feedback,

dy(r) ∈ Ω⊕ spanK{dv}. 2

Remark 1. In the special case where dimZ = 1, if Ω∩Z 6= 0 then the disturbance
decoupling problem has a solution if and only if the system is already decoupled.

Example 1. This example illustrates Theorem 1. The considered system admits
a static measurement feedback solution of the disturbance decoupling problem.

Consider,

ẋ1 = x2

ẋ2 = x1(sinx3)u1 + x2(cos x3)u2 + x5

ẋ3 = f(x) + q (5)
ẋ4 = u2

ẋ5 = x1(sinx3)u1 + x2(cos x3)u2 + x5 − x2
1

y = x1

z = x3.

Since Ω = spanK{dx1, dx2, dx4, dx5}, choosing ω = x1d(sin x3)u1 + x2d(cosx3)u2,
one verifies that the rank of ω is one, and a basis for Ω is given by {d(sinx3u1),
d(cosx3u2)}. Condition (iii) is easily verified. A disturbance decoupling feedback is
v1 = (sin z)u1 and v2 = (cos z)u2.

Example 2. This example show that for the MISO case condition (i) of Theo-
rem 1 is not necessary. Indeed, this system can be disturbance decoupled by static
measurement feedback whereas condition (i) is not fulfilled.

Consider,

ẋ1 = x2

ẋ2 = x1(sin x3)u1 + x2(cos x3)u2 + x4

ẋ3 = f(x) + q (6)
ẋ4 = (cos x3)u2

y = x1

z = x3.
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Since Ω = spanK{dx1, dx2}, one has dÿ /∈ Ω + Z + U . Despite this fact, the distur-
bance decoupling problem is solvable via the following measurement feedback

u1 = v1/ sin x3

u2 = v2/ cosx3.

Theorem 1 becomes a necessary and sufficient condition for the class of SISO systems.
Moreover for this special class of system condition (iii) is always fulfilled. Then, the
following corollary is equivalent to the result in [9].

Corollary 1. The disturbance decoupling problem is solvable by static measure-
ment feedback for SISO nonlinear systems if and only if:

(i) dy(r) ∈ Ω + Z + U .

(ii) There exists a one-form ω ∈ Z + U s.t.dy(r) − ω ∈ Ω and s.t. rank (ω) = 0.

P r o o f . (necessity) Assume that system (1) is decoupled by static measurement
feedback. Since one has, by Lemma 1 of [9],

dy(r) ∈ Ω + spanK{dv}, (7)

this implies that dy(r) = ω0 + ω, where ω0 ∈ Ω and ω ∈ spanK{dv}.
Consider the following regular static measurement feedback which is solution of

the problem
u = F (z, v), v = F−1(z, u). (8)

Then (7) and (8) imply condition (i). Since ω = ξd(F−1(z, u)), condition (ii) is also
fulfilled.

(sufficiency) Assume that condition (i) holds. Then this implies

dy(r) ∈ Ω⊕ spanK{dz, du}. (9)

Since r is the relative degree of the output y, when condition (ii) is fulfilled, one can
set λdv = ω. Thus one obtain,

dy(r) ∈ Ω⊕ spanK{dv}. (10)

The system is the decoupled. 2

On the other hand, one can see that for the class of MISO systems, which fulfills
the assumptions such that Ω ∩ Z = 0 and dy(r) ∈ Ω ⊕ Z + U , one has a necessary
and sufficient condition which can be written as follows:
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Theorem 2. Under the assumptions that Ω ∩ Z = 0, and dy(r) ∈ Ω⊕Z + U , the
disturbance decoupling problem is solvable by static measurement feedback if and
only if:

(i) There exists a one-form ω ∈ Z + U s.t. dy(r) − ω ∈ Ω and s.t. rank (ω) = γ ≤
m− 1.

(ii) For any basis spanK{dα1, . . . , dαγ+1} of ω, i. e., ω = β1dα1 + β2dα2 + · · · +
βγ+1dαγ+1

rank
∂

∂u
[αi] = γ + 1(i = 1, . . . , γ + 1). (11)

P r o o f . (necessity) Assume that system (1) is disturbance decouplable by static
measurement feedback defined by v = α(z, u).

Thus by definition,
dy(r) ∈ X + V,

in which V = span{dv1, . . . , dvm}. Thus, there exist a differential one form ω̃ ∈ X
and some coefficients ξ ∈ K such that

dy(r) = ω̃ + ξdα(z, u).

Since one has dy(r) ∈ Ω ⊕ Z + U , this implies that ω̃ ∈ Ω + Z. Assume that
ω̃ = ω̃0 + ω̃z for some ω̃0 ∈ Ω and ω̃z ∈ Z, then from the fact that

dy(r+k) ∈ X + span{dv, . . . , dv(k)},

one can prove, by mathematical induction, that

ω̃(k)
z ∈ spanK{dx, dy(r), . . . , dy(r+k−1)}.

That is, ω̃z ∈ Ω, by the definition of Ω. Thus ω̃z = 0, due to the assumption that
Ω ∩ Z = 0.

Then define ω = ξdα(z, u), the necessity of (i) is fulfilled.
From [4] ω can be described as

ω = β1dα1(z, u) + β2dα2(z, u)

+ β3dα3(z, u) + · · ·+ βγ+1dαγ+1(z, u).
(12)

We show that for any such a choice, condition (ii) is necessarily fulfilled.
If not, there will be a linear combination

ξ1dα1 + · · ·+ ξγ+1dαγ+1 ∈ Z.

Assume without loss of generality that ξ1 6= 0, then ω can be decomposed into

ω = ω̃z + η2dα2 + · · ·+ ηγ+1dαγ+1
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in which

ω̃z =
β1

ξ1
(ξ1dα1 + · · ·+ ξγ+1dαγ+1) ∈ Z

and

ηi = βi − β1

ξ1
(ξi),

for i = 2, . . . , γ + 1.
Analogous to the proof of (i), we can show that ω̃z = 0, a contradiction.
Thus (ii) holds.

(sufficiency) This proof follows the proof of Theorem 1. 2

Example 3. Consider,

ẋ1 = x2

ẋ2 = x3(sinx2) + (cos x2)u
ẋ3 = f(x) + q (13)
y = x1

z = x3.

Since Ω = spanK{dx1, dx2}, one has ω = (sin x2)dx3 + (cos x2)du (ω ∧ (dω) 6= 0,
ω ∧ (dω)(2) = 0).

For this example, there is no solution and condition (ii) is not fulfilled. Indeed,
since the rank of ω is equal to 1, two one-forms are needed to construct an integrable
space containing ω. Or system (13) has just one input.

Example 4. Consider,

ẋ1 = x2

ẋ2 = x1(sinx3)u1 + x2(cos x3)u2

ẋ3 = f(x) + q (14)
y = x1

z = x3.

This system admits the following solution v1 = (sin x3)u1, v2 = (cos x3)u2, since
Ω = spanK{dx1, dx2}, and ω = x1d(sin x3)u1 + x2d(cosx3)u2 (ω ∧ (dω) 6= 0, ω ∧
(dω)(2) = 0).

Here, the rank of ω is equal to 1, and then we need two one-forms to construct
our basis. Since the considered system has two outputs, we are able to define them
(see [4] for a constructive way). We note spanK{dα1, dα2} = spanK{d(sinx3)u1,
d(cosx3)u2}.



608 R. POTHIN, C.H. MOOG AND X. XIA

4. CONCLUSION

The notion of the rank of a one-form is used to solve the nonlinear disturbance
decoupling problem for MISO systems. At this moment, this new approach gives a
complete solution for a special class of MISO nonlinear systems. Further research
will consider a more general class of system. Moreover, note that this notion of rank
of one-form can be used for some other nonlinear control problem.

(Received March 25, 2002.)
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