
KY BERNET I K A — V OL UME 3 0 (1 9 9 4) , N UM B ER 1 , PAGE S 5 3 – 6 2

TRANSFORMATIONS OF TRANSLATION GRAMMARS

Bořivoj Melichar

A one-pass translation algorithm may be constructed by an extension of LR(k) parser
for some R-translation grammars. An LR parser is possible to extend in such a way that
output of output symbols is performed during both basic operations of the parser – shift
and reduce. Some transformations are studied which enable to transform some class of
translation grammars on R-translation grammars. The most important transformations
that can be used for this purpose are those called shaking down and postponing.

1. INTRODUCTION

Translation grammars are one of formal systems for the description of syntax-
directed translations. It is possible for an arbitrary translation grammar with LL(k)
input grammar to create one-pass translation algorithm by a simple extension of an
LL(k) parser [2]. Similar approach is not possible for a translation grammar with
an LR(k) input grammar. One-pass translation algorithm may be constructed by
an extension of LR(k) parser only for some R-translation grammars [4]. There is
a possibility to make an extension of an LR parser in which the output of output
symbols can be performed during both basic operations of the parser – shift and
reduce. The only condition for the construction of one-pass translation algorithm
for a R-translation grammar is that during each operation shift, the string of output
symbol can be unambiguously selected.

In this paper transformations are studied that enable to transform some trans-
lation grammars to R-translation grammars. The most important transformations
that can be used fot this purpose are those called shaking down and postponing.

2. NOTATION

An alphabet is a finite nonempty set of symbols. The set of strings of symbols from
an alphabet A including the empty string (ε) is denoted by A∗. A formal language
L over an alphabet A is a subset of A∗, L ⊆ A∗.

A context-free grammar is a quadruple G = (N, T, P, S), where N is a finite set
of nonterminal symbols, T is a finite set of terminal symbols, T ∩ N = ∅, S is the
start symbol, and P is a finite set of rules of the form A → α, A ∈ N , α ∈ (N ∪ T)∗.
The symbol ⇒ is used for the derivation relation. For any α, β ∈ (N ∪ T)∗, α ⇒ β,

54 B. MELICHAR

if α = γ1Aγ2, β = γ1γ0γ2, and A → γ0 ∈ P , where A ∈ N and γ0, γ1, γ2 ∈
(N ∪ T)∗. Symbols ⇒k, ⇒+, ⇒∗ are used for the k-power, and for the transitive,
and transitive and reflexive closures of ⇒, respectively. The symbol ⇒rm is reserved
for the rightmost derivation, i. e., γ1Aγ2 ⇒rm γ1αγ2, if γ2 ∈ T ∗. A sentential form
is a string α which can be derived from S, S ⇒∗ α. A sentential form α in S ⇒∗

rm α
is called a right sentential form. The formal language generated by a grammar
G = (N, T, P, S) is the set of strings L(G) = {w : S ⇒∗ w, w ∈ T ∗}. Two grammars
G1 and G2 are equivalent, if L(G1) = L(G2).

A nonterminal A is recursive, if there is a derivation A ⇒+ αAβ, for some
α, β ∈ (N ∪ T)∗. A nonterminal A is left-recursive, if α = ε. If for some A ∈ N ,
there is a derivation A0 ⇒ A1α1 ⇒ · · · ⇒ Anαn · · ·α1, n ≥ 1, with A0 = An = A,
then the rules Ai → Ai+1αi+1 (0 ≤ i < n) are called left-recursive rules of the
grammar.

A formal translation Z is a relation Z ⊂ A×B, where A and B are sets of input
and output strings, respectively.

A context-free translation grammar is a context-free grammar in which the set of
terminal symbols is divided into two disjoint subsets, the set of input symbols and
the set of output symbols, respectively.

A context-free translation grammar is a 5-tuple TG = (N,T,D, R, S), where N is
the set of nonterminal symbols, T is the set of input symbols, D is the set of output
symbols, R is the set of rules of the form A → α, where A ∈ N , α ∈ (N ∪ T ∪D)∗,
and S is the start symbol.

The input homomorphism hTG
i and the output homomorphism hTG

o from
(N ∪ T ∪D)∗ to (N ∪ T ∪D)∗ are defined as follows:

hTG
i (a) =

{
a for a ∈ T ∪N

ε for a ∈ D
hTG

o (a) =

{
ε for a ∈ T

a for a ∈ D ∪N

For h ∈ {hTG
i , hTG

o } holds h(ε) = ε, h(aw) = h(a) h(w), where a ∈ (N ∪ T ∪D),
w ∈ (N ∪ T ∪D)∗

The derivation in a translation grammar TG is denoted by ⇒, and called the
translation derivation. The formal translation defined by a translation grammar TG
is the set

Z(TG) = {(hTG
i (w), hTG

o (w)) : S ⇒∗ w, w ∈ (T ∪D)∗}.
The input grammar of a translation grammar TG is the context-free grammar

Gi = (N, T, Ri, S), where Ri = {A → hTG
i (α) : A → α ∈ R}.

The output grammar of a translation grammar TG is the context-free grammar

Go = (N,D, Ro, S), where Ro = {A → hTG
o (α) : A → α ∈ R}.

Note: The superscript TG is omitted when no confusion arises.

A translation grammar TG is called a postfix translation grammar, if the strings
of output symbols appear only at the ends of right-hand sides of the rules.

Transformations of Translation Grammars 55

Definition 2.1. A translation grammar TG is called anR-translation grammar, if
the strings of output symbols appear at the ends of right-hand sides of the rules
and/or immediately in front of input symbols.

Context-free grammar G = (N,T ∪ D, R, S) is the characteristic grammar of
a translation grammar TG = (N, T, D,R, S). Language L(G) is the characteristic
language of the translation Z(TG). Sentence w ∈ L(G) is the characteristic sentence
of a pair (x, y) ∈ Z(TG), where x = hi(w), and y = ho(w). A derivation tree for
some string generated by characteristic grammar G of a translation grammar TG is
a translation tree for a pair (hi(w), ho(w)) in Z(TG).

3. EQUIVALENCE OF TRANSLATION GRAMMARS

Definition 3.1. Translation grammars TG1 and TG2 are equivalent iff Z(TG1) =
Z(TG2).

Lemma 3.2. Let TG1 = (N1, T1, D1, R1, S1) and TG2 = (N2, T2, D2, R2, S2) be
translation grammars with equivalent characteristic context-free grammars G1 =
(N1, T1 ∪D1, R1, S1) and G2 = (N2, T2 ∪D2, R2, S2) and T1 = T2, D1 = D2. Then
translation grammars TG1 and TG2 are equivalent.

P r o o f . It holds for equivalent context-free grammars G1 and G2 that L(G1) =
L(G2), i. e. for each w ∈ L(G1) ⇔ w ∈ L(G2). From T1 = T2 and D1 = D2

follows hTG1
i (w) = hTG2

i (w) = x and hTG1
o (w) = hTG2

o (w) = y. Therefore (x, y) ∈
Z(TG1) ⇔ (x, y) ∈ Z(TG2). 2

Lemma 3.2 facilitates the use of transformations known for context-free grammars
also for translation grammars. Let us mention for example the “substitution” (see
Lemma 2.14 in [1]).

Lemma 3.3. Input and output grammars of equivalent translation grammars are
equivalent.

P r o o f . If for translation grammars TG1 and TG2 holds

Z = Z(TG1) = Z(TG2) then
L(TG1i) = {x : (x, y) ∈ Z} = L(TG2i) and
L(TG1o) = {y : (x, y) ∈ Z} = L(TG2o) 2

Example 3.4. The characteristic context-free grammars of equivalent translation
grammars need not be equivalent:

TG1 = ({S}, {a}, {x}, {S → xa}, S) and
TG2 = ({S}, {a}, {x}, {S → ax}, S)

are equivalent translation grammars because

Z(TG1) = {(a, x)} = Z(TG2).

56 B. MELICHAR

Nevertheless, the characteristic grammars

G1 = ({S}, {a, x}, {S → ax}, S) and

G2 = ({S}, {a, x}, {S → xa}, S) are not equivalent because

L(G1) = {ax} 6= L(G2) = {xa}.

Example 3.5. The reverse of Lemma 3.3 does not hold. For instance for transla-
tion grammars

TG1 = ({S}, {a, b}, {x, y}, {S → ax, S → by}, S) and

TG2 = ({S}, {a, b}, {x, y}, {S → ay, S → bx}, S)
holds

L(TG1i) = L(TG2i) = {a, b},
L(TG1o) = L(TG2o) = {x, y}, but

Z(TG1) = {(a, x), (b, y)} 6= Z(TG2) = {(a, y), (b, x)}.

4. BASIC TRANSFORMATIONS OF TRANSLATION GRAMMARS

The simplest transformation specific for translation grammars consists of the ex-
change of adjacent input and output symbols on the right hand side of a rule.

Lemma 4.1. Let TG = (N, T, D,R, S) be a translation grammar which contains
the rule A → αCxβ, where α, β ∈ (N ∪ T ∪ D)∗, C ∈ T ∪ N , x ∈ D+ and if
C ∈ N then C generates strings of input symbols only. Then translation grammar
TG′ = (N,T,D, R′, S), where R′ = (R−{A → αCxβ})∪{A → αxCβ}, is equivalent
to grammar TG.

P r o o f . First we prove that Z(TG) ⊆ Z(TG′). We show, using induction by
n, that for any translation derivation of the form B ⇒n w with length n > 0,
where w ∈ (T ∪D)∗, in the translation grammar TG, exists translation derivation
B ⇒∗ w′, w′ ∈ (T ∪D)∗, in the grammar TG′ and it holds hTG

i (w) = hTG′
i (w′) and

hTG
o (w) = hTG′

o (w′) holds.
Let us suppose that n = 1. Two cases can occur. In the first case, the same rule

is used in both derivations B ⇒ w in TG and B ⇒ w′ in TG′. Therefore w = w′

and the assertion holds. In the second case, the rule A → αCxβ is used in the
derivation of w and C ∈ T . Then the rule A → αxCβ is used in the derivation
of w′ in the grammar TG′. It holds that hi(w) = hi(w′) = hi(α)Chi(β) and
ho(w) = ho(w′) = ho(α)xho(β).

Let us suppose that the assertion holds for all derivations shorter than n. Let
us have the derivation B ⇒n w with the length n in the grammar TG. Two cases
occur again. Let us treat the first case when B = A and there is following derivation
in the grammar TG: A ⇒ αCxβ ⇒n−1 w1yxw2 = w, y ∈ T ∗, C ⇒∗ y.
The corresponding derivation in the grammar TG′ is A ⇒ αxCβ ⇒n−1 w′1xyw′2 =

Transformations of Translation Grammars 57

w′. Because derivations α ⇒∗ w′1, β ⇒∗ w′2 in the grammar TG′ are shorter than
n, it holds

hi(w1yxw2) = hi(w′1xyw′2) = hi(w1)yhi(w2),
ho(w1yxw2) = ho(w′1xyw′2) = ho(w1)xho(w2).

If the same rule is used in the first step in the derivation B ⇒n w in both
grammars TG and TG′, then the assertion also holds.

The special case is B = S. It follows from this that Z(TG) ⊆ Z(TG′).
The reverse inclusion Z(TG′) ⊆ Z(TG) may be proved in the similar way. From

this follows Z(TG) = Z(TG′). 2

Note. The transformation given by Lemma 4.1 we shall call postponing of input
symbol. A reverse transformation to the one given by Lemma 4.1 called advancing
is given by Lemma 4.2.

Lemma 4.2. Let TG = (N, T, D,R, S) be a translation grammar which contains
rule A → αxCβ, where α, β ∈ (N ∪ T ∪ D)∗, C ∈ T ∪ N , x ∈ D+ and if C ∈ N
then C generates strings of input symbols only. Then translation grammar TG′ =
(N, T, D, R′, S), where R′ = (R − {A → αxCβ}) ∪ {A → αCxβ}, is equivalent to
grammar TG.

The p r o o f of this Lemma is similar to the proof of Lemma 4.1. 2

During a transformation of a translation grammar to a postfix translation gram-
mar, we must solve the situation in which a string of output symbols appears inside
the right-hand side of a rule. Similarly, during the transformation of a translation
grammar on a R-translation grammar the situation is to solve, in which some string
of output symbols inside the right-hand side of a rule is followed by a nonterminal
symbol which generates at least one string containing output symbols. If such a
string of output symbols is preceded at least by one input symbol, it is possible to
perform such a transformation by exchange of input and output symbols according
to Lemma 4.1. In other cases specific transformation called left and right absorption
may be used. Let us first introduce a more general Lemma.

Lemma 4.3. Let TG = (N,T,D, R, S) be a translation grammar, where set R
contains rule A → αβγ where α, β, γ ∈ (N ∪ T ∪ D)∗. Then translation grammar
TG′ = (N ∪ {A′}, T, D,R′, S,) where A′ 6∈ N and R′ = (R − {A → αβγ}) ∪ {A →
αA′γ, A′ → β}, is equivalent to grammar TG.

P r o o f . Because a transformation called substitution may be used also for trans-
lation grammars (see note after Lemma 3.2), we can substitute β for A′ in grammar
TG′ and we obtain grammar TG. 2

Using Lemma 4.3 we define two transformations called left and right absorption.
The left absorption of the output string is the following transformation:

Let TG = (N,T,D, R, S) be a translation grammar, where R contains rule A →

58 B. MELICHAR

αβxγ, α, β, γ ∈ (N ∪T ∪D)∗, x ∈ D+. Then we obtain by the left absorption of the
output string x the equivalent translation grammar TG′ = (N ∪ {A′}, T, D,R′, S),
where A′ 6∈ N and R′ = (R− {A → αβxγ}) ∪ {A → αA′γ,A′ → βx}.

The right absorption of the output string can be defined similarly:
Let TG = (N,T,D, R, S) be a translation grammar, where R contains rule A →
αxβγ, α, β, γ ∈ (N∪T ∪D)∗, x ∈ D+. Then we obtain by the right absorption of the
output string x the equivalent translation grammar TG′ = (N ∪ {A′}, T, D,R′, S),
where A′ 6∈ N and R′ = (R− {A → αxβγ}) ∪ {A → αA′γ, A′ → xβ}.

The transformations of left and right absorption have one common case, the
situation in which string β is an empty string. The rule for nonterminal symbol
A′ has then the form A′ → x, where x is a string of output symbols. The rule of
input grammar corresponding to this rule has the form A′ → ε. This variant of
the transformations in question is called the ε-rule insertion. Such transformation
was studied in detail by Purdom and Brown [5]. The main result of this study is
the stipulation of conditions when the insertion of ε-rules either destroy or does not
destroy the LR(k) property of the input grammar. The special case of left absorption
is mentioned by Lewis, Rosenkrantz and Stearns in [3]. In this case string α is an
empty string and such transformation is used to transform a translation grammar
to the postfix one.

5. THE TRANSFORMATION SHAKING DOWN

Let us discuss a special case of the right absorption. Let string β to which an output
string will be absorbed is a single nonterminal symbol. For the clarity of explanation,
let us denote the nonterminal symbol created for nonterminal symbol B to which
output string x will be absorbed by [xB].

Let us have rule A → αxBγ in translation grammar TG. We obtain following
rules after the right absorption of string x into nonterminal symbol B:

A → α[xB]γ
[xB] → xB.

Let there are the following rules for nonterminal symbol B in TG:

B → δ1|δ2| · · · |δn.
We can substitute the right hand sides of these rules into the rule [xB] → xB for
symbol B and the final rules are:

A → α[xB]γ
[xB] → xδ1|xδ2| · · · |xδn.

In the Figure 1 are depicted parts of the translation trees in original grammar
TG and in the transformed grammar.

We can see from this picture that string x of output symbols is in the tree for
the transformed grammar one level below in comparison with its position in the tree
for the original grammar. Therefore we shall call this transformation the “shaking
down” transformation.

Transformations of Translation Grammars 59

A

x B

δi

A

[xB]

x δi

a) b)

¡
¡

¡¡

@
@

@@

B
B
BB

£
£

££

¡
¡

¡¡

@
@

@@

A
A
AA

Fig. 1. Parts of translation trees, a) in original grammar, b) in transformed grammar.

Lemma 5.1. Let TG = (N, T, D, R, S) be a translation grammar, where R con-
tains rule A → αxBγ, α, γ ∈ (N ∪ T ∪ D)∗, B ∈ N , and B → δ1|δ2| · · · |δn

are the only rules in R with nonterminal symbol B on the left-hand sides. Let
TG′ = (N ∪ {[xB]}, T, D, R′, S), where R′ = (R − {A → αxBγ}) ∪ {[xB] →
xδ1|xδ2| · · · |xδn}. Then Z(TG) = Z(TG′).

This Lemma follows immediately from Lemmas 3.2, 4.3, and Theorem on substi-
tution [1].

6. TRANSFORMATION OF TRANSLATION GRAMMAR TO R–TRANS-
LATION GRAMMAR

The repeated shaking down transformation may be used for the transformation of a
translation grammar to R-translation grammar.

Theorem 6.1. Let TG = (N,T,D, R, S) be a translation grammar in which no
output symbol appears in front of a left recursive nonterminal symbol in any left re-
cursive rule. Then by repeated shaking down transformation is possible to transform
translation grammar TG to R-translation grammar TG′ such that Z(TG) = Z(TG′).

P r o o f . If we transform translation grammar TG to translation grammar TG′

using repeated shaking down transformation and the number of shaking down op-
erations is finite, then grammars TG and TG′ are equivalent. Therefore, we must
prove that the necessary number of shaking down operations is finite.

Let us have rule A → αxC0β in the translation grammar TG, where A, C0 ∈
N, x ∈ D+ is the longest string of output symbols, α, β ∈ (N ∪ T ∪ D)∗. If for

symbol C0 exists derivation

(∗) C0 ⇒ y1C1γ1 ⇒ y1y2C2γ2γ1 ⇒ · · ·
⇒ y1y2 · · · ynCnγn · · · γ2γ1 ⇒

60 B. MELICHAR

⇒ y1y2 · · · ynzδγn · · · γ2γ1,

where C1, C2, . . . , Cn ∈ N , y1, y2, . . . , yn, z ∈ D∗ , z is the longest string of out-
put symbols, γ1, γ2, . . . , γn, δ ∈ (N ∪ T ∪ D)∗, and none of nonterminal symbols
C0, C1, . . . , Cn is left recursive, then all these nonterminal symbols are different and
there exist following rules in grammar TG :

C0 → y1C1γ1

C1 → y2C2γ2

C2 → y3C3γ3
...

Cn−1 → ynCnγn

Cn → zδ.

We obtain the following rules of grammar TG′ using the operation shaking down
n + 2 times:

A → α[xC0]β
[xC0] → [xy1C1]γ1

[xy1C1] → [xy1y2C2]γ2

[xy1y2C2] → [xy1y2y3C3]γ3

...
[xy1y2 · · · yn−1Cn−1] → [xy1y2 · · · yn−1ynCn]γn

[xy1y2 · · · yn−1ynCn] → xy1y2 · · · yn−1ynzδ,

in which no output symbols are in front of nonterminal symbols [xC0] and [xy1 · · · ykCk]
for k = 1, 2, . . . , n. Only the last rule contains output symbols either at the end of
its right-hand side if δ is empty string or in front of input symbol if δ is not empty
string. It means, that strings x, y1, y2, . . . , yn have been shaken down to the rule
which satisfies the definition of R-translation grammar.

We can construct in grammar TG′ derivation:

A ⇒ α[xC0]β ⇒ α[xy1C1]γ1β ⇒ · · ·
⇒ α[xy1 · · · ynCn]γn · · · γ1β

⇒ αxy1 · · · ynzδγn · · · γ1β.

The number of derivations of the form (∗), which is possible to construct, is finite
and therefore it suffices only the finite number of shaking down transformations.

Let us suppose, that in derivation (∗) some of nonterminal symbols C0, C1, . . . , Cn

is left recursive. It means that Ci = Cj for some i, j ∈ 〈0, n〉, i 6= j. Let us suppose
that i < j. Then there must exist following rules in TG:

C0 → y1C1γ1

...
Ci−1 → yiCiγi

Ci → Ci+1γi+1

Transformations of Translation Grammars 61

...
Cj−1 → Cjγj

Cj → yj+1Cj+1γj+1

...
Cn → zδ.

It means that yi+1, . . . , yj from derivation (∗) are empty strings. It arises during
shaking down transformation for each left recursive rule Ck → Ck+1γk+1, where
i ≤ k < j a new rule of the form [xy1 · · · yiCk] → [xy1 · · · yiCk+1]γk+1. The number
of such rules is equal to the number of left recursive rules which is possible to use
in a derivation. Their maximal number is given by a product of the number of left
recursive rules in the grammar and the number of shaken down strings xy1 · · · yi.
Because the shaken down strings of the form xy1 · · · yi are generated only by non-
left recursive rules, their number is finite. With respect to the finite number of left
recursive rules in the grammar, is the number of created rules also finite.

We finish the proof stating that the number of strings of output symbols appearing
in front of nonterminal symbols in grammar rules is finite. Therefore it suffices
the finite number of shaking down operations for the transformation of translation
grammar to R-translation grammar.

Example 6.2. Let us have translation grammar TG = ({S, A, B}, {a, b}, {x, y}, R, S),
where R contains rules:
(1) S → axAbyBy

(2) A → Aaxy

(3) A → a

(4) B → Bby

(5) B → ε.
We obtain, after repeating shaking down and elimination of useless symbols, transla-
tion grammar TG′ = ({S, [xA], [yB]}, {a, b}, {x, y}, R′, S), where R′ contains rules:
(1) S → a[xA]b[yB]y
(2) [xA] → [xA]axy

(3) [xA] → xa

(4) [yB] → [yB]by
(5) [yB] → y

This grammar is the R-translation grammar.

7. CONCLUSION

We have shown that it is possible to transform each translation grammar to R-
translation grammar provided that no output symbols are present in front of left
recursive nonterminal symbols. It is possible, after this transformation, to try to im-
plement the formal translation using the algorithm directed by LR parsing [4] and

62 B. MELICHAR

this approach succeeds in such a case when no translation conflict arises. The trans-
formation shaking down and postponing may be incorporated into the process of
the construction of LR parser. This approach leads to the construction of translator
directed by LR parser [5].

(Received July 19, 1991.)

REFE REN CES

[1] A.V. Aho and J. D. Ullman: The Theory of Parsing, Translation and Compiling.
Vol. 1. Parsing, Vol. 2. Compiling. Prentice–Hall, New York 1971, 1972.

[2] P.M. Lewis and R.E. Stearns: Syntax directed transductions. J. Assoc. Comput.
Mach. 15 (1968), 3, 465–488.

[3] P.M. Lewis, D. J. Rozenkrantz and R.E. Stearns: Compiler Design Theory. Addison–
Wesley, London 1976.

[4] B. Melichar: Formal translation directed by LR parsing. Kybernetika 28 (1992), 1,
50–61.

[5] B. Melichar: LR Translation Grammars. Research Report No. DC–92–03, Department
of Computers, Czech Technical University, Prague 1992.

[6] P. Purdom and C.A. Brown: Semantic routines and LR(k) parsers. Acta Informatica
14 (1980), 4, 229–315.

Doc. Ing. Bořivoj Melichar, CSc., katedra poč́ıtač̊u elektrotechnické fakulty ČVUT (De-

partment of Computers – Czech Technical University), Karlovo nám. 13, 121 35 Praha 2.

Czech Republic.

	INTRODUCTION
	NOTATION
	EQUIVALENCE OF TRANSLATION GRAMMARS
	BASIC TRANSFORMATIONS OF TRANSLATION GRAMMARS
	THE TRANSFORMATION SHAKING DOWN
	TRANSFORMATION OF TRANSLATION GRAMMAR TO R--TRANS- LATION GRAMMAR
	CONCLUSION

