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ON THE ASYMPTOTIC EFFICIENCY OF
THE MULTISAMPLE LOCATION-SCALE RANK TESTS
AND THEIR ADJUSTMENT FOR TIES!

FRANTISEK RUBLIK

Explicit formulas for the non-centrality parameters of the limiting chi-square distribu-
tion of proposed multisample rank based test statistics, aimed at testing the hypothesis
of the simultaneous equality of location and scale parameters of underlying populations,
are obtained by means of a general assertion concerning the location-scale test statistics.
The finite sample behaviour of the proposed tests is discussed and illustrated by simulation
estimates of the rejection probabilities. A modification for ties of a class of multisample
location and scale test statistics, based on ranks and including the proposed test statistics,
is presented. It is shown that under the validity of the null hypothesis these modified
test statistics are asymptotically chi-square distributed provided that the score generating
functions fulfill the imposed regularity conditions. An essential assumption is that the ma-
trix, appearing in these conditions, is regular. Conditions sufficient for the validity of this
assumption are also included.

Keywords: multisample rank test for location and scale, asymptotic non-centrality para-
meter, Pitman—Noether efficiency, adjustment for ties
AMS Subject Classification: 62G10, 62G20

1. INTRODUCTION

The topic of the paper is testing the multisample null hypothesis that the sampled
populations have the same location parameters and the same scale parameters. It
has been proposed in [12] to test this hypothesis by means of a test, which in the
two sample case coincides with the Lepage test described in [8]. In the next section
of this paper new test statistics for testing this null location-scale hypothesis are
proposed, non-centrality parameters of their asymptotic chi-square distribution are
computed for normal, logistic and Cauchy distribution and the resulting asymptotic
efficiencies are discussed. The finite sample behaviour of the proposed tests is dis-
cussed in Section 2 and illustrated by simulation estimates of rejection probabilities
both under the null and the alternative hypothesis, and the multiple comparisons
procedure based on these new statistics are also briefly mentioned. The theoretical

I This research was supported by the grant VEGA 1/3016/26 from the Scientific Grant Agency
of the Slovak Republic.



280 F. RUBLIK

base for computation of the asymptotic non-centrality parameters can be found in
Section 3, where a theorem on the Pitman—Noether asymptotic relative efficiency of
the multisample location and scale rank tests, based on general regularity conditions,
is stated and proved.

A general form of modification for ties of the proposed test statistics, guarantee-
ing their convergence in distribution to the chi-square distribution, is presented in
Theorem 2.3 of Section 2, its proof is in Section 3; the application of this theorem
to the mentioned statistics is at the end of Section 2.

2. MAIN RESULTS

It is supposed throughout the paper that Xji,..., X, denotes for j = 1,...,k a
random sample from the distribution of the random variable (; = o;e; + p;, where
o; > 0, p; are real numbers, these k random samples are independent and the
distribution function

F(t)=P(e; <) (2.1)

does not depend on j. The topic of the paper is testing of the null hypothesis
H(): M1 = M2 = ... = Uk, 01 =092 =...=0f (22)

against the alternative, that there exist ¢ # j such that at least one of the non-
equalities p; # pj, 0; # o; holds. Until stated otherwise, we assume that the
function (2.1) is continuous.
Suppose that
(X115 Xings ooy Xty oo Xbong) (2.3)

denotes the pooled random sample and (Ri1,...,Riny,-.-, Ri1,..., Rin,) are its
ranks. The null hypothesis (2.2) is in [12] proposed to be tested by the statistic

T="Tx+Tg, (2.4)

where Tk is the Kruskal-Wallis test statistic and Tg is the multisample Ansari—
Bradley test statistic. We remark, the in the two-sample case k = 2 the statistic
(2.4) coincides with the Lepage test statistic constructed in [8]. As a competitor of
(2.4) for testing the null hypothesis (2.2) we propose the statistic

T = Qo1 + Q(q>71)2 R (25)
where in the general notation
k () nj
1 Si 2 @) Rji
- ni (22— —g), §9¥ = (ﬁ) 2.6
Q, afv’“’;J<nj ?) } gw NI (2.6)
012\,’“0 — 012\,7%«;:7
(2.7)

‘712\/’%1# = %121121 (90<N3~1) _95) <¢<ﬁ> _1/;> , o= %Zf\]ﬂ ‘P(ﬁ) )
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and ®~! denotes the quantile function of the N(0,1) distribution function ®, i.e.,
the equality @(fbfl(t)) =t holds for every t € (0,1). Thus Qg-1, Q(p-1)2 is the
multisample version of the van der Waerden and the Klotz test statistic, respectively.
Finally, we propose to consider for use the test statistic

TSQ =Tk + Q7 (2.9)

where T is the Kruskal-Wallis statistic and

2
V=1 (2.10)
5 2 2
(K) - N+1 o N(N+1)(N*—4)
Sj - ; (R]KL - 2 ) oN = 180 .

is the multisample version of the Mood test statistic. The next theorem can be
proved by means of the assertion (II) of Theorem 3.1 of [12].

Theorem 2.1. Suppose that (2.2) holds. Then the weak convergences of distribu-
tions (cf. (2.4), (2.5), (2.9))

L(T) — X541y L(Ts) — X3p-1y> L(TsQ) — Xape—1) (2.11)

hold as ny — oc0,...,ny — oo. Here X%(k—l) denotes the chi-square distribution
with 2(k — 1) degrees of freedom.

The test based on any of the statistics T', To and Tsg rejects the null hypothesis
(2.2) for large values of the employed test statistic. In accordance with the previous
theorem the null hypothesis is rejected at the asymptotic significance level o when-
ever the observed value of the employed test statistic is larger than the (1 — «)th
quantile X%(kfl),lfa of the chi-square distribution with 2(k — 1) degrees of freedom.
In what follows we shall express the performance of these tests by means of asymp-
totic non-centrality parameters and illustrate the behaviour of their finite sample
power by the simulation estimates. For this purpose we have chosen the normal, the
logistic and the Cauchy distribution, because they have tails with different asymp-
totic behaviour.

To make the notation more precise for the sake of handling the Pitman alter-
natives, assume that the sample size from the jth population n; = ngu), where
u = 1,2,... denotes the index of the experiment; thus also the total sample size
N = N,. We remark that the parts of the statements (2.11),(2.17) and (2.18)
concerning T' = Tk + Tp have already been proved in [12], but for the sake of
completeness they are included also into this paper.

(A 1) The sample sizes are such that

lim n;-u):—&—oo, i=1,...k, (2.12)

Uu—00
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and for the relative sample sizes
( ) _ (U)
hi =P 2.13
Pi= Nu (2.13)

the relations lim p( u) _ p;>0, j=1,...k (2.14)

U— 00

hold.
(A 2) The location and scale parameters of the jth population

*(u) ()

(U) _ Hy N () R 7
¥ =u+ 0j =0, =0+ N
o>0,u, a*(u) , uj( “) are real numbers (2.15)
for j=1,...,k limits pj = hm ,u;(u) , 0= lim o; () are real numbers.

The following theorem can be proved by means of Theorem 3.1 and Lemma 3.2
from the next section.

Theorem 2.2. Assume that (A1), (A2) hold and put

k k
ﬁzzpj/ﬁa E:Z pjo;, €1 = ZP; uj ) ij . (2.16)
i=1 i=1

(I) Suppose that F' from (2.1) is the distribution function of the normal N (0, 1)
distribution. Then the weak convergences of distributions

L(T) — Xopu-1y(01) s L(Ts) — X54-1y(0a) s L(Tsq) — Xa—1)(0sq) (2.17)
hold as u — oco. Here the non-centrality parameters

3 12 3 15
or = —c1 + —C2, b = c1 + 2¢o, 53@ = —c + —C2- (2.18)
™ T ™ Y

(IT) Suppose that F' from (2.1) is the distribution function of the logistic dis-
tribution with the density f(z) = exp(z)/(1 + exp(z))?. Then (2.17) holds with

5r — 161 (41n(2) — 1)2

1 1 5
3 3 o, Op = ;cl + 2%2002 , O0sg=zc1+—c2, (2.19)

37071
Yo = /01 o () exp ((@71(1)2/2) V2rt(1 — 1) In (%) dt. (2.20)

(III) Suppose that F' from (2.1) is the distribution function of the Cauchy distri-
bution with the density f(z) = 1/(7(1+ 22)). Then (2.17) holds with

3 48 2 1 3 5
= —c1+ —c2, 0p = *’)/1261 + *’)/2262 , 0sQ = —a + —ca, (2.21)
T T T T T T
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where
v = [l exp ((@*1(15))2/2) cos? ((t - 0.5)71') dt,

1o = Ji @11 exp (@ 1(0)2/2) sin (21— D) d (2.22)

According to the previous theorem in the considered setting the asymptotic ef-
ficiency e 7=+ = ;T% of the tests based on the statistics T, T** depends on the
value of the local alternative (2.15). By means of the built-in MATLAB function
®~! one obtains for the constants from (2.20) and (2.22) the values v;, = 0.836,

v1 = 0.581 and v, = 0.930, and since

ot e o (2 ) e (22, 5,

a**Cl + ﬁ**CQ Oé**’ ﬂ** Oé**’ ﬁ**

the results of the previous theorem can be organized into the following table.

Sampling from normal distribution

ery,T € (1.05, 1.65)

ery Tsq € (1.05, 1.32)

eTSQaT S <1, 1.25)

Sampling from logistic distribution

ery, T € (0.95, 1.33)

€Ty Tso € (0.95, 1.12)

ergq.1 € (1, 1.19)

Sampling from Cauchy distribution

ety € (0.56, 0.71)

€Ty, Tsq € (0.60, 0.71)

erso.1 € (0.94, 1)

These results suggest that for the distributions with light tails (like the normal dis-
tribution) the best choice for testing (2.2) is the test based on the statistic (2.5). As
has been explained in [12], the non-centrality parameter of the likelihood ratio statis-
tic for testing (2.2) under the normality assumptions equals dg from (2.18). Hence
if the sampling is drawn from normal distribution then the van der Waerden scores
test statistic (2.5) has the non-centrality parameter the same as the LRT statistic,
which is under the normality assumptions asymptotically optimal for testing (2.2).
However, when one wants to have a test which performs well for distributions with
heavy tails like the Cauchy distribution, then the test based on the statistic (2.4) is
recommendable, the test statistic (2.9) is a compromise between Ty and T'.

As has been already mentioned, these tests are based on the approximation of
the critical constants by (1 — «)th quantile X%(kq),ka of the chi-square distribution
with 2(k — 1) degrees of freedom. First we present some simulation estimates of the
fit of the size of such a test with the chosen significance level a.. In all the following
tables we use the abbreviations P(T,«) = P(T > X%(k—l),l—a)’ P(Ty,a) = P(Ty >
X%(kfl),lfa) and P(Tsq,a) = P(Tsq > X%(kfl),lfa)' Each particular simulation
estimate is based on N = 10000 trials and is obtained by means of the MATLAB
version 7.1.0.246 (R14) Service Pack 3.

The simulation results from the Tables 1 and 2 suggest that for the test based on
T or on Tsg and k = 3 or k = 4 the discrepancy between the actual size of the test
and the nominal level & = 0.05 or o = 0.1 attains acceptable values if the minimal
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sample size is at least 10, for the test based on the normal scores statistic Tg this
occurs when the minimal sample size is at least 18.

Table 1. Simulation estimates of the tail probabilities
under validity of (2.2) for k = 3.

o 005 | 0.1 005 | 0.1 005 | 0.1
n1, N2, n3 666 10 10 10 10 10 15
P(T, o) 0.032 0.078 0.040 0.093 0.042 0.091
P(Tp,a) 0.022 0.065 0.032 0.083 0.036 0.081
P(Tso, ) 0.030 0.075 0.039 0.090 0.042 0.087
o 0.05 0.1 0.05 [ 0.1 0.05 0.1 0.05 0.1
n1, N2, N3 10 15 15 15 15 15 18 18 18 20 20 20
P(T, o) 0.042 | 0.101 | 0.042 | 0.094 | 0.048 | 0.096 | 0.048 | 0.099
P(Tp, ) 0.037 | 0.086 | 0.036 | 0.084 | 0.042 | 0.087 | 0.039 | 0.095
P(Tso,«) | 0.041 | 0.096 | 0.041 | 0.092 | 0.048 | 0.097 | 0.048 | 0.101

Table 2. Simulation estimates of the tail probabilities
under validity of (2.2) for k = 4.

o 0.05 | 0.1 005 | 0.1 0.05 | 0.1 0.05 | 0.1
ni, n2, n3, N4 6666 6 6 10 10 10 10 1010 | 10 10 10 15
P(T, ) 0.034 | 0.081 | 0.037 | 0.085 | 0.040 [ 0.090 | 0.040 [ 0.090
P(Ty, ) 0.026 | 0.069 | 0.033 | 0.077 | 0.035 | 0.084 | 0.034 | 0.079
P(Tsq, a) 0.032 | 0.082 | 0.036 | 0.083 | 0.039 | 0.091 | 0.039 | 0.087

o 0.05 | 0.1 0.05 | 0.1 005 | 0.1 005 | 0.1
ni,na,m3ng | 10 10 15 15 | 15 15 15 15 [ 18 18 18 18 | 20 20 20 20
P(T, ) 0.039 [ 0.089 | 0.041 | 0.090 | 0.047 [ 0.099 | 0.047 [ 0.098
P(Ty, ) 0.035 | 0.083 | 0.036 | 0.086 | 0.042 [ 0.093 [ 0.042 | 0.94
P(Tsq, a) 0.039 | 0.086 | 0.041 | 0.092 | 0.046 | 0.097 | 0.045 [ 0.096

In the following tables of simulation estimates of the power under the alternative
the best result for the given combination of sample sizes is printed in boldface letters.
In accordance with the notation from the introduction of the paper 1; denotes the
location parameter and o; the scale parameter of the jth population. These simula-
tion power estimates are in a fair agreement with the asymptotic theoretical results
of Theorem 2.2, but as they show, it may happen in some cases that despite of the
sampling from the normal populations (when the test based on Ty is asymptotically
the best of the mentioned competitors), the power of the Tg based test does not
exert its influence for medium sample sizes (the case u; = 0, o1 = 1, uy = 0.3,
o9 = 1.5, u3 = 0.8, 05 = 2 and ny; = 15, ny = 25, ng = 35). The superiority of
the T based test when the sampling is drawn from Cauchy distribution appears to
be in effect already for small sample sizes. However, as the knowledge of the type
of the distribution need not be available and the T5g based test has in the simula-
tions always got the rating either as the best or as the second best procedure, it is
advisable to use the T5o based test in the case when the type of the distribution is
unknown or when the maximum sample size is not larger than 15.
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Table 3. Simulation estimates of the power for k = 3.

285

H1 = O, g1 = 1, H2 = 0.3, o2 = 1.5, Hu3 = 0.8, g3 = 2
o 0.05 [ 0.1 [ 0.05 [ 0.1 0.05 [ 0.1
Sampling from normal distribution
ni, N2, N3 10 10 10 10 15 15 15 15 15
P(T,a) 0.223 0.366 0.262 0.413 0.389 0.540
P(Ty, ) 0.205 0.362 0.238 0.401 0.409 0.582
P(TSQ7 ) 0.241 0.393 0.280 0.444 0.432 0.588
ni, N2, N3 15 25 35 30 30 30 35 35 35
P(T,a) 0.539 0.691 0.770 0.862 0.851 0.918
P(Ty, ) 0.517 0.670 0.845 0.925 0.920 0.965
P(Tsq, ) 0.579 0.735 0.828 0.906 0.901 0.952
Sampling from logistic distribution
ni, n2, N3 10 10 10 10 15 15 15 15 15
P(T, ) 0.167 0.289 0.196 0.319 0.288 0.423
P(Ty, ) 0.150 0.280 0.158 0.288 0.274 0.432
P(Tsq, ) 0.178 0.310 0.198 0.335 0.311 0.457
ni, N2, N3 15 25 35 30 30 30 35 35 35
P(T, ) 0.398 0.544 0.612 0.738 0.695 0.800
P(Typ,q) 0.335 0.514 0.665 0.799 0.759 0.865
P(Tsg,®) 0.422 0.584 0.677 0.792 0.757 0.854
Sampling from Cauchy distribution
ni, N2, N3 10 10 10 10 15 15 15 15 15
P(T, a) 0.111 0.204 0.122 0.217 0.170 0.277
P(Ty, ) 0.080 0.164 0.079 0.159 0.119 0.222
P(Tsg,®) 0.101 0.197 0.114 0.205 0.163 0.269
ni, N2, N3 15 25 35 30 30 30 35 35 35
P(T, a) 0.221 0.345 0.347 0.489 0.419 0.549
P(Ty,x) 0.122 0.230 0.238 0.363 0.286 0.413
P(Tsg,®) 0.204 0.328 0.334 0.473 0.340 0.530
puw1=0,01=1, pu2=0.3,02 =15, pu3 =04, 03 =0.8
o 0.05 [ 0.1 [ 0.05 [ 0.1 [ 0.05 [ 0.1
Sampling from normal distribution
ni, n2, N3 10 10 10 10 15 15 15 15 15
P(T, a) 0.184 0.314 0.280 0.422 0.309 0.450
P(Typ,x) 0.195 0.341 0.312 0.483 0.372 0.527
P(Tsg,®) 0.208 0.342 0.325 0.469 0.361 0.503
N1, N2, 13 15 25 35 30 30 30 35 35 35
P(T, a) 0.587 0.711 0.647 0.769 0.725 0.826
P(Ty,x) 0.740 0.844 0.787 0.881 0.861 0.927
P(Tsg,®) 0.676 0.786 0.729 0.835 0.803 0.884
Sampling from logistic distribution
ni, N2, N3 10 10 10 10 15 15 15 15 15
P(T, a) 0.142 0.254 0.213 0.345 0.236 0.363
P(Ty,x) 0.146 0.260 0.226 0.374 0.262 0.407
P(Tsg,®) 0.158 0.273 0.245 0.380 0.268 0.406
ni, N2, N3 15 25 35 30 30 30 35 35 35
P(T, o) 0.470 0.602 0.512 0.641 0.578 0.707
P(Ty, ) 0.583 0.717 0.609 0.740 0.687 0.801
P(Tsg,®) 0.546 0.675 0.581 0.709 0.655 0.773
Sampling from Cauchy distribution
ni, n2, N3 10 10 10 10 15 15 15 15 15
P(T,a) 0.090 0.175 0.121 0.218 0.138 0.235
P(Ty, ) 0.069 0.147 0.085 0.178 0.103 0.190
P(Tsq, ) 0.089 0.174 0.116 0.215 0.134 0.232
ni, N2, N3 15 25 35 30 30 30 35 35 35
P(T, ) 0.242 0.368 0.271 0.401 0.317 0.444
P(Ty, ) 0.181 0.292 0.196 0.310 0.223 0.340
P(Tsq,®) 0.239 0.366 0.268 0.393 0.309 0.435
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Here should be noted that the multiple comparisons procedure can be easily
derived in the same way as Theorem 2.4 of [12] concerning the statistic (2.4). Thus
ignoring for a while the index u of experiment and putting

(#) ()
S5 S

J2

@ _ ny nj, |2
Dyl = P (2.23)
_— 4 — N
Ty Mgy

after the rejection of the null hypothesis by the test statistic declare the j;th and
the joth populations to be different, if at least one of the inequalities

DY 1>, DY 1>, (2.24)

J1,J2 J1.J2

holds; here 8 = 1 — /1 — « and the rejection constant is defined by the equality
P(maxlgi,jgk lyi —y;] > Q,(Ca) Ly) = Nk(O,Ik)) = q, the approximation 8 = 0.5«

S(¢) 2 AP

is recommendable. If (2.2) is rejected by Tg, then are defined by means of

o(u) = @~ 1(u) and (2.6), (2.7), and Sj(w, 012\}1& by ¥(u) = (<I>_1( ))2. Analogously, if
the null hypothesis is rejected by Tsg, then S(w =5;, 02 ¥ = w?, are the quantities

S; =31 Ry, wh = % and S(w) S(K) 2% = 0% are the quantities from
(2 10).

Now we are going to pay attention to the modification of the previous test statis-
tics for ties. In doing this we use first a general framework to achieve a more concise
style. Throughout the rest of this section the distribution function (2.1) is not
assumed to be continuous.

In accordance with [6], [1] and [7] the average scores are defined as follows. Sup-

pose that an(1),...,an(N) are real numbers and 7 = (71,...,71) is a vector of
positive integers such that 71 + ...+ 7, = N. Then by the average scores ay (i|7)
modified for 7 we understand the scores defined for i = 1,..., N by the formula

ZCLN 1+ . Tj_1+t) ifT1+...+Tj_1<i§T1+...+Tj_1+Tj,
i =1
(2.25)

where for j = 1 we put 7 + ...+ 751 = 0. Let zW < ... < ZWN) denote the
ordering of the pooled sample (2.3) according to the magnitude and
ZW = =2 < z(nth) = | = Z(n+n)
Z(r1i4.47i-1) < Z(m+.+7a+l) —  — Z(T1+~~-+Tj—1+7—j)7 j=3,.
Tm+...+7,=N.

L,

Hence 7; is the number of the elements of Z () in the jth block of the ordering
according to the magnitude and

™(Z) = (71,...,7L) (2.26)

is called the vector of numbers of ties in Z.
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The modification of the quadratic rank test statistic for ties is obtained by plug-
ging the modified scores into the formula intended for setting where no ties occur.
Assume for this purpose that the function ¢ : (0,1) — R! and define the scores and
their arithmetic mean by the formulas

a%)(l)—w(]\,il), ay) = %Z (2.27)

In accordance with (2.25) by the scores a(“o)(

the numbers

|77 (Z)) modified for ties we understand

Jj—1 J
al (ilrn (2 Za(*") (Mt tt) if Y r<i<y 7, (228)
i = s=1 s=1
where 71, ..., 71 are the integers from (2.26).

The k-sample quadratic rank statistic devised for setting where no ties occur is
defined by the formula (2.6). Now let

Rji=#{(rv); X, < Xj,,r=1,...;k,v=1,...,n, }, (2.29)

where as before, n, denotes the size of sample from the rth population. Put (cf.
(2.8), (2.28))

nj
S9N =2 AN (Ryilrw(2)). 63° =637,

Lo (2.30)
3 = 1 2 (@il (2)) = @) (a8l (2) — ) -
i=1
Then
1 & (87 i
QW = Q(SD),...,M = = an <7J1 —ag\f)> (2.31)
O'N j=1 9

is the statistic (2.6) modified for ties. We shall carry out the modification of location-
scale rank tests by means of these quantities. To achieve convergence in distribution
we impose this regularity assumption.

(A 3) The null hypothesis (2.2) hold. Let the functions ¢ : (0,1) — R, % :
(0,1) — R! be expressible as a finite sum of monotone square integrable functions,
F is the function (2.1),

C=0o(F) (2.32)

denote the o-ring of subsets of (0,1) generated by the intervals {(0, F(t)); t € R'},
and E[p|C] denote the function of the argument ¢ € (0, 1) fulfilling the equality

/ Elp|C](t) dt = / o(t) dt (2.33)
A A
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for every set A € o(F'). Put

P = /Olw(t) dt, ¢ = Olw(t) dt, (2.34)
V= [ (leloin-7) at, Vo= [ (swicio-7) e e
%@—AXHMdm—¢Xqum—@m. (2.36)

The matrix v _—
V= ( V;zz ‘%w ) (2:37)

is regular.

Theorem 2.3. Let the functions ¢ : (0,1) — R ¢ : (0,1) — R! and in accordance
with (2.27)— (2.31) put

2,0 <29

- oN' O ~ ~ ~
A N 9N [Q(“’) + Q(w) _ Q(so,w)] , (2.38)
1 k 0'12\}4/)0']2\}1[) _ (0.]2\}%1/})2
204 k gl@) g
- o N () LN ()
Q(%w) — 2% N LN g L _q . (2.39)
GueeRY ; T\ N n; o

If both (2.12) and (A 3) are fulfilled then the convergence in distribution

Tnl,...,nk - X%(szl) (240)

to the chi-square distribution with 2(k—1) degrees of freedom holds as ny — oo, ...,
ng — 00.

An essential condition of this theorem is the assumption (A 3). Its validity can
be verified by means of the following sufficient conditions.

Lemma 2.1. Let there exist real numbers 2, 29, 23 such that

0< F(z1) < F(z) < F(z3) <1. (2.41)

Suppose that ¢ : (0,1) — R ¢ : (0,1) — R! are square integrable functions and ¢
is strictly increasing. Put

UL TP
! Fj _Fj—l Fj_1 ! Fj _Fj_l Fj—a

where FO = 0, Fj = F(Zj), F4 =1.
(I) Let for each 6 € (0, 1)
1

ol —0) + oz +9)=1. (2.42)



Asymptotic Efficiency of the Multisample Location-Scale Rank Tests 289

If (t) = min{ p(t), 1 — ¢(t) }, then the matrix (2.37) is regular.
(II) Let (% +8) = —¢(2 — 6) for each 6 € (0,1) and ¥(t) = ¢(t)2. If either
Y3 — @5, 3 — 15 ©3 — 3 — 13 2.43
GatiTE At (249
or _ _ _ _
W:iﬁ#%*w’ ¢4*¢#¢3—*¢ (2.44)
1 2 ¥ ¥3

then the matrix (2.37) is regular.

First we apply these results to the statistic (2.4). Let Tk denote the Kruskal—
Wallis test statistic modified for ties, i.e.,

& -

- 1 S; N+1

T = - n_(ij _ ,) 7 (2.45)

a3 ; "\n; 2
I Ly 1 g N+ 132
i=1 j=1i=1

and R, ; is the usual midrank of X;; computed from the pooled sample (2.3). Further,
let by = (1,2,3,. 53,2,1) and by = (1,2,3,...,m, & m, ... 3,2,1)

for N = 2m and N = 2m+ 1 respectlvely, ie,if by (7) stands for the zth coordmate
of by, then by (1),...,bn(N ) are the score of the Ansari-Bradley test statistic. In
accordance with (2.25), (2.26) let

~ 1
bN(i):beN(Tl-‘r .Tj,1+t) ile—l—...-l-Tj,l<i§T1+...+Tj,1+Tj,

denote their modification for ties. Put (cf. (2.29) )

~b nj ~ 1 N B 1 k S(b) 2
Sj('):Z;bN(Rj,i)v i = m;(bz\/() Av)* TB:iZnJ(ji»_)\N) ’

where Ay = (N+2 if N is even and Ay M if N is odd, i.e. TB denotes the

Ansari— Bradley test statistics modified for tles Use the notatlon from these two
steps and put

N

2121( —N+1), fﬁ)zi;(l?zv(i)—mf, (2.47)
12) Xk;;( —N+1)(bN(Rj,i)—AN),

FL k & &(b)
N+1)\/[S5;
oo g e (V)
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Then
~ 7:5\:})7’](\[) [~ ~ ~ ] )
T = Tk +1T — T (2.48
7:5\})7“53) _ (TJ(\}Q))Q

is the modification of the statistic (2.4) for ties. If (2.41) holds for some zj, 23, 23,
then an application of Theorem 2.3 and Lemma 2.1 (I) yields that the statistic (2.48)
converges in distribution to chi-square distribution with 2(k — 1) degrees of freedom
as ny — 00,...,n, — oo provided that (2.2) holds.

To handle the statistic (2.9) put ey (i) = (i — (N +1)/2)%, i = 1,...,N. Let
én(i|Tn(Z)) denote in accordance with (2.25) and (2.26) the modification of these
scores for ties,

S(K) _ A al N2 —1\2
5 = Lanhyalr(2), 7= ;(cN il (2) - —5—) -
& K
-1 —1)
Q ~9 n )
= J< )
and (cf. (2.47), (2.46))
N
* ~ * -, N2 -1
rN(l) = rg\}) , 7”1\/(2) = Z(CN(Z) -3 )2,

=1

ko ny ‘-
ri12) ZZ( _N+1)(CN(RM)_%)’

j=11:i=1

m0P E (g N (S N2
* J J _
Ty, = 2(N — )Ej ( : )(nj — .

Then
#(1) *(2)

oo N TN [* 5 s }
Tse = 0,2 @ _(2(12))2 Tk +Q@—Ty (2.49)
N TN TN

is the modification of the statistic Tgp for ties. An application of Theorem 2.3
and (2.43) yields that under the validity of (2.2) and (2.41) for some z1, z2, 23,
the statistic fsQ has asymptotically chi-square distribution with 2(k — 1) degrees of
freedom.

The modification T of the statistic Tp from (2.5) can be computed directly by
means of Theorem 2.3 and its convergence (2.40) in distribution can be established
by means of (2.44).

3. PROOFS

The aim of the first two assumptions is to ensure the validity of the Chernoff-Savage
theorem, the assumption (AS4) will be used for functions ¢, 9 satisfying (AS1) and
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(AS2). In this part of the paper until the end of the proof of Lemma 3.2 the
distribution function (2.1) is assumed to have the form F(z) = [*_ f(z)dz.

(AS1) 4 : (0,1) — R! and there exist functions gg) : (0,1) — RY i =1,2
and finitely many real numbers a9 = 0 < ... < a, = 1 such that for all ¢t €
(0,1) — {ag, ..., ay} the first two derivatives of ¢ exist and

V(1) =g, ') =92,
(1)

gy, s right-continuous and

22

Bltz) — () = / ToWyde, g () — g0 () = / o? () at

t1 z1

for all 0 < t; < to < 1, the second equality holds whenever z; < z; belong to
(aiya;y1) and i =0,...,v — 1.

(AS2) There exist positive real numbers K, ¢ such that for all ¢ € (0, 1)

O < K-y 72, ol (0)] < Kea-0)12, o ()] < K- >/2.

(AS3) Suppose that the assumptions (A1), (A2),(AS1) and (AS2) hold, the
numbers pj = pf(“),j =1,...,kare such that p; Wy .+pz(“) = 1and lim, p;(“) =

(
pj, j =1,...,k are the limits from (2.14). Put (cf. (2.15), (2.16))
k
Fuj(@) =P(oe; + i <2),  Hi(x) = pj"F, (), (3.1)
j=1

+oo
) = / B(H (2)) dF,(2)
to ror LT W —E
A= [ (B e ) (P ) s,

o o

(3.2)

+oo
where [ |z|? |g$)(F(a:))|f2(x) dz < 400 for d =0 and d = 1. Then (cf. (2.34))

Tim /N () =) = (3.3)

(AS4) If the vector (uf,o7,...,u5,05) € R? is such that for some t # t* at
least one of the non-equalities p; # py. or o} # o}. holds, then there exists an index
j such that at least one of the numbers (cf. (2.16))

/+DO ((/J; -+ (0; — E)m)gg)(p<x))f2(m) dz

/_;OO (G5~ 1) + (05 ~2)2) o)) (@) () da

is different from zero.
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Lemma 3.1. If ¢ fulfills (AS1) and (AS2), then as N — oo (cf. (2.7), (2.34))

VN@ — ) — 0. (3.4)

N—-1

JifNle(Nil) _/LT

MZ

) = ()]t <

Proof. Making use of (AS1), (AS2) one obtains that

] > [ ()
1w M 5-3/2 1
< [/ ‘g(l)( dz] dt<—/ l—z dz = —=o(1),
i—1 i—1
i N

(2 N

2
LN
Hm

I|
¥

N
o 1 1 ~ 1 1 N
57 = | [ wwlan o [ wolang o (55|
which together with (AS2) implies (3.4). O

Before stating the next theorem we remark that some conditions sufficient for
validity of (AS3) can be found in Lemma 3.2.

Theorem 3.1. Suppose that the functions ¢ : (0,1) — R, ¢ : (0,1) — R! fulfill
the assumptions (AS1)—(AS3) and the matrix

— Ve Vow
Vou = ( Vow Vi ) (3.5)

is regular. Here V, =V, », Vi = fol (p(t) — D) ((t) — ) dt.
(I) Assume that (A1), (A2) hold and put (cf. (2.6))

1
Qnyyony = W(Qw +Qy — Quy), (3.6)
where (cf. (2.7),(2.6))
2,09 2,00 k S(sﬂ) S(w)
~ OnN On J ~ J 7
p= e Q=2 Sy (=) (- d). 6
o2 g2 ’ o2P oY ; "\ n;

In accordance with (A 2) let

*(u) *(u) *(u) *(u)

1 i
0, =
“ (“+ Vi \/Nu’ YN \/Nu>

denote these Pitman alternatives. Then the weak convergence of distributions

(3.8)

E(Qngw n;cu>|Peu) — X1y (Tp0) (3.9)

.....
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holds as u — oo, and the non-centrality parameter of this chi-square distribution
with 2(k — 1) degrees of freedom is

o = o VoL, 0 M)y (3.10)

Here
p= (pla"'vpk)/7 M(f’) :dlag(f)) _f)f)l7 13: (ﬁlv"'»ﬁk)l' (311)
Voo = (I/gw), U V,(f), 1/?1)), ce V]iw))/ is the vector with the coordinates (3.2) and if

(cf. (2.16)) at least one of the non-equalities uj # i or of # @ holds for some t and
(AS4) is fulfilled, then (3.10) is a positive real number.

(IT) Suppose that the critical constants {1, }52 ; are such that under the validity
of the null hypothesis (2.2) and (A1)

lim P(Qn(u) () >l,)=a€(0,1). (3.12)
U— 00 1 LA

Further, let (A 2) be fulfilled and the Pitman alternatives (3.8) be such that for the
limits in (2.15) and the overlined terms from (2.16) at least one of the non-equalities
wi # 1 or of # o holds for some ¢, and
lim Py, (Qn(u) (@) 2 ly)=p0€(a,1). (3.13)
U—00 1Ty

Assume that the functions ¢* : (0,1) — R, o* : (0,1) — R fulfill (AS1)—(AS4),
the matrix Vi« 4+ defined by (3.5) is regular and the quadratic test statistic

" 1
in,...,nk = 7A2(Q<p* + Qw* - ng*ﬂb*)
1—p*

is defined by means of ¢*, ¢* in the same way as the statistic (3.6). Then there
exist sample sizes {n;(u)}oo j=1,...,k, such that for N} =n ™ 4 . 4+n™

u=1>

*(u)
n.
lim n;(u) =400, lim —Z

—pj, j=1,....k (3.14)

are the numbers from (2.14), and if under the validity of (2.2)

lim P(Q".) .o 21,) =a€(0,1) (3.15)
ny Y, ny

uU— 00

is the number from (3.12), then for the alternatives (3.8)

1iIn Peu (Q**(u) *(u) Z l:;) = /8 S (a, 1) (3.16)
U— 00 Ty yeees Mg
is the number from (3.13). For any sample sizes satisfying (3.14) —(3.16) the asymp-
totic relative efficiency
Na O

* = 1. _— = 3.17
€Q7Q ul_{Iolo Nu 6@*#}* ’ ( )
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where the non-centrality parameter d,- 4« of the statistic Q* is obtained by plugging
©* instead of ¢ and ¥* instead of ¥ into (3.10).

Proof. Put (cf. (2.7))

Z(‘P)
S —np ! 7,(%)
(p) _ i J (¥) _ . —
7 = ¢7; Loz = |, Z—(zw>>- (3.18)
oN (¥)
Zy,

The covariance matrix of Z under the hypothesis (2.2) is (cf. (3.11))

1
p

—s

Y =var(Z) = NK @ M(p), K—< >7 (3.19)

and p is defined in (3.7). Since p — p, assume that || < 1. Since the sum of
rows of the matrix (M(p), Z(#)) is zero vector and rank(M(p)) = k — 1, obviously
rank(M(p), Z(*)) = k — 1. Thus denoting M(C) the column space of the matrix C
we see that

7 € M(M(p)), M< M(P) > cME®).

In this way Z € M(X) and therefore Z'SZ does not depend on the choice of the
g-inverse X of the matrix X. Put

B = diag(¢) —e¢’, &= (p1,...,Pr_1)". (3.20)

1o
SRR
2= K [ding (o) (B VBB Jaiog (s )|

are generalized inverses of the matrix X, we obtain that Q,, ., = Z'3*Z = 7’37
and therefore

Since the matrices

Ow)

E:&K*@(

1~ - . N .
Quinie = yZATZ,  ATT=K @B, (3.21)
Z(‘P) Z(“/))
- 7.(¢) - ! _ 1
Z=( Su ), 2¥= : , ZW = : . (3.22)
W
25 7",

Since the transformation x — (x — u) /o does not change the ranks of observations,
we may assume that (3.8) holds with 4 = 0, 0 = 1 and we shall prove the theorem

under this assumption with the perturbations ,u;(u)/(m/Nu) and oj(u)/(m/Nu).



Asymptotic Efficiency of the Multisample Location-Scale Rank Tests 295

(I) Since the matrix A lis regular, we may proceed similarly as on pp.119-121
of [10]. To utilize the Chernoff-Savage theorem put 6y = (0,1,...,0,1)" and

/
S(tp) S(i) S(w) S(”ﬁ)
T, ... nk—( S L Y (3.23)
ni Ng—1 M1 Nk—1
2,
st - Y
Y, (3.24)
D”l;mfﬂk :dlag (5-7[7/117?}-7”%7 e ,6_%61?17%]]6 i 6-7[111’?-}-]-17%7 R 67[51T1’71fl]k) .

Now, let © = {(a1,b1,...,a5,b);b; > 0,a; € R',j =1,....k}. For d = (a,b),
0 = (91,...,9) € O use the notation

Fy(z) =F((x—a)/b), Hy(x)= iﬁjFﬂj (), (3.25)
and put =
+oo +o0 4
p ., (0) = </OO o(Ho(a)) dFo, (@), ... /m o (f1o()) dFﬁ“(x)> - (3.26)

To express that the concerned quantities vary with the index of experiment, put

(%0) 9
D,=D o, pP) = pu® (0, o) = [ P (0) . (3.27
0 s 7 (0) un@mniu)() e, (9) ) (0) (3.27)
To=T w - (3.28)

Since 6,, — 6y and (AS1), (AS2) hold, an application of the Chernoff-Savage theo-
rem yields that

£[DIH Ty — p,(0)Po.] = Noge 1) (0.4), A=K @B (3.29)
Here (cf. (2.25))
K= ( ) >’ p= Vo ., B=diag(c) —cc’, c=(@1,...,pr-1)
o WiV

are the limiting values of their counterparts from (3.19) and (3.20). But the assump-
tion (AS3) and (3.24) imply that

Jim DL (1,(62) = #,(60)) = Cpr,pi (3.30)
where k = (uf,07,...,p5,0f) andfori=1,...,k—1

. pi(8i; —pj) [T .
Cpropn(in2) — 1) = 2105 —P3) [ rer@ar =,

= e

. (05 —pj) [T .
Co,pe(4,25) = Pil%ij — ps) / gfol)(F(x))fo(m) dz i=1,...k,

o/ V,
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with 6;; denoting the Kronecker delta, the case k — 1 4 7 is the same except for ¢
being replaced with ¥. Put fi, = (3,...,P,%,...,1) € R2*=1 Then

D, (T, — f1,) = Z/\/N (3.32)

and employing Lemma 3.1 we see that

qul(Tu =, (0u) = qul(Tu = fy,) + D;l(uuwo) — 1, (0)) +0o(1)
= Z/y/Nu=Cypmk +0(1), (3.33)

which together with (3.29) means that

V/
ﬁ[ﬁlPOu} - N2(k71) (Cp1,...,pk’<"’7A) .
This convergence together with (3.21) implies that (3.9) holds with
AT'Cpypk (3.34)

v
63"711’ =k Cm,uwpk

But with the notation from (3.2) the ith coordinate by (3.31)

() ;
NS RVATA i=1,...,k—1,
)i =4 P VY= (3.35)
pivy [ Ve =k, 2(k—-1),

and as B! = diag(

1 1
P17 pr—1

)+ pikll’ , after some computation one obtains that

K"IC;H,‘..,Z)ICA_lcplwwapkK/ = V@ad’ I<V;,1d) ® (dlag(pla e 7pk?) - p(p)/))V4P7’¢ (336)

which proves (3.10). Finally, suppose that for some ¢ at least one of the non-equalities
ur # pie or of # of. holds and (AS4) is fulfilled. Since it is only the matter of
identification of the sampled distributions, one may assume that ¢ = 1, but then
using (3.35) and (AS4) one obtains that (3.34) is a positive real number.

(IT) In this part of the proof the notation from the proof of (I) will be used, and
to distinguish the concepts corresponding to ¢*, ©¥*, we shall mark them with the
superscript *.

First assume that (3.14)—(3.16) hold. Express the parameters (3.8) in the form
of Pitman alternatives in the terms of the starred sample sizes, i.e.,

; a’{(u) b*{(u) az(“) bz(u) ’
= 1 1 ) 3.37
<1/N;; + /N /N + V/N¥ ( )

*(u
i0

= 400, which together with (3.37) and (2.15) means that

Suppose that limsup,,_, ., |a )| = +oo0 for some ig. Then there exists a subsequence

#(Uy )

such that lim,_, . |ai0(

*

lim —% = 400, (3.38)

vV—00 Uy
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By means of (3.21) and (3.32)

B:=Po. (o reo 2 1) = Po, ((T5 = ALYD;T A DI (TL - ) 2 17)
(3.39)

where 1 = (¢*, ..., 0% %, ... %), ) = 1,5*]\,5. Now let gf*j = n;(“)/N{f and (cf.

(3.27), (3.24))

™ (N:‘L(W )(eu) _ “Z(w )(90)>

~[i,0*
0[ *ﬁl,)]
nl

Albe] =

)

jeens Ty,
where m; denotes the ith coordinate. Then taking into account the property
W(& — ¢*n+) = 0o(1) one obtains that

DT}, — i) = D71 (T, = pi(0u)) + AL +o(1), (3.40)

and since similarly as in (3.30)

live™] — U0 *
Al (M +0() (G ) +o(1)]
where M; is a positive real number, by means of (3.38), (3.35) and (AS4)
lim [|A7 || = +o0. (3.41)

As A*1 converges to a positive definite matrix and by the Chernoff-Savage theorem
D~ H(T: — i (0.)) = Op(1), the validity of (3.40), (3.41) together with (3.39) and
the convergence of {I}5°; to the (1 — a)th quantile of the chi-square distribution
yield that lim, .., B; =1, which is a contradiction with (3.16).

Hence all the sequences {a ™}, {b;")}2° | are bounded and without the loss
of the generality in proving (3.17) we assume that
()

. * .
lim a;"’ =a;, lim b
uU— 00 U— 00

:(u) =b; are real numbers for i =1,... k. (3.42)

Thus the assumptions of the assertion (I) are fulfilled and therefore the distributions

L(Q". .ty  vwlPo,) — Xg(kfl)(é(‘*p* 4+) @ u — oo. Since the critical constants [,
Ty TheeTlg ’

from (3.12) and I* from (3.15) converge to the (1 — «)th quantile of the Xg(kfl)
distribution as u — oo, from (3.13) and (3.16) we see that ¢}. ,. = d, . Since for

K — (a;k(u)) bT(U), . a:(u)7 b}";(u))/ and Kk, = (lff(u)7 O.;‘(u)7 o ’M;’;(u)’ O.Z(U))/ by (3.8)

u

and (3.37) the equality &% = (N;/N,)'/?k,, holds, by means of (3.34)
B 0r Ky C;h...,pkA*_lc* Ky, . N RUC;LW’pkA*_lc* K

1— ot lim P1PR U i P1...pr’ U
el —1 el —1
Opp uw—0 K Cphm’pkA Co..pK u—oo N, K Cp17___7pkA Cp..puK

which together with (3.36) yields (3.17).

Since by means of (I), (3.34) and n;(u) = [ngu)éww/éw,w*] one can show that

(3.14) - (3.16) hold, the assertion (II) is true. O

An essential assumption of the previous theorem is the condition (AS3). One
way how to establish its validity is the topic of the next lemma.
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Lemma 3.2. Let us consider the following conditions.

(C1) There exist numbers a3 < ag from (0,1) such that the sign of gff) is
constant on (0, ;) and it is constant also on (aa, 1).

(C2) The distribution function (2.1) has a density f with respect to the Lebesgue
measure on line, which is positive, bounded and (with the possible exception of
finitely many numbers) continuous on R!. There exist real numbers M; < My such
that f is non-decreasing on (—oo, M1) and non-increasing on (Ms, +00).

(C3) There exist a number « € (0, 1) with the following property. The inequality

[ :o Iz| ] gf;)(F(x))‘ F2(2) dz < +oo (3.43)

holds and for every real numbers 8 > 0, v > 0, M > My = My(«) there exists a
number H > 0 such that for all x > M and N > Ny(v, 3, )

f{x(y;—ﬁ)f%] gH(f{:c(1+\/’YN)+\/BNDQ, (3.44)

and for all z < —M and N > Ny(v, 5, @)

2y, B RESNCRAY

f[x(l =) \/N] <H (f [:c(l + =) \/ND . (3.45)
If the conditions (A1), (A2), (AS1), (AS2) and (C1)—(C3) hold, then the as-

sumption (AS 3) is fulfilled.

Proof. The proof is similar to the proof of (3.39) in [12] but with the important
difference that the interchange of the limit and the integration sign will be now
substantiated not by the Lebesgue theorem but by the Pratt theorem from [9].

Similarly as on p. 730 of [12] the equality ,ugf)j) —p = fj;o G, (z) dz holds, where

k
VNG (o) = YON) VW) 5= Fain) = F @) ey, (3.46)

YN~y = TN, —T

k
y(@)=F(z), yn, (@)=Y piF(zin,),
*(u i:1*u *(u 347
e (347)
' \/Nua—l—af(u) mg+0:(u) .

Thus, as u — 00, the limit of (3.46) equals a.e. the function under the integration

sign in VJ(-w) from (3.2). Hence it is sufficient to find integrable functions {&y, }, &

such that for all v > u*

Zi,N,

[VNGu(@)] < (@), (3.48)
+o0 +o00

lim én,(2) = £(z), lim [ &y, (x)de = / £(z) dz, (3.49)

U— 00 U— 00
— 00 — 00
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because then (3.3) follows from the Pratt theorem proved in [9]. We shall utilize
that

TiN, =T (1 + %) + % , UILH;O Vi, Ny = Vi UILH;O BiN, = Bi (3.50)

are real numbers. Throughout the rest of this proof assume that M is a fixed positive
constant. Making use of the assumptions and (3.46) one obtains that there exists
C > 0 such that for all u > ug and |z| < M

’\/NuGu(x)‘ <C. (3.51)
Without the loss of generality we may assume that (cf. (AS1),(C1) and (C2))

—-M+1< M, May<M-1,
F(—M +1) <min{ay , a1}, max{a,—1, oo} < F(M —1), (3.52)
f(My) <1, f(Ms) <1, fiscontinuous on (—oo, M) U (Ms,+00).

Since (3.50) holds there exist positive real numbers v, 8 such that for v > w; and
x> M

M1<x(1\/%)\/%<xi,gvu<x<l+\/’;\/ﬁ)+ 5 (3.53)
Y

y(@), yn, () € <F{x 1- W> —\/%},F[x(u \/7\]7)+ \/%D (3.54)

This together with (AS 1) and the monotonicity of gfbl)(F(t)) on (M —1,400) means

that

[, (@) = Uy ()]
v (@) = b (y(2)|

1) 8l B (1) 8l B
< |oi (Fle01 - i)~ m})‘ + [0 (Pl + )+ \/JWD‘ (3.55)
Similarly, by means of (3.53) and (3.52)
|F(ziN,) = F(z)] g B
e f(=0- ) - \/NT) (3.56)
and by (3.53) for x > M
VNy |z N, — 2] <ay+ 3. (3.57)

Combining (3.46) and (3.55)—(3.57) and employing (C3) one obtains that there
exist constants K, K5 such that for v > us and x > M

[VNGul)| < €0) @) + €8 @), (3.58)
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and these functions are for x > M defined by the formulas
0 @) =0 (2(1- ) - A=) €O@) = Kol (F@)) | 2@l

@) =@ (2014 )+ A=) €O@) = KH|ol) (F))| 122 @)la].
(3.59)
But (3.52) and the assumptions of the lemma imply that lim, 51(\],2 (z) = &0)(z)
for z > M and j = 1,2, and since [;; , ¢*U)(z) dz is a real number, for j = 1,2

/ Q) (x) x—>/ &0 (g (3.60)

as u — 00. Analogously, for x < —M the inequality (3.58) holds with

*(1 Y ﬂ (2 vy ﬂ
V) (2) = f”(x(l—mwm), €D @) = (21 + Nu)_m>'
(3.61)

Proceeding in this way and putting (cf. (3.51), (3.59) and (3.61) )

[ e0@+e@@) Jal > M, _ @+ el =,
5(”@)_{ C o <an, 07 o ] < M,

one obtains that (3.48) and (3.49) hold. O

In the rest of this section we shall use the notation

Il = ( [ e (3.62)

The following lemma is a reformulation of Theorem 4.2 of [1] but for the sake of
completeness we prefer to include it into the paper.

Lemma 3.3. Suppose that the function ¢ : (0,1) — R! is expressible as a finite
sum of monotone square integrable functions, F : Rt — (0, 1) is a right-continuous
distribution function and C is the o-algebra (2.32). If (2.2) holds, then for the
modified scores (2.28) and the function from (2.33)

1

lim ( <*">(1+[tN}‘ N(2)) — E[ng](t)) dt =0 (3.63)

N—oo 0
almost surely. Here [z] denotes the largest integer not exceeding x.

Proof. Let {Z,}52, be i.i.d random variables and P(Z; < t) = F(t). Suppose
that Fy(t) = #{j e {1,...,.N}: Z; < t}/N denotes the e.d.f. generated by

Z1,...,Zn,Cy = o(Fy) is the o-ring generated by the intervals {(0, Fy(t)); t € R}
and similarly as in (2.33), E[¢|Cn] denotes this conditional expectation related to
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the Lebesgue measure on (0,1). If ¢ € (0,1) and with the notation from (2.26) the
inequalities Tl+";”’1 <t< Tl+"‘+1\77j’1+7" hold, then

B[ Ion ] () = ) (1 + tNimv (2)) (3.64)

But by the Jensen inequality

/O *(B[p(E20 o ) - Blplelh) ar < / (o) - () a0

as N — oo, where the last convergence follows from Lemma 1 on p. 195 of [5]. Thus
employing the subadditivity of the norm one obtains that it is sufficient to prove
that

1 2

lim (E [@ |cN}(t) —E[<p |c} (t)) dt =0 (3.65)
— 00 0

a.s. But as the norm is subadditive, we may assume without the loss of generality

that the function ¢ is non-decreasing. Then according to the proof of Lemma 1

on p. 195 of [5] given € > 0 there exists an integer m such that for the function of

t € (0,1) defined by the formula

—1

Z:(pm—i-l m %)(t)

(with x denoting now the indicator function of the set) the inequality || — pm || < €
holds. Hence by means of the Jensen inequality and (3.62)

IE[¢lcx] —Ele[C]| <2s+HE[gom Cx | ~Elemc]|
m—1
§2E+Z’¢( )' HE -1 iy ]— E[x(iz1 5 [C] H
=2

Thus to prove (3.65) it is sufficient to show that for every a < b from (0, 1)

Jm B e [Cn] = Elx(a.p) [C]I| = 0 (3.66)

a.s. But this statement can be proved by means of the fact that according to the
Glivenko—Cantelli theorem Ay = sup{|Fn(t) — F(t)|; teR! } — 0 almost surely. O

Proof of Theorem 2.3. (I) First assume that (cf. (2.13))

n; )
pj:NJ—>pj, j=1,...,k. (3.67)
Suppose that {U;;}52,, j = 1,...,k are mutually different random variables which
are uniformly distributed over (0,1) and in the notation from the introduction of
the paper {X;;}2,, 7 =1,...,k, {U;:}24, j = 1,...,k are independent random
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variables. Put (X, ,,U,v) < (X;:,Uj,) if either X, , < Xj;, or X, , = X, and
Urw < Uj;, and for ny, ..., ny fixed let

=#{(r,v); (Xrv,Urp) 2 (X;:,Uj5), r=1,...,k,v=1,...,n, },
R*(N) — (RT,U“ RY R;"l,...,RE’m,...,RZ717...,RZ,M).

1,nyo

According to Theorem 29.A from [6] the random vectors R*(N), 7y (Z) are indepen-
dent and R*™) is uniformly distributed over the set RY) of all permutations of the
set {1,...,N}. Put

" =S (R, 1y Za D (R: v (2)) .- (3.68)

St =571 (3.69)
Let cg-N)(r, v)=1forr=j,v=1,...,n;, and c( )(r, v) = 0 otherwise. Obviously
* N R
S = ch( J(r,0)al (R |mn (2)) - (3.70)
r=1v=1
Further, let
kK n,
*(P N *
S0 =33 N0 (R;,) (3.71)
r=1v=1
where (cf. (2.33) )
3. - 1 -
a0 =2(577) @O =Elelc®. (3.72)

Let us consider the difference

() )/ px
DjtpN :Dj:pN(R (N)aTN(Z))

= S;,(J:/ﬁ) - E(S;’(J@) - {S;%)(R*(N),TN(Z)) _ NE;N)E%‘,P)} ' (3.73)
Since E(SJ*X? )= EEN)ng) and the random vectors R*(Y)| 7 (Z) are independent,
E{(ifz)v)zlm(Z) =] =E [(Dé?v(R*(N),T))Q} = var[ DY (R, )]
! 5™ () VISR (@) A0 2
< 1 ;UZI (o) = ™) ; () - @In)
Hence putting
o = Zk: i (M r0) - 5§N>)2v¢ (3.74)
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one obtains that

AN
E[(I)JW)‘TN(Z):T} <21 al (ag@(i)—a%)(z‘\r))z

‘7;,21(7@ Ve NI
< o [1aPa+ BV — 0l +lp) ~ P +EMI] . 79)

@
Since the conditional expectation is linear and (A 3) holds, in proving convergence
of (3.75) to zero one may assume that ¢ is non-decreasing. Further, put

a=sup{ F(z); F(z) <a}, a=inf{F(z); F(z) >a}, G={(a,a);ac(0,1)},
and define the function of the argument ¢ € (0,1) by the formula

5(1) {Mim | e(t)dt if te(m,M), (m,M)eg,
(p =

(m’M) (3.76)
(t) otherwise.

Since this function fulfills (2.33) for every interval A € C, we may assume that ¢ is
the function from (3.72). Thus ¢ is non-decreasing and an application of Lemma
1 on p. 195 of [5] yields that the first term in the bracket on the right-hand side of
(3.75) converges to zero and since the second term is op(1) owing to (3.63),

() )2 ()
(Dj,q)N) (Dij)
E{T,@ TN:TN(Z):| :0P(1)7 T’@:OP(I)7
OiN ;N

because the validity of (3.64) means that the right-hand side of (3.75) can be domi-
nated by a positive real number. Hence by (3.73)

SRR ry(2) ~nay)  GRED @) -EEGR)
* D - *2,0 P : :
(%,21\’/@)1/2 (o.j?](]‘P)l/Q

Let

k n, N
45 = Y (V) )Y (6 2) -2
=1

r=1v=1
Then Lemma 3.3 and the property |Eg\f) — % = o(1) following from Lemma 1 on
p- 195 of [5] imply that e 1/2
( Jéﬁ) =1+op(1). (3.78)
or5f
7,N

Since according to the assumptions V;; is a positive real number, by means of The-
orem 1 on p.194 of [5]

L N(0,1) (3.79)
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in distribution and by (3.77), (3.78)

S0 nly S50y
Toniz 23172 +op(1). (3.80)
(dj,N) (‘73 X

In accordance with (3.72) and (2.27) put
— @)\ _ (9
oN = N —14 (G’N (Z) an )

An application of Lemma 1 on p. 195 of [6] yields that JN“Q/V~ — las N — oo, and
as the weakly convergent random variables in (3.79) are bounded in plrobabblhty7

S;% —ESE) SR - ESK)

2 +op(1). (3.81)
(Np; (1 — py)on?)/2 (a3 3012
Combine (3.77) — (3.81) to show that
S*_‘(LF) _n _a(w) S’_‘(@) _n -E(@
J.N N DN TN L oa(1), (3.82)
(n;o3%)1/? (njoy?)1/>2
and for the same reasons
g () —(%) *(1)) ()
) n.a SN —nia
PN N TN TN L (). (3.83)
(non")/? (njo%”)1/2

To prove the convergence (2.40) put

*(@ *(@ (@ * 1[) *(
5],(1:10) = (Sj,(ﬁ) - njag\f))/ nJO'va j,(N) = (Sj,( ) n]aN )/

=N/
Let the random vector Z}, = ( ;(ﬁ ey Z(]f, &, N ,...,EZ%)) . Then according to
Theorem 3.1 of [12] the weak convergence of probabilities
L(Zy) — Nar(0, Ky @ A(p)) (3.84)
holds, here (cf. (2.35) and (2.36))
1 p _ Vo
Kv:([; f>,p=w,
VeV

A(p):Ik_\/f)(\/ﬁ)/v \/ﬁ:(ﬁv"'vﬁ)/'

Use the notation (2.30) and put
gj(“?\)[ — (5”](“}\), njaN )/ njéfvw, gj(d]’\), = (S](d;v — njﬁgf,b))/\/nj&?\[w,

£(p)
i X . - W) _ (F A
zN=< ) ) L EP =, BBy, B = E R ERY
N
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Then by (3.69), (3.82) and (3.83)
Zy =75 +op(1). (3.85)

Employ (2.30) to define the matrix by the formula

A ~2,0,9
(1 P A ON
~2,p0 =27
(o37av)

Since Lemma 1 on p. 195 of [5] and Lemma 3.3 hold,
K =Ky +op(1). (3.87)

In accordance with (2.13) put p = (p1,...,px) . Then (3.87) together with (3.67)
means that K™? @ A(p) = Ky ' ® A(p) + op(1) and taking into account (3.85)
one obtains that

Zy(K '@ A(p)Zy = Z}' (Kg ' @ A(p))Zx + op(1) (3.88)

where
£(Zy' Ky~ ® A)Zx) — Bu (3.89)

in distribution; this can be easily proved by means of (3.84) and Theorem 9.2.3 on
p. 173 of [11], because K¢ ' ® A(p) is the Moore-Penrose inverse of K¢ @ A(p).
But after some computation one obtains that Z (K~'® A(P))Zx = Tn,.... n, is the
statistic (2.38), and the convergence (2.40) follows from (3.88) and (3.89).

(IT) Now do not assume that the convergence (3.67) holds. Since from every
bounded sequence of vectors from R¥ one can choose a convergent subsequence, the
convergence (2.40) can be easily proved by means of (I). O

Proof of Lemma 2.1. Fort € (Fj_1,F;) put £ ; = (¢}, ¥;)". If D C C, then

E[E[g IC] |D} = E[{ | D} and therefore is is sufficient to prove that the covariance
matrix V* of the random vector £* is regular.

Suppose that det(V*) = 0. Then there exists (a, ) # (0,0) such that (cf.
(2.34))

ag) + B =7, y=ap+ By, j=1,2,3,4. (3.90)
Since the case F(z2) > % can be handled analogously, assume that
1
F(z) < 3 (3.91)

(I) Then (o + B)¢T = (o + B)ps. In the case that a + 3 # 0 we obtain that
] = ¢35 which is a contradiction, because ¢ is strictly increasing. If a+ 3 = 0, then
0=ap+ 0y =a(@—1), =1 and therefore

/; o(t)dt = i . (3.92)



306 F. RUBLIK

This together with (2.42) implies that foé p(t)dt =1 = [+ @(t) dt, which contradicts
2

the strict monotonicity of ¢. Therefore (3.91) cannot hold which means that F'(z3) >

> % Then ¢7 =1 — 7 for j = 3,4 and

y=(a—B)gs+ 8, j=34. (3.93)

Hence if « = (3, then we may assume that « = § = v = 1, but in such case

l=%+¢ = 2f0% @(t)dt + 3. Thus (3.92) holds and as we have already proved,
this yields a contradiction. However, if a # (3, then from (3.93) we obtain that
3 = ¢, which contradicts the strict monotonicity of ¢. This means that the matrix
V* cannot be singular.

(IT) The proof of this part is left to the reader. O
(Received December 4, 2006.)
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