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Jan Hlavička, Martin Janžura, Jan Ježek,
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LOCAL ASYMPTOTIC STABILITY
FOR NONLINEAR STATE FEEDBACK DELAY SYSTEMS1

Alfredo Germani, Costanzo Manes and Pierdomenico Pepe

This paper considers the problem of output control of nonlinear delay systems by means
of state delayed feedback. In previous papers, through the use of a suitable formalism, stan-
dard output control problems, such as output regulation, trajectory tracking, disturbance
decoupling and model matching, have been solved for a class of nonlinear delay systems.
However, in general an output control scheme does not guarantee internal stability of the
system. Some results on this issue are presented in this paper. It is proved that if the
system owns a certain Lipschitz property in a suitable neighborhood of the origin, and the
initial state is inside such neighborhood, then when the output is driven to zero by means
of a static state feedback the system state asymptotically goes to zero. Theoretical results
are supported by computer simulations performed on a nonlinear delay systems that is
unstable in open loop.

1. INTRODUCTION

Although the topic of analysis and control of linear delay systems has been widely
investigated in the past years (see e. g. [1–3, 7, 14–16]), only in recent years some
authors focused their attention to analysis and control of nonlinear delay systems
[4–7, 10–13]. In papers [4–6], thanks to the introduction of a suitable mathematical
formalism, in which a central role is played by the concept of delay relative degree,
the problem of output control of nonlinear delay systems was solved for an inter-
esting class of nonlinear delay systems. This is the class of minimum phase delay
systems, that is the class of delay systems that have delay relative degree and stable
zero dynamics. The formalism proposed in [4–7] allows to overcome the mathemat-
ical difficulties due to the simultaneous presence of nonlinearity in the differential
equations and of a state space of infinite dimension, that characterizes delay sys-
tems. The control law presented in [4] forces the input-output mapping to be linear
and removes the effect of the delay. It is a function of the actual and past values of
the state and of the past values of the input (delayed feedback). As a consequence,
the output and its derivatives until order r− 1, where r is the system delay relative
degree, can be easily controlled.

1This work is supported by ASI (Agenzia Spaziale Italiana) and by MURST (Ministero
dell’Università e della Ricerca Scientifica e Tecnologica).
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In this paper we consider the problem of the so-called zero-dynamics, that is the
behavior of the state when the output and its r−1 derivatives are driven to zero and
kept to zero by a feedback law. Conditions are presented that guarantee, when the
output and its derivatives until order r− 1 go to zero, that the state asymptotically
goes to zero too. Among the conditions, the delay relative degree r must be equal to
the dimension n of the state variables and the function Φ(·), that gives the output
and its derivatives until order n − 1 from the state variables and their past values,
must be invertible with respect to the state variables, and the inverse function must
be Lipschitz, in a suitable neighborhood of the origin, with a coefficient smaller
than 1.

This particular Lipschitz condition is locally verified by a large class of nonlinear
delay systems. For such systems the problem of output control with internal stability
is solved, provided that the initial state is in a suitable neighborhood of the origin.
Simulation results are reported on a nonlinear delay system that is unstable in open
loop.

The paper is organized as follows. In Section 2 the necessary notations are re-
ported. In Section 3 the main results of the paper are reported: the problem of local
asymptotic stability is formulated and solved. In Section 4 an example of application
is presented with simulation results. Conclusions follow in Section 5.

2. PRELIMINARIES

In this section notations and definitions presented in [4], extensively used throughout
this paper, are briefly reported. The control system under investigation is described
by the following equation

ẋ(t) = f(x(t), x(t−∆)) + g(x(t), x(t−∆)) u(t), (1)
y(t) = h(x(t)), t ≥ 0, (2)

where x(t) ∈ IRn, u(t) ∈ IR and y(t) ∈ IR, the vector functions f and g are C∞ with
respect to both arguments, and h is a C∞ scalar function. The model description is
completed by the knowledge of the function x(τ), τ ∈ [−∆, 0], which represents the
initial state in the classical infinite dimensional description of delay systems. Let
xi∆(t) = x(t − i∆) and ui∆(t) = u(t − i∆), for i = 0, 1, 2, . . . . Note that xi∆ is
defined for t ≥ (i − 1) ∆, while ui∆ is defined for t ≥ i∆. In the following we shall
omit the time dependence, when it does not cause confusion.

Definition 2.1. Assume that for system (2.1), (2.2) there exists an integer r such
that, for every X in an open set Ωr ∈ IRn(r+1), the following conditions are verified

LGLk
F H(X) = 0, k = 0, 1, . . . , r − 2, (3)

LGLr−1
F H(X)




1
0
...
0


 6= 0, (4)
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where

X =




x
x∆

...
xr∆


 , X =




x
x∆

...
x(r−1) ∆


 , (5)

F (X) =




f
(
x, x∆

)
f
(
x∆, x2∆

)
...

f
(
x(r−1) ∆, xr∆

)


 , (6)

G(X) = diag
{
g
(
x, x∆

)
, . . . , g

(
x(r−1) ∆, xr∆

)}
, (7)

H(X) = h(x),
L0

F H(X) = H(X),

Lk
F H(X) =

(
d

dX
Lk−1

F H

)
F (X), (8)

LGLk
F H(X) =

(
d

dX
Lk

F H

)
G(X).

Then, we say that the system has delay relative degree equal to r in Ωr.
If Ωr = IRn(r+1), we say that the system has global delay relative degree equal

to r.

By denoting U =
[
u u∆ · · · u(r−1) ∆

]T, the term LGLr−1
F H(X)U can be

expanded in the form

LGLr−1
F H(X) U = Γ(X)u + m(X, u∆, . . . , u(r−1) ∆), (9)

where Γ(X) is defined as

Γ(X) = LGLr−1
F H(X)




1
0
...
0


 , (10)

and m(X, u∆, . . . , u(r−1) ∆) is as a consequence. Note that from condition (2.4) it is
Γ(X) 6= 0 for X ∈ Ωr.

It is not difficult to check that for systems having delay relative degree equal to
r in Ωr it is

y(k)(t) = Lk
F H(X), k = 0, 1, . . . , r − 1,

y(r)(t) = Lr
F H(X) + Γ(X)u + m(X,u∆, . . . , u(r−1) ∆).

(11)
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From (2.12), it is easily seen that the feedback control law

u =
−Lr

F H(X)−m(X, u∆, . . . , u(r−1) ∆) + ν

Γ(X)
(12)

imposes the following linear input-output map with respect to the new input ν

y(r)(t) = ν(t). (13)

Note that vector X is defined for t ≥ (r− 1)∆, and therefore the control law (2.12)
can be applied starting from time instant (r − 1)∆. The control law (2.12) is a
function of the actual and past values of the state and of the past values of the
input, and therefore it is called delayed feedback.

Defining the vector function

Φ(x, x∆, . . . , x(r−1) ∆) =




H(X)
L1

F H(X)
...

Lr−1
F H(X)


 , (14)

the output derivatives up to order r − 1 for t ≥ (r − 1) ∆ can be written as



y(t)
...

y(r−1)(t)


 = Φ(X(t)). (15)

Given the linearized input-output mapping (2.13), output regulation, tracking and
model matching can be easily performed. For example, by suitably choosing a row
vector K, the input

ν = KΦ(X) (16)

drives the output and its r − 1 derivatives to zero with any chosen decay rate.
For nonlinear systems of the form (2.1), (2.2) having global delay relative degree

equal to r, the zero dynamics is called to be the state evolution of the feedback
system

ẋ(t) = f(x(t), x∆(t)) + g(x(t), x∆(t)) u(t),

t ≥ t0 ≥ (r − 1)∆,
(17)

where variable x(t) for t ≤ t0 is such that the output and its first r−1 derivatives are
zero at t0 (y(t0) = y(1)(t0) = · · · = y(r−1)(t0) = 0), and u(t) is the feedback input
that obtains y(r)(t) = 0 for t ≥ t0 (it can be computed setting ν ≡ 0 in (2.12)).

Nonlinear systems of the form (2.1), (2.2) are said to be minimum phase if they
have stable zero-dynamics, extending in this way the terminology generally adopted
with reference to nonlinear undelayed systems.

To conclude this section, let

z(t) =




y(t)
...

y(r−1)(t)


 = Φ

(
x(t), . . . , x(t− (r − 1)∆)

)
. (18)
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We say that the system (2.1), (2.2) is globally delay observable if it has global delay
relative degree r = n and there exists the inverse Φ−1 of function Φ with respect to
x, that is

x(t) = Φ−1
(
z(t), x(t−∆), . . . , x(t− (n− 1)∆)

)
. (19)

3. LOCAL ASYMPTOTIC STABILITY

From here on we assume that system (2.1), (2.2) has delay relative degree r equal to
n, so that when control law (2.12) and (2.16) is applied, the dynamics of variable z
is described by the linear equation

ż(t) = (Ab + BbK)z(t), for t ≥ (n− 1)∆, (20)

where (Ab, Bb) is a Brunowsky controllable pair. It is an easy matter to compute
K such to assign eigenvalues to matrix Ab + BbK, that has a companion structure.
We will assume that K is such to assign real eigenvalues λi, i = 1, . . . , n such that

λn < · · · < λ1 < 0, (21)

(−K is the vector of the coefficients of the polynomial that has the chosen eigenvalues
as roots).

Remark 3.1. It is important to stress that, differently from the undelayed case,
the fact that the relative degree is r = n and z(t) goes to zero in general does not
imply convergence of x(t) to zero. Extra assumptions are needed to achieve such
implication, as explained in the following theorem.

Theorem 3.2. Let system (2.1), (2.2) be globally delay observable, with feedback
control law (2.12), (2.16), with eigenvalues (3.2). Assume there exists a positive
constant γ such that, if ‖xi∆‖ < γ, i = 1, . . . , n− 1, then

‖Φ−1(z, x∆, x2∆, . . . , x(n−1) ∆)‖ ≤ α‖z‖+ β

∥∥∥∥∥∥∥




x∆

...
x(n−1) ∆




∥∥∥∥∥∥∥
, (22)

with α > 0 and 0 ≤ β < 1
(n−1) .

Then, there exist suitable positive constants δ1 and δ2 such that, if

‖x(τ)‖ < δ1, τ ∈ [−∆, (n− 1)∆],

‖z((n− 1)∆)‖ < δ2,
(23)

then
lim

t→∞
x(t) = 0. (24)
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P r o o f . Let T be a diagonalizing matrix for Ab + BbK, so that

diag(λ1, . . . , λn) = T (Ab + BbK)T−1. (25)

Let M = ‖T‖‖T−1‖. From (3.1) it is for t ≥ (n− 1)∆

‖z(t)‖ ≤ ‖e(Ab+BbK)(t−(n−1) ∆)‖·‖z((n− 1)∆)‖
≤ Meλ1(t−(n−1) ∆)‖z((n− 1)∆)‖.

(26)

Let
δ1 = γ − ε, 0 < ε < γ. (27)

Take as δ2 the following

δ2 = min
{

γ − β(n− 1)γ
Mαeλ1∆

,
γ − β(n− 1)(γ − ε)

αM

}
. (28)

Let the initial state and the input in [0, (n− 1)∆] such that (3.4) are satisfied with
this choice of δ1 and δ2. We can prove that ‖x(τ)‖ < γ for τ ∈ [−∆,∞). It is
‖x(τ)‖ < δ1 < γ for τ ∈ [−∆, (n − 1)∆]. For τ ∈ [(n − 1) ∆, n∆] the following
inequalities hold

‖x(τ)‖ ≤ α‖z(τ)‖+ β

n−1∑

i=1

‖x(τ − i∆)‖

< αMeλ1(τ−(n−1) ∆)‖z((n− 1) ∆)‖+ β(n− 1)δ1 (29)

≤ αM
γ − β(n− 1)(γ − ε)

αM
+ β(n− 1)(γ − ε) = γ.

Now it is not difficult to prove the following implication for i ≥ n

‖x(τ)‖ < γ,

τ ∈ [−∆, i∆],
⇒

‖x(τ)‖ < γ,

τ ∈ [−∆, (i + 1) ∆].
(30)

This happens because for τ ∈ [i∆, (i + 1) ∆]

‖x(τ)‖ ≤ α‖z(τ)‖+ β

n−1∑

j=1

‖x(τ − j∆)‖

< αMeλ1(τ−(n−1) ∆)‖z((n− 1)∆)‖+ β(n− 1)γ

≤ αMeλ1∆δ2 + β(n− 1)γ

≤ γ − β(n− 1)γ + β(n− 1)γ = γ.

(31)

It follows that ‖x(τ)‖ < γ ∀ t ≥ −∆, and we can conclude that maxlimt→∞ ‖x(t)‖ ≤ γ.
Moreover

maxlimt→∞ ‖x(t)‖ ≤ α maxlimt→∞ ‖z(t)‖
+ β(n− 1)maxlimt→∞

(
supi=1,2,...,n−1 ‖x(t− i∆)‖

)

≤ β(n− 1)maxlimt→∞ ‖x(t)‖,
(32)



Local Asymptotic Stability for Nonlinear State Feedback Delay Systems 37

and, being β(n − 1) < 1 and maxlimt→∞ ‖x(t)‖ a finite quantity, it follows that it
must be maxlimt→∞ ‖x(t)‖ = 0, that is the thesis. 2

Remark 3.3. As it can be understood through equation (3.9), the bound δ2 re-
quired on vector z at time t = (n−1)∆ depends on the chosen eigenvalues, through
the quantity M = ‖T‖ ‖T−1‖.

Remark 3.4. Boundedness of the variable x(t) in the interval [−∆, (n−1)∆] must
be assumed and can not be obtained by means of the control law of the type (2.12)
because this law is well defined only for t ≥ (n− 1)∆.

Remark 3.5. Thanks to relation (2.18) the condition on the boundedness of
z((n− 1)∆) can be transformed in a suitable condition on the boundedness of x in
time instants 0, ∆, 2∆, . . . , (n− 1) ∆.

Remark 3.6. Assumptions (3.4) of Theorem 3.2 can be replaced by the following:
there exist positive constants δ1 and δ2 such that

‖x(τ)‖ < δ1, τ ∈ [−∆, (n− 2) ∆],

‖z(τ)‖ < δ2, τ ∈ [(n− 2)∆, (n− 1)∆].
(33)

In this case, the boundedness condition on the variable x must be satisfied in a
narrower interval, while the one on variable z needs to be verified in a delay interval
rather than only in instant (n− 1) ∆.

Results similar to those reported in Theorem 3.2 can be achieved by using the
hypothesis of bounded gradient, and are presented in the next theorem. In the proof
the mean value theorem is used, that states that if λ(ξ) : IRm → IR is a C1 function,
then for any pair ξ1, ξ2 ∈ IRm there exists a ξ̄ on the segment from ξ1 to ξ2 such
that

λ(ξ2)− λ(ξ1) =
dλ(ξ)

dξ

∣∣∣
ξ=ξ̄

(ξ2 − ξ1). (34)

The mean value theorem is applied to the j-th component of the map Φ−1, de-
noted simply as Φ−1

j , in which vector z is intended as a parameter. It is xj =
Φ−1

j (z, x∆, . . . , x(n−1) ∆), and using the mean value theorem between vectors (x∆, . . .
. . . , x(n−1) ∆) and (0, . . . , 0), one has

Φ−1
j (z, x∆, . . . , x(n−1) ∆)− Φ−1

j (z, 0, . . . , 0) =
n−1∑

i=1

∂Φ−1
j

∂xi∆
xi∆, (35)

and therefore
xj = Φ−1

j (z, 0, . . . , 0) +
n−1∑

i=1

∂Φ−1
j

∂xi∆
xi∆, (36)

where the derivatives are computed in a point of coordinates (qx∆, . . . , qx(n−1) ∆),
with q ∈ [0, 1]. In the following let xi,j∆(t) = xi(t− j∆), i = 1, 2, . . . , j = 0, 1, . . . .
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Theorem 3.7. Let system (2.1), (2.2) be globally delay observable, with feedback
control law (2.12), (2.16), with eigenvalues (3.2). Let the following hypotheses be
satisfied:

H1) There exists a positive α such that

‖Φ−1(z(t), 0, 0, . . . , 0)‖∞ ≤ α‖z(t)‖∞, (37)

for t ≥ (n− 1)∆;

H2) there exists a positive constant γ such that if for t ≥ (n−1)∆ it is ‖xi∆‖∞ < γ,
i = 1, . . . , n− 1, then for j = 1, . . . , n, it is

∥∥∥
[

∂Φ−1
j

∂x∆
· · · ∂Φ−1

j

∂x(n−1) ∆

] ∥∥∥
1
≤ β < 1, (38)

for t ≥ (n− 1)∆.

Then, there exist suitable positive constants δ1 and δ2 such that, if

‖x(τ)‖∞ < δ1, τ ∈ [−∆, (n− 1)∆],

‖z((n− 1)∆)‖∞ < δ2,
(39)

it is
lim

t→∞
x(t) = 0. (40)

P r o o f . Let M be such that, for t ≥ (n− 1)∆, it is

‖z(t)‖∞ ≤ Meλ1t‖z((n− 1)∆)‖∞. (41)

As in the proof of Theorem 3.2 let

δ1 = γ − ε, 0 < ε < γ (42)

and
δ2 = min

{
γ − βγ

Mαeλ1∆
,
γ − β(γ − ε)

αM

}
. (43)

Let the initial state and the input in [0, (n− 1)∆] such that (3.20) are satisfied with
this choice of δ1 and δ2.

It can be proved that ‖x(τ)‖∞ < γ, for τ ∈ [−∆,∞). It is ‖x(τ)‖∞ < δ1 < γ for
τ ∈ [−∆, (n− 1)∆]. In [(n− 1)∆, n∆] it is, exploiting equation (3.17),

|xj(τ)| ≤ |Φ−1
j (z(τ), 0, . . . , 0)|+

n−1∑

i=1

n∑

l=1

∣∣∣
∂Φ−1

j

∂xl,i∆

∣∣∣|xl(τ − i∆)|. (44)
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From this, for τ ∈ [(n− 1)∆, n∆] the ∞-norm of x(τ) satisfies

‖x(τ)‖∞ ≤ ‖Φ−1(z(τ), 0, . . . , 0)‖∞

+ supj=1,...,n

∥∥∥
[

∂Φ−1
j

∂x∆
· · · ∂Φ−1

j

∂x(n−1) ∆

] ∥∥∥
1
sup l=1,...,n

i=1,...,n−1
|xl(τ − i∆)|

< αMeλ1(τ−(n−1) ∆)‖z((n− 1)∆)‖∞ + βγ

< αMeλ1(τ−(n−1) ∆)δ2 + βγ ≤ γ.
(45)

Now the following implication can be proved for i ≥ n

‖x(τ)‖∞ < γ

τ ∈ [−∆, i∆]
⇒

‖x(τ)‖∞ < γ

τ ∈ [−∆, (i + 1) ∆]
(46)

This is true because for τ ∈ [i∆, (i + 1)∆]

‖x(τ)‖∞ < α‖z(τ)‖∞ + βγ ≤
≤ αMeλ1(τ−(n−1) ∆)‖z((n− 1)∆)‖∞ + βγ ≤ γ.

(47)

Until now we have proved that ‖x(τ)‖∞ < γ for all τ ≥ −∆. This implies that there
exists finite maxlimt→∞ ‖x(t)‖∞. Moreover it is

maxlimt→∞ ‖x(t)‖∞ ≤ β maxlimt→∞ supi=1,...,n−1 ‖x(t− i∆)‖∞
= β maxlimt→∞ ‖x(t)‖∞,

(48)

and, being β < 1, it follows that maxlimt→∞ ‖x(t)‖∞ = 0, that is the thesis. 2

Remark 3.8. We want to stress that by the same hypotheses of Theorems 3.2
and 3.7, the boundedness of the state can be proved in asymptotic output tracking
problems, provided that the reference output and its n− 1 derivatives are bounded.

4. EXAMPLE

Let us consider the following nonlinear delay system

ẋ1(t) = x2(t) + x1(t−∆)x3
2(t−∆),

ẋ2(t) = x3
1(t−∆) + u(t), (49)

y(t) = x1(t),

with ∆ = 0.1. For this system the delay relative degree is r = 2. The quantities in
Definition 2.1 are in this case

F =




x2 + x1,∆x3
2,∆

x3
1,∆

x2,∆ + x1,2∆x3
2,2∆

x3
1,2∆


 , G =




0 0
1 0
0 0
0 1


 , (50)
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H = x1, LF H = x2 + x1,∆x3
2,∆,

L2
F H =

[
0 1 x3

2,∆3x1,∆x2
2,∆

]
F =

= x3
1,∆ + x3

2,∆(x2,∆ + x1,2∆x3
2,2∆) + 3x1,∆x2

2,∆x3
1,2∆,

LGH =
[
1 0 0 0

]
G =

[
0 0

]

LGLF H =
[
0 1 x3

2,∆ 3x1,∆x2
2,∆

]
G =

[
1 3x1,∆x2

2,∆

]
,

m = 3x1,∆x2
2,∆u∆, Γ = 1.

The following control law brings the output to zero with a prescribed exponential
rate imposed by the choice of a gain vector K

u = −L2
F H −m + K

[
x1

x2 + x1,∆x3
2,∆

]
. (51)

In the simulations presented the gain vector K has been chosen such to assign
eigenvalues −1, −2 to the closed loop input/output map.

Maps Φ and Φ−1 are given by

z =
[

x1

x2 + x1,∆x3
2,∆

]
and x =

[
z1

z2 − x1,∆x3
2,∆

]

and so
‖x‖ ≤ ‖z‖+ ‖x∆‖4

Hypothesis (3.3) of Theorem 3.2 is satisfied with any γ < 1. In this case we have
α = 1, β = γ3.

In simulations the initial state has been chosen constant

x(τ) =
[
0
δ

]
, τ ∈ [−∆, 0].

Control law (4.3) can be applied starting from instant t = ∆. The free evolution of
the system in the interval [0,∆] gets

sup
τ∈[−∆,∆]

‖x(τ)‖ = δ
√

(1 + ∆2)

and
sup

τ∈[−∆,∆]

‖z(τ)‖ = δ
√

(1 + ∆2).

All simulations worked out using values of δ smaller than 2.5 have shown stable
internal dynamics for the simulated system. In Figures 1, 2 the two components of
the state and the control input are plotted in the case δ = 2.



Local Asymptotic Stability for Nonlinear State Feedback Delay Systems 41

Fig. 1. Plot of state variables x1 and x2.

Fig. 2. Plot of control input u.

5. CONCLUSIONS

In this work the issue of internal stability for nonlinear delay systems, whose output
is driven to zero by a delayed state feedback law, is investigated. The output control
law was proposed by the authors in previous papers, in which the problem of the
system zero dynamics was mentioned but not studied. In this paper local condi-
tions on the system structure and on the initial state that guarantee the asymptotic
stability of the closed loop system are given.

(Received December 11, 1998.)
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