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MODIFIED QUASILINEAR FILTERING METHOD FOR
ESTIMATION OF PROCESSES IN MULTIDIMENSIONAL
NONLINEAR STOCHASTIC SYSTEMS

Myoungho Oh and Vladimir Ignatevich Shin

The modified quasilinear filtering method has been proposed. This method produces
more accurate filter coefficients than the standard quasilinear filtering method. To compute
these coefficients, it suffices to know the distribution of the state vector of a stochastic sys-
tem. It can be determined by using the software for statistical analysis of multidimensional
nonlinear stochastic systems. All computations connected with the determination of coef-
ficients of the modified quasilinear filters do not use the results of observations. Therefore
they can be computed before the filter design. An example is also presented.

1. INTRODUCTION

The methods of optimal filtering of processes determined by nonlinear stochastic
differential equations usually yield complicated solutions that are difficult to realize.
In practical problems, it is common to use suboptimal filtering methods for estima-
tion of state variables and unknown parameters in stochastic systems. In the case of
multidimensional nonlinear systems the practical realization of the extended Kalman
filter, as well as similar filters [5], involves considerable computational difficulties.
The use of a continuous extended Kalman filter is based on solving n(n + 3)/2, n
being the dimension of state vector, differential equations for estimation of the state
vector directly during the process of observation results. The quasilinear filtering
method is therefore used in the case of multidimensional systems.

This method is based on statistical linearization of nonlinear functions of the
original system, followed by Kalman filtering of the thus-obtained linearized sys-
tem. The statistical linearization coefficients are computed under the assumption of
normality of the distribution of the state vector. The practical merit of quasilinear
filters is the simple realization of these filters in real time, especially in the case of
dynamic systems of large dimensions.

The aim of this paper is to develop alternative methods for more accurate com-
putation of the statistical linearization and quasilinear filter coefficients. These
methods can improve the accuracy of quasilinear filters.



400 M. OH AND V. I. SHIN

2. STATEMENT OF THE PROBLEM

Let us consider a continuous dynamic system determined by a stochastic differential
equation

ẋ = f(x, t) + G(t)w(t), t ≥ t0 . (1)

The observed process y = y(t) is determined by

y = h(x, t) + v(t) . (2)

In equations (1) and (2), x ∈ Rn is the state vector of the system, y ∈ Rd is the
vector of observations, f(x, t) and h(x, t) are given functions mapping Rn × R into
Rn and Rd respectively, G(t) is (n × r) matrix, Rn is an n-dimensional Euclidean
space, w ∈ Rr and v ∈ Rd are independent normal white noises, E[w(t)] = E[v(t)] =
0, E[w(t)w(τ)T ] = Q(t) δ(t − τ) and E[v(t)v(τ)T ] = R(t) δ(t − τ). Initial value
x0 = x(t0) is independent of v(t) and w(t), t ≥ t0. The matrix R(t) is uniformly
nonsingular in t.

On the basis of observations yt
t0 = {y(τ), t0 ≤ τ ≤ t} it is required to estimate the

state vector x(t) by the minimum mean square error criterion. For approximately
solving this nonlinear filtering problem, we shall use statistical linearization method.

3. THE MODIFIED QUASILINEAR FILTERING METHOD

Let us approximate the nonlinear functions f(x, t) and h(x, t) in the equations (1)
and (2) by using statistical linearization method [3, 10]. Then we obtain

f(x, t) ∼= a0 + a1(x−m), h(x, t) ∼= b0 + b1(x−m), m = E[x] . (3)

The statistical linearization coefficients a0, a1, b0 and b1 are determined by minimiz-
ing the mean square error. The formulae for these coefficients take the form

a0 = E[f(x, t)], a1 = E[f(x, t) (x−m)] K−1, (4)
b0 = E[h(x, t)], b1 = E[h(x, t) (x−m)] K−1 . (5)

Here m = E[x] and K = E[(x−m) (x−m)T ] are expectation and covariance matrix
of the state vector x = x(t), respectively. Substituting the expressions (3) into (1)
and (2), we have

ẋ = a1x + a0 − a1m + Gw, y = b1x + b0 − b1m + v . (6)

The system (5) is a model of system (1) and (2). To this model the Kalman filter
equations take the form

˙̂x = a1x̂ + a0 − a1m + PbT
1 R−1(y − b1x̂− b0 + b1m) , (7)

Ṗ = a1P + PaT
1 − PbT

1 R−1b1P + GQGT , (8)

where x̂ = x̂(t) is the estimate of the state vector x = x(t) and P = P (t) is
the auxiliary n × n symmetric matrix. The initial conditions for (6) and (7) are
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x̂0 = E[x0] and P0 = E[(x0−x̂0) (x0−x̂0)T ], respectively. We notice that as different
from optimal linear Kalman filter the matrix P is not the conditional covariance
matrix of the filtering error. It is assumed that observability conditions for the
nonlinear system (1), (2) and the linearized system (5) are fulfilled [4, 6].

In the standard case the statistical linearization coefficients a0, a1, b0 and b1 in (4)
are determined approximately under the assumption of normality of the distribution
of the state vector x(t). In this case the filter (6) and (7) is called the quasilinear
filter (QLF) [2, 3, 10].

To increase the accuracy of computation of the coefficients a0, a1, b0 and b1 of the
QLF (6) and (7), the various approximate methods based on the parametrization of
distributions of the state vector are proposed. Approximating the unknown density
p(x; t) or characteristic function g(λ; t) of the state vector x(t) by some known func-
tions p∗(x; θ) and g∗(λ; θ) depending on a finite-dimensional vector parameter θ, we
reduce the problem of approximate determination of the distribution to the problem
of determination of the vector parameter θ = θ(t) as function of time t. The vector
parameter θ may be represented by the set of moments, semi-invariants(cumulants)
and quasi- moments [7]. This vector θ is defined by ordinary differential equations.
The filter (6) and (7) with coefficients a0, a1, b0 and b1 determined by using the
various methods based on parametrization of distributions such as the method of
moments, the method of semi-invariants, the method of quasi-moments and others,
we shall call the modified quasilinear filter (MQLF).

Now we pay attention to two circumstances. First, equations determining the sta-
tistical linearization coefficients a0, a1, b0, b1 and the auxiliary matrix P in (6) and
(7) do not contain the results of observations y(t), and consequently, may be deter-
mined separately (beforehand when the observations are not yet performed). Then
the estimate x̂ will be determined by the integration of equation of the MQLF(6)
with only the current results of the observations. The equation (6) is sufficiently
simple and may be integrated in real time basis during the observation of the
studied dynamic system behavior. Secondly, the methods based on parametriza-
tion of distributions enable us to determine the true mean square filtering error
E

[
(x− x̂)T (x− x̂)

]
with any degree of accuracy. The calculations of the accuracy

of MQLF do not use the results of observations and prior data are only necessary to
fulfill them.

4. PARAMETRIZATION OF DISTRIBUTIONS. METHOD OF MOMENTS
FOR CALCULATING THE COEFFICIENTS OF THE MQLF

The coefficients ai and bi of the MQLF (6) and (7) depend on the expectations in
(4). To calculate these expectations it is sufficient to know the one-dimensional dis-
tribution (density or characteristic function) of the state vector x determined by (1).
In the general case the density of vector x is determined by the multi-dimensional
Fokker–Planck–Kolmogorov (FPK) equation. The most general methods to find
an approximate solution of FPK equation are based on parametrization of distri-
butions, i. e., representation of unknown density in the form of various truncated
series (in particular, the Edgeworth series). Among these are the moments method,
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the semi-invariants method and the quasi-moments method [7]. These methods allow
a practical solution with any degree of accuracy.

To be specific, let us consider the method of moments for calculating the coeffi-
cients of the MQLF. In this method the vector parameter θ on which depends the
function p∗(x; θ) approximating the unknown density represents the set of initial or
central moments of the state vector x ∈ Rn up to a given order N :

αγ1···γn(t) = E[x1(t)γ1 · · ·xn(t)γn ] , (9)

µγ1···γn
(t) = E[(x1(t)−m1)γ1 · · · (xn(t)−mn)γn ],

mi = E[xi(t)], i = 1, . . . , n, γ1 + · · ·+ γn = 1, . . . , N,
(10)

where x1, . . . , xn and m1, . . . ,mn are the components of the state vector x and its
expectation m = E[x], respectively.

We obtain from (1) the exact ordinary differential equations for the initial mo-
ments αγ1···γn

[7]

α̇γ1···γn =
n∑

s=1

γsE[fs(x, t)xγ1
1 · · ·xγs−1

s−1 xγs−1
s x

γs+1
s+1 · · ·xγn

n ]

+
1
2

n∑
s=1

γs(γs − 1)σssE[xγ1
1 · · ·xγs−1

s−1 xγs−2
s x

γs+1
s+1 · · ·xγn

n ]

+
n∑

h=2

h−1∑
s=1

γsγhσshE[xγ1
1 · · ·xγs−1

s−1 xγs−1
s x

γs+1
s+1 · · ·xγh−1

h−1 xγh−1
h x

γh+1
h+1 · · ·xγn

n ],

γ1 + · · ·+ γn = 1, . . . , N, (11)

where

f(x, t) = [f1(x, t) · · · fn(x, t)]T , σ(t) = G(t)Q(t)G(t)T , σ = [σsh] (s, h = 1, . . . , n) .

The method of moments computes the expectations in (10) by replacing the true
unknown density p(x; t) of the state vector x(t) with some approximate function
p∗(x; θ), which is entirely determined by the moments up to the Nth order (Edge-
worth series). We have

p(x; t) ∼= p∗(x; θ) = N(m,K)

[
1 +

N∑

k=3

∑

ν1+···+νn=k

cν1...νn

ν1! · · · νn!
Hν1···νn(x−m)

]
,

(12)
where θ is the vector parameter consisting of the moments up to the Nth order,
N(m,K) is normal density with the expectation m and the covariance matrix K and
{Hν(x)} is the sequence of Hermite polynomials which satisfy the biorthogonality
condition ∫

Rn

w(x)Hν(x)Gµ(x) dx = ν1! · · · νn!δνµ
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with another sequence of polynomials {Gν(x)}. Here w(x) = N(0,K) is the weight
function, ν = [ν1···νn] and µ = [µ1···µn] are multi-indexes, δνµ is the Kronecker
symbol, δνν = 1 and δνµ = 0 (ν 6= µ). Let w(x) be some density in the n-dimensional
space Rn. A system of pairs of polynomials pi(x) and qi(x) (i = 0, 1, 2, . . .) is called
a biorthogonal system with the weight w(x) if

∫

Rn

w(x) pi(x) qj(x) dx =

{
0 , i 6= j

constant , i = j .
(13)

In special case where pi(x) = qi(x) (i = 0, 1, 2, . . .) the condition (12) takes the form

∫

Rn

w(x) pi(x) pj(x) dx =

{
0 , i 6= j

constant , i = j .
(14)

In this case the system of polynomials {pi(x)} is orthogonal if it satisfies the condition
(13). The sequences of Hermite polynomials {pi(x), qi(x)} = {Hi(x), Gi(x)} may
serve as examples of biorthogonal systems [7]. Hermite polynomials are often used
for an approximate representation of densities.

The coefficients cν(t) = cν1···νn(t) in (11) are given by

cν =
∫

Rn

p(x; t)Gν(x−m) dx = E[Gν(x−m)] = Gν(µ) , (15)

where Gν(µ) is a linear combination of central moments of the state vector x = x(t)
obtained as a result of replacement in Gν(x−m) of every monomials

(x1 −m1)h1 · · · (xn −mn)hn

by the corresponding central moment µh1···hn (9).
Substituting approximate density p∗(x; θ) into the expectations in (10) and eval-

uating that for the coefficients cν (14) expressed in terms of initial moments, we
obtain the differential equations for all initial moments up to the Nth order. These
equations are numerically integrated with the initial conditions

αγ1···γn(t0) = E[x1(t0)γ1 · · ·xn(t0)γn ] , γ1 + · · ·+ γn = 1, . . . , N .

In particular case of N = 2 and normal density p∗(x; θ) = N(m,K), (10) repre-
sents the equations for the first- and second-order moments m and K of the state
vector x. And in this case the equations of the MQLF coincide with those of the
QLF. Thus the coefficients of the MQLF (6) and (7) may be determined by the
method of moments. Software for determining the distributions of the state vector
x of the continuous and discrete stochastic systems has been developed for various
classes of computers. It contains various methods of statistical analysis of the dy-
namic systems based on parametrization of distributions [1, 8, 9]. This computer
software include standard programs for automatic derivation and solution of the
differential and difference equations for the distribution parameters (such as mo-
ments, semi-invariants and quasi-moments) of the state vector of stochastic systems
of arbitrary dimensions with polynomial and some nonpolynomial nonlinearities.
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Note that while using a truncated orthogonal expansion small negative values of
the density are sometimes obtained. It is natural that any truncated series gives
only an approximate value of the function. In using the approximate methods in
the form of various truncated series, it is recommended to vary both the number of
terms of the series and the form of series. For this purpose the special software is
used [1, 8, 9].

We summarize these results in the following theorem.

Theorem 4.1. (Modified Quasilinear Filter) Given x̂ and P , the modified quasi-
linear filter for the model (1) and (2) is obtained by the following relations:

˙̂x = a1x̂ + a0 − a1m + PbT
1 R−1(y − b1x̂− b0 + b1m) , (16)

Ṗ = a1P + PaT
1 − PbT

1 R−1b1P + GQGT , (17)

where coefficients a0, a1, b0 and b1 are determined by using the various methods
based on parametrization of distributions. In the case of the method of moments,
a0 and a1 are obtained by (10).

5. EXAMPLE

Let the dynamic system be described by scalar equation

ẋ = −x3 + w , t ≥ 0 (18)

and the observed process y(t) be determined by

y = x + v . (19)

Here w = w(t) and v = v(t) are independent normal white noises, E[w(t)w(τ)] =
Qδ(t− τ) and E[v(t) v(τ)] = Rδ(t− τ), where Q and R are known constants. Initial
state x0 = x(0) is normal random variable with known expectation m0 = E[x0]
and variance D0 = E[(x0 − m0)2]. The statistical linearization of the function
f(x, t) = −x3 takes the form (3)

−x3 ∼= a0 + a1(x−m), m = m(t) = E[x(t)] . (20)

The coefficients a0 and a1 are determined by the formulae (4)

a0 = −E[x3], a1 = −E[x3(x−m)]/D, D = D(t) = E[(x(t)−m(t))2] . (21)

For finding the estimate of the state variable x, we shall apply the QLF and
MQLF. The equations of the QLF take the form

˙̃x = a1x̃ + a0 − a1m + P (y − x̃)/R , x̃0 = m0 ,

Ṗ = 2a1P − P
2
/R + Q , P 0 = D0 ,

(22)

where x̃ = x̃(t) is the estimate of the state variable x = x(t) and the statistical lin-
earization coefficients a0 and a1 are evaluated for normal density p∗(x; θ) = N(m,D)
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by using the recursive formula for high-order moments αk = E[xk] of normal dis-
tributed random variable,

αk = α1αk−1 + (k − 1)Dαk−2, α1 = E[x], D = α2 − α2
1, k = 3, 4, . . . . (23)

We have

a0
∼= a0 = − (α1α2 + 2Dα1) = 2α3

1 − 3α1α2 ,

a1
∼= a1 = −3

(
α2

1 +D)
= −3α2 .

The differential equations for α1 and α2 take the form (10)

α̇1 = −α3 , α̇2 = −2α4 + Q , (24)

where the high-order moments α3 and α4 are evaluated for normal density by using
the formula (22), i. e.,

α3 = α1α2 + 2Dα1 = 3α1α2 − 2α3
1, α4 = α1α3 + 3Dα2 = 3α2

2 − 2α4
1 .

The equations of the MQLF take the form

˙̂x = a1x̂ + a0 − a1m + P (y − x̂)/R , x̂0 = m0 ,

Ṗ = 2a1P − P 2/R + Q , P0 = D0 ,
(25)

where x̂ = x̂(t) is the estimate of the state variable x = x(t) and the statistical
linearization coefficients a0 and a1 are determined by the formulae (4)

a0 = −α3, a1 = (−α4 + α1α3) /
(
α2 − α2

1

)
. (26)

For determining the initial moments αk = αk(t), k = 1, 2, 3, 4, we use the method
of moments of the fourth order (N = 4). According to (10) the differential equations
for αk take the form

α̇1 = −α3, α̇2 = −2α4 + Q, α̇3 = −3α5 + 3Qα1, α̇4 = −4α6 + 6Qα2 . (27)

The approximation of the density p(x; t) of the state variable x take the form (11)

p(x; t) ∼= p∗(x; θ) = N(m,D)
[
1 +

c3

3!
H3(x−m) +

c4

4!
H4(x−m)

]
, (28)

where Hermite polynomials Hν(x), Gν(x) and the coefficients c3 and c4 are deter-
mined by the formulae

Hν(x) = (−1)ν exp
(

x2

2D
)

dν

dxν

[
exp

(
− x2

2D
)]

,

Gν(x) = (−1)ν exp
(

x2

2D
){

dν

dyν

[
exp

(
−Dy2

2

)]}

y=x/D
,

c3 = E [G3(x−m)] , c4 = E [G4(x−m)] .
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These formulae give the following recursive expressions for Hermite polynomials

Hν+1(x) =
x

DHν(x)− ν

DHν−1(x) , Gν+1(x) = xGν(x)− νDGν−1(x) .

In this particular case, we have

H0 = 1, H1 = x/D, H2 =
(
x2 −D)

/D2 ,

H3 = (x3 − 3Dx)/D3, H4 = (x4 − 6Dx2 + 3D2)/D4 ,

G0 = 1, G1 = x, G2 = x2 −D ,

G3 = x3 − 3Dx, G4 = x4 − 6Dx2 + 3D2

(29)

and

c3 = α3 − 3α1α2 + 2α3
1 , c4 = α4 − 4α1α3 + 12α2

1α2 − 3α2
2 − 6α4

1 . (30)

Thus the vector parameter θ in (27) represents a 4-dimensional vector
θ= [α1 α2 α3 α4]

T .
To close the equations (26) it is necessary to represent the high-order moments

α5 and α6 in terms of lower-order moments αk (k = 1, 2, 3, 4). According to the
method of moments and using the approximation of density p∗(x; θ) (27), (28) and
(29), we obtain

αk =
∫ ∞

−∞
xkp∗(x; θ) dx

=
∫ ∞

−∞
xkN(m,D) dx +

c3

6

∫ ∞

−∞
xkH3(x−m)N(m,D) dx (31)

+
c4

24

∫ ∞

−∞
xkH4(x−m)N(m,D) dx (at k = 5, 6) .

Denote by

Ik =
∫ ∞

−∞
xkN(m,D) dx , Jk,ν =

∫ ∞

−∞
xkHν(x−m)N(m,D) dx . (32)

Then the integrals Ik and Jk,ν are calculated by the recursive formulae

Ik = mIk−1 + (k − 1)DIk−2, I1 = m = α1, I2 = D + m2 = α2 ,

Jk,ν+1 =
1
D (Jk+1,ν −mJk,ν − νJk,ν−1) , Jk,0 = Ik, Jk,1 =

1
D (Ik+1 −mIk) .(33)

Thus the system of ordinary differential equations for initial moments αk (26) in
which the high-order moments α5 and α6 are calculated by the formulae (30), (31)
and (32) completely determine the method of moments of the fourth-order.

All the differential equations for the moments (23) and (26) have been numerically
integrated by the Euler and Adams–Moulton method, respectively, with a step ∆t =
0.01. Initial values are given by Q = 0.05, R = 0.05, m0 = 4.0 and D0 = 0.05. The
results of Monte–Carlo simulation, performed with identical noise sequences for the
QLF algorithm (21) and the MQLF algorithm (24), are compared in Figure 1.



Modified Quasilinear Filtering Method 407

Fig. 1. Performance of the QLF and MQLF.

Figure 2 shows the true mean square filtering errors

Pqlf = E(x− x̃)2 , Pmqlf = E(x− x̂)2

for the QLF and MQLF, respectively. The mean square filtering errors Pqlf and
Pmqlf have been calculated by solving the corresponding statistical analysis prob-
lems of the 2-dimensional random processes [x x̃]T and [x x̂]T determined by the
stochastic differential equations (17), (18) and (21) and (17), (18) and (24), respec-
tively.

Fig. 2. Mean Square Filtering Errors.

The joint density of x and x̃ (x and x̂) have been calculated by using the method
of moments of the fourth-order. The mean square errors Pqlf and Pmqlf estimate
the accuracy of filters. As illustrated in Figure 2 the MQLF is better than the
QLF. At t = 1.0 we have Pmqlf (1.0) = 0.015, Pqlf (1.0) = 0.0163 and relative error
ε = ε(1.0) = |(Pmqlf − Pqlf )/Pmqlf | × 100% = 8.6%. It is a good result especially
for high-accuracy control system design (the oscillations of an aircraft in a tubulent
air, the gyroscope drift and others). We note that the increasing of accuracy of the
MQLF during the filtering is achieved without increasing complexity of computa-
tions since the calculations of ai and bi of the MQLF (6) and (7) don’t depend on
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measurements and therefore they can be calculated before the filter design. Thus
the results of a comparative analysis show that the MQLF are more accurate than
the QLF.

6. CONCLUSION

The MQLF can be used for a wide range of control problems of large dimensional
systems. As a linear Kalman filtering theory, all the computations connected with
the determination of a filter gains (a0, a1 and P ) are based on a priori data about
the model (1) and (2) and do not use the results of observations. Therefore they
can be carried out before the MQLF design. The determination of the estimate x̂(t)
from the results of observations reduces to integration of the differential equation
(6), which can be done in a real time.

The MQLF also enable us to estimate the state of the system under conditions
of uncertainty, when the functions f and h in (1) and (2) depend on unknown
parameters. For this purpose it is necessary to extend the state vector x by including
in it the unknown parameters as additional components. The MQLF can be used
for the discrete and continuous-discrete filtering problems.

(Received July 12, 1995.)
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