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RELIABILITY IN THE RASCH MODEL

Patŕıcia Martinková and Karel Zvára

This paper deals with the reliability of composite measurement consisting of true-false
items obeying the Rasch model. A definition of reliability in the Rasch model is proposed
and the connection to the classical definition of reliability is shown. As a modification of the
classical estimator Cronbach’s alpha, a new estimator logistic alpha is proposed. Finally,
the properties of the new estimator are studied via simulations in the Rasch model.
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1. INTRODUCTION

Let us consider the problem of measuring the reliability of a composite measurement
such as an educational test. Consider a set of items

Yj = Tj + ej for j = 1, . . . , m, (1)

where Tj are the unobservable true scores and ej are the error terms with zero mean
and a positive variance, independent from the true scores. The observed overall
score is given by Y = Y1 + · · · + Ym and the overall unobservable true score is
T = T1 + · · ·+ Tm.

The reliability of such a measurement is defined as the ratio of the variability of
the true score to the observed variability, that is

Rm = var (T )/var (Y ). (2)

Also, when having two independent measurements Y1 = T + e1, Y2 = T + e2 of the
same property T, where var (e1) = var (e2), the reliability can be expressed as the
correlation between these two measurements

corr (T + e1, T + e2) =
cov (T + e1, T + e2)√

var 2(Y )
=

var (T )
var (Y )

= Rm. (3)

Since we cannot estimate var (T ), var (e), nor measure the knowledge by the same test
twice and independently, measures to estimate the reliability have been developed.
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A widely used characteristic of reliability is called Cronbach’s alpha. It was
proposed by Cronbach in [6] as a generalization of Kuder–Richardson formula 20 for
binary data (see [9]). Cronbach’s alpha is defined as

αCR =
m

m− 1
var (Y )−∑

j var (Yj)
var (Y )

=
m

m− 1

∑∑
j 6=k σjk∑∑
j,k σjk

, (4)

where σjk is the covariance of the pair (Yj , Yk). A pleasant property of Cronbach’s
alpha is the fact that this characteristic is easy to estimate from the data simply by
using sample variances and sample covariances instead of their population counter-
parts in (4).

Novick and Lewis have shown in [11] that Cronbach’s alpha is always a lower
bound of the reliability and is equal to reliability if, and only if, the test is composed
of items that are essentially tau-equivalent, that is if for the items’ true scores it
holds simultaneously

var (T1) = · · · = var (Tm) = σ2
T

corr (Tj , Tk) = 1, j, k = 1, . . . ,m. (5)

In [13] ten Berge and Zegers came with a series µ0 ≤ µ1 ≤ · · · ≤ Rm of lower bounds
to the reliability, where µ0 = αCR is Cronbach’s alpha, and where

µ1 =
1∑∑
j 6=k σjk




∑∑

j 6=k

σjk +


 m

m− 1

∑∑

j 6=k

σ2
jk




1/2



was proposed by Guttman in [8].
Connection between Cronbach’s alpha and the intraclass correlation coefficient

(ICC) in terms of the 2-way ANOVA model was investigated in [3]. ICC itself was
deeply studied in [5], from where this work also takes inspiration.

The nonrobustness of sample estimate α̂CR is discussed and a robust estimator
of reliability proposed in [14] and more recently in [4].

In this note, we concentrate on the case of educational tests with dichotomously
scored items. In such a case, the assumptions of the classical model (1) are violated.
Therefore, in the next section we propose a new estimate of reliability which should
be more appropriate for binary data.

2. ESTIMATION OF RELIABILITY

Interesting findings about Cronbach’s alpha can be made when its sample estimate

α̂CR =
m

m− 1

∑∑
j 6=k σ̂jk∑ ∑
j,k σ̂jk

(6)

is further rewritten in terms of the two-way ANOVA mixed-effects model: Let us
suppose that the score reached by the ith student in the jth item can be expressed
as

Yij = Ai + bj + eij , (7)
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where ability of ith person Ai ∼ N(0, σ2
A) is a random variable obeying the normal

distribution, bj is an unknown parameter describing the difficulty of jth item and
eij ∼ N(0, σ2

e) is a normally distributed error term, independent from abilities Ap

for p = 1, . . . , n. In this situation the true score can be expressed as Tij = Ai + bj ,
and one can easily see, that conditions (5) of essential tau-equivalence are satisfied,
and therefore αCR = Rm. When considering model (7), the sample estimate α̂CR

can be rewritten as

α̂CR =
MSA −MSe

MSA
= 1− 1

FA
, (8)

where MSA and MSe are the mean squares and FA is statistic widely used for
testing the hypothesis var (A) = 0, either in a fixed effect model (where also student
abilities are understood as fixed) or in mixed effect model (7), see [10] p. 947. As
an interpretation of (8) we can say, that the greater the estimate of reliability α̂CR

is, the better the educational test can distinguish between the students. Besides,
formula (8) can be used for construction of the confidence interval for Cronbach’s
alpha (see also [7]).

Nevertheless, Feldt in [7] warns, that for a test with dichotomously scored items,
the assumptions of analysis of variance are violated. The distribution of error terms
may be far from the normal distribution, and moreover the error term and the true
score cannot be considered independent anymore. Therefore, it is a matter of ques-
tion as to what extent at all the classical estimate Cronbach’s alpha (or better said
Kuder–Richardson formula 20) is appropriate for tests with dichotomously scored
items.

The idea of the present contribution (first mentioned in [15]) is to replace the
F-statistic in (8) best suited for normally distributed variables by the analogous
statistic appropriate for dichotomous data.

Testing the hypothesis H0 : var (T ) = 0 is equal to testing the submodel B where
the score Yij depends only on the test item (and does not depend on the student’s
ability) against the model A + B where the score Yij depends on the student and
on the test item. In the fixed-effect model of logistic regression, the appropriate
statistic is the difference of deviances in the submodel and in the model

X2 = D(B)−D(A + B), (9)

where deviance D is defined as a function of the difference of the log-likelihood for
the model and for the saturated model (for details see, e. g. [1], p. 139). Statistic
(9) has under the null hypothesis asymptotically (for n fixed and m approaching
infinity) the χ2(n− 1) distribution. Therefore, the proposed estimate is

α̂log = 1− n− 1
X2

. (10)

In the next sections, we study the properties of the proposed estimate (10), which
we call logistic alpha, in the Rasch model.
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3. RELIABILITY IN THE RASCH MODEL

The model used most often for describing dichotomously scored items (in particular
in the context of Item Response Theory) is the logit-normal model, called the Rasch
model (see [12]). In the Rasch model, the probability of correct response yij = 1 or
false response yij = 0 of person i on item j is given by

P(Yij = yij |Ai) =
exp[yij(Ai + bj)]
1 + exp(Ai + bj)

, (11)

where Ai ∼ N(0, σ2
A) describes the level of ability of person i, and bj is an unknown

parameter describing the difficulty of item j. The conditional distributions are
assumed to be independent. Since no error term is assumed in model (11), the
classical definition of reliability (2) is not applicable here.

Inspired by formula (2.3) in [5] we propose to define the reliability of measurement
composed of binary data obeying the mixed effect model by the ratio

Rm =
var [E (Yi|Ai)]

var (Yi)
. (12)

Similarly to the classical definition, there is the total observed variability in the
denominator, and there is the part of the var (Yi) due to variability of Ai in the
numerator.

For the classical (mixed-effect two-way ANOVA) model, where

E(Y |A) = var (T )

the new definition merges with the classical definition of reliability (2).
Formula (12) can be used for defining reliability for binary data obeying any type

of distribution. The formula for the reliability in the Rasch model (11) is following
(see the Appendix for detailed derivation):

Rm =

∑m
j=1

∑m
t=1(Cjt −DjDt)∑m

j=1

∑m
t=1(Cjt −DjDt) +

∑m
j=1 Bj

, (13)

where

Bj = E A
eA+bj

(1 + eA+bj )2
=

∫ ∞

−∞

eA+bj

(1 + eA+bj )2
1√

2πσ2
A

e
− A2

2σ2
A dA,

Dj = E A
eA+bj

1 + eA+bj
=

∫ ∞

−∞

eA+bj

1 + eA+bj

1√
2πσ2

A

e
− A2

2σ2
A dA

and

Cjt = E A
eA+bj

1 + eA+bj

eA+bt

1 + eA+bt
=

∫ ∞

−∞

eA+bj

1 + eA+bj

eA+bt

1 + eA+bt

1√
2πσ2

A

e
− A2

2σ2
A dA.

These integrals cannot be evaluated explicitly, but can be evaluated numerically.
Table 1 shows the values of the reliability for some numbers of items L and some
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Table 1. Reliability in the Rasch model for different number of items.

Number Variability of abilities σA

of items 0.01 0.1 0.2 0.5 0.9 2.5 10

L=3 0.00008 0.00741 0.02881 0.15047 0.34335 0.73121 0.94152

SB R3 0.00008 0.00742 0.02882 0.15054 0.34345 0.73125 0.94153

L=11 0.00028 0.02667 0.09814 0.39386 0.65731 0.90890 0.98335

L=20 0.00050 0.04747 0.16519 0.54160 0.77717 0.94775 0.99077

SB R20 0.00050 0.04746 0.16518 0.54159 0.77716 0.94775 0.99077

L=50 0.00125 0.11078 0.33098 0.74709 0.89711 0.97843 0.99629

SB R50 0.00125 0.11077 0.33095 0.74707 0.89710 0.97843 0.99629

L=100 0.00249 0.19947 0.49735 0.85524 0.94577 0.98910 0.99814

SB R100 0.00249 0.19944 0.49731 0.85522 0.94576 0.98910 0.99814

variabilities of student abilities σA, when the equidistantly distributed item difficul-
ties between −0.1 and 0.1 of length L are chosen. The values were calculated using
the function integrate in software R, using multiple of ±25 of the variability σA

as the limits of integration. The maximum absolute error reached in integrations
for L = 3, L = 11, and L = 20 was less than 0.000025, for L = 50 and L = 100
it was less than 0.00013. Table 1 gives an impression that the relationship between
reliability and number of items follows the Spearman–Brown formula. This formula
for two tests consisting of different numbers (m1 and m2) of tau-equivalent items
has been proved in the ANOVA model (7) (see [2]) and it says

Rm2 =
m2
m1

Rm1

1 + (m2
m1

− 1)Rm1

. (14)

Emphasized lines in Table 1 named SB Rm2 are the values Rm2 we would get via the
Spearman–Brown formula when setting m1 = 11 and taking the values of the bold
line L=11 as Rm1 . The question is, whether the differences are due to integration
error or not. A theoretical proof for Spearman–Brown formula in the Rasch model
would be needed to answer the question.

In Table 2 the true reliabilities are displayed for the case of 11 items, when the
item difficulties are unequidistantly distributed with different variability. One can
see that the variability of item difficulties has only a slight impact on test reliability
when compared with impact of the number of items.

4. SIMULATIONS AND A PRACTICAL EXAMPLE

This study was inspired by the data describing 11 dichotomously scored items in
biology. We made, first of all, a simulation study for this case. We studied the
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Table 2. Reliability in the Rasch model for different item difficulties.

Item Variability of abilities σA

difficulties 0.01 0.1 0.2 0.5 0.9 2.5 10
B1 0.00028 0.02667 0.09814 0.39386 0.65731 0.90890 0.98335
B2 0.00027 0.02665 0.09806 0.39368 0.65719 0.90889 0.98334
B3 0.00027 0.02665 0.09806 0.39368 0.65719 0.90889 0.98334
B4 0.00028 0.02667 0.09813 0.39385 0.65730 0.90890 0.98335
B5 0.00027 0.02664 0.09803 0.39360 0.65711 0.90886 0.98334
B6 0.00027 0.02664 0.09802 0.39359 0.65715 0.90889 0.98335
B7 0.00025 0.02439 0.09044 0.37481 0.64241 0.90608 0.98318

B1 = {−0.1,−0.08,−0.06,−0.04,−0.02, 0, 0.02, 0.04, 0.06, 0.08, 0.1}
B2 = {−0.1,−0.099,−0.098,−0.097,−0.096,−0.095,−0.094,−0.093, 0, 0.05, 0.1}
B3 = {−0.1,−0.05, 0, 0.093, 0.094, 0.095, 0.096, 0.097, 0.098, 0.099, 0.1}
B4 = {−0.1,−0.05,−0.03, 0, 0.02, 0.04, 0.06, 0.07, 0.08, 0.09, 0.1}
B5 = {−0.1,−0.1,−0.1,−0.1,−0.1, 0, 0.1, 0.1, 0.1, 0.1, 0.1}
B6 = {−0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1}
B7 = {−1,−0.8,−0.6,−0.4,−0.2, 0, 0.2, 0.4, 0.6, 0.8, 1}

number of students of n = 20, n = 30 and of n = 50. Besides, the number of items of
m = 20 and m = 50 was studied. The item difficulties were always taken equidistant
between −0.1 and 0.1. In each case, the number of 55 values of σA were chosen so
that the resulting 55 reliabilities would cover the interval 〈0, 1〉 .

For each of five combinations of number of students and number of items (five
figures) and for each of 55 values of σA (55 points in the figure) the true reliability
was computed via formula (13). Further, the following procedure was repeated 500-
times for each point:

1. The set of n students abilities Ai was generated from the N(0, σA) distribution

2. For each of n abilities Ai, the m scores on the test items were generated from
the Rasch model (11)

3. The sample estimate of the Cronbach’s alpha (8) and the logistic alpha (10)
was computed from the data

For each of 500 sample estimates of Cronbach’s alpha and logistic alpha, their average
value and sample variance was computed, and finally the bias and mean squared error
(MSE) were displayed.

As shown in the enclosed figures, the new estimate gives better results (smaller
bias and mean squared error), except for the case of the true reliability value close
to 1. The new estimate tends to give very good results for the case when the number
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Fig. 1. Bias and MSE for classical (empty circles) and logistic (solid circles) estimator of

reliability. Number of students 20, number of items 11.
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Fig. 2. Bias and MSE for classical (empty circles) and logistic (solid circles) estimator of

reliability. Number of students 20, number of items 20.
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Fig. 3. Bias and MSE for classical (empty circles) and logistic (solid circles) estimator of

reliability. Number of students 20, number of items 50.
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Fig. 5. Bias and MSE for classical (empty circles) and logistic (solid circles) estimator of

reliability. Number of students 50, number of items 11.

of items exceeds the number of students (Figure 3). In the case of high number of
students in proportion to the number of items (Figure 5), the results of the new
estimate are a bit worse.

Let us now look at an example of a real data analysis. We analysed responses of
total number of 224 students to a biology test composed of 11 dichotomous items.
The students were divided into nine groups (nine classes). In Table 3, we can see the
number of students in each group, the estimate of reliability based on Cronbach’s
alpha and the estimate of reliability via logistic alpha.

Table 3. Estimation of reliability via Cronbach’s and logistic alpha.

Group # of students α̂CR α̂log

1 21 0.2492918 0.30021227

2 24 −0.1319623 −0.02784881

3 28 0.2562637 0.29611042

4 21 0.4248927 0.47305085

5 31 0.3694124 0.40444782

6 25 0.6944165 0.68331857

7 24 0.2213452 0.26716854

8 23 0.4833022 0.53131265

9 27 0.3570429 0.44172929

In group number 2, both logistic and Cronbach’s alpha gave a negative estimate
of reliability. This was caused by small variability of total scores reached by students
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in this group. Except one group, the logistic alpha gave always higher estimate of
reliability than the Cronbach’s alpha. This might be an example of underestimation
of reliability by Cronbach’s alpha. Nevertheless, the real data examples do not tell
us much about which of the two estimates is better, since we do not know the true
value of the reliability.

5. CONCLUSIONS AND DISCUSSION

While the classical definition of reliability (2) is not appropriate for mixed effect
models of binary data, we proposed a new definition of reliability (12), which is
shown to have the same properties as the classical definition. The new definition
merges with the classical definition for the classical model (1).

As a counterpart to the classical estimator of reliability Cronbach’s alpha (4),
which is based on F-statistics appropriate for continuous data, a new estimate named
logistic alpha (10), appropriate for binary data, is proposed.

In simulations in the Rasch model, the new estimate gave better results (smaller
bias and mean squared error), except for the case of real reliability values close to 1.
In particular, the new estimate gave better results for the case of a high number of
items compared to the number of students. The results of the new estimate tend
to be worse for the case of high number of students in proportion to the number of
items.

Further work should contain a study of the theoretical properties of the new
estimate in the case of null hypothesis H0 : Rm = 0 and also in the case when the
alternative H1 : Rm > 0 holds. This could lead to improvement of the proposed
estimate logistic alpha for true values of reliability close to 1.

APPENDIX: DERIVATION OF THE RELIABILITY IN THE RASCH MODEL

The Rasch model is defined by

P(Yij = 1|Ai) = E(Yij |Ai) =
eAi+bj

1 + eAi+bj
= pij ,

where Ai ∼ N(0, σ2
A) describes the ability of the ith student, i = 1, . . . , n and bj

are fixed unknown parameters describing difficulty of the jth item j = 1, . . . ,m.
Therefore the conditional variance is

var (Yij |Ai) = pij(1− pij) =
eAi+bj

(1 + eAi+bj )2
,

and its mean value is

Evar (Yij |Ai) =
∫ ∞

−∞

eA+bj

(1 + eA+bj )2
1√

2πσ2
A

e
− A2

2σ2
A dA = Bj .
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The unconditional mean value can be written as

EYij = EE(Yij |Ai) = E
eA+bj

1 + eA+bj
=

∫ ∞

−∞

eA+bj

1 + eA+bj

1√
2πσ2

A

e
− A2

2σ2
A dA = Dj .

Similarly, for the total score of the ith student Yi =
∑m

j=1 Yij it holds that

EYi = E
m∑

j=1

Yij =
m∑

j=1

EYij =
m∑

j=1

Dj

and the unconditional variance is

varYi = varE(Yi|Ai) + E(var (Yi|Ai))

= varE




m∑

j=1

Yij |Ai


 + Evar




m∑

j=1

Yij |Ai




= var
m∑

j=1

E(Yij |Ai) + E
m∑

j=1

var (Yij |Ai)

=
m∑

j=1

m∑
t=1

E(E(Yij |Ai)E (Yit|Ai))

−
m∑

j=1

m∑
t=1

E(E(Yij |Ai))E (E(Yit|Ai)) +
m∑

j=1

E
eAi+bj

(1 + eAi+bj )2

=
m∑

j=1

m∑
t=1

(Cjt −DjDt) +
m∑

j=1

Bj ,

where the third equation holds because of assumption of independence of conditional
distributions and

Cjt = E(E(Yij |Ai)E (Yit|Ai)) =
∫ ∞

−∞

eA+bj

1 + eA+bj

eA+bt

1 + eA+bt

1√
2πσ2

A

e
− A2

2σ2
A dA.

Therefore the reliability in the Rasch model can be written as

Rm =
varE(Yi|Ai)

varYi
=

∑m
j=1

∑m
t=1(Cjt −DjDt)∑m

j=1

∑m
t=1(Cjt −DjDt) +

∑m
j=1 Bj

. (15)
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