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A GEOMETRIC PROOF OF ROSENBROCK’S THEOREM
ON POLE ASSIGNMENT1

Moisés Bonilla E., Jean–Jacques Loiseau and Rafael Baquero S.2

A new proof of the famous Rosenbrock theorem on pole placement by static state feed-
back is given. This proof only uses well-known basic results of the geometric approach,
that are the Brunovský canonical form of controllable systems and the splitting of the
state space into cyclic subspaces relatively to the invariant factors of a linear map.

1. INTRODUCTION

It is well-known that one can assign the poles of a controllable linear system by static
state feedback [12]. As far as we are interested not only in assigning the location of
the poles but also their multiplicities, it appears that the freedom in modifying the
dynamics of the system is limited by the values of the controllability indices of the
system. This was the famous result given by Rosenbrock [11]. The aim of the paper
is to present a new geometric proof of the Rosenbrock theorem on pole assignment
(RTPA).

There already exist a lot of different proofs of Rosenbrock theorem. Most of them
use polynomial arguments [3], [7], [11]. Actually all the generalizations of Rosenbrock
theorem that was developed are also based on polynomial arguments [13], [14], [15].
For algorithmic conveniency it would be useful to develop a geometric proof. Indeed
this was already done by Flamm [4] and later by Ozçaldiran [10]. These two proofs
use at key-points difficult results of linear algebra. Our aim here is to give a new proof
based on results which are well-known by control theorists, namely the canonical
form of controllable systems which was described by Brunovský [1] and the splitting
of the state-space accordingly to the invariant factors of a given map. Actually
Rosenbrock’s conditions are derived from considering the dimension of certain cyclic
subspaces. Our proof of their sufficiency is constructive: it effectively permits to
calculate a feedback which assigns to prespecified values the invariant factors of the
closed–loop system. This construction is divided in two steps. We first construct
a feedback which fixes the degrees of the invariant factors. A second feedback is

1A preliminary version of this paper was presented at the IFAC Conference on System, Structure
and Control which was held in Nantes, France, on July 5–7, 1995.

2This author was sponsored by CoSNET–MEXICO.
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designed which set up the coefficients of the invariant factors without changing their
degrees. At the difference of the previous proofs of Rosenbrock Theorem ([4], [10],
[11] and [15]), we emphasize the geometric aspects of that result.

The paper is organized as follows. Rosenbrock theorem is recalled in Section 2.
Sections 3 and 4 are respectively devoted to the proof of the necessity and to the
proof of the sufficiency of the claim established by Rosenbrock. Finally an illustrative
example is given in Section 5.3

2. ROSENBROCK THEOREM

We shall consider here classical state space descriptions:

ẋ(t) = Ax(t) +Bu(t) (1)

where A : X → X and B : U → X are real matrices, X ≈ Rn and U ≈ Rm. We
assume that (A,B) is controllable and that B is monic [12], i. e.

〈A | ImB〉 = X and kerB = {0}. (2)

One of the most classical problems of control theory is the pole-placement problem
(see for example [12], [6]), which consists in finding a static state feedback F : X → U
which fix at will the spectrum of the map (A+BF ), i. e. the zeros of its characteristic
polynomial π(λ) = det[λI−(A+BF )], under assumption of controllability of course.

A more general problem is not only to assign the location of the zeros but also
their multiplicities. In other words we want to assign the full internal structure of
the system, that is the set of the invariant factors [11], [14] of A+BF .

Definition 1. [5] Let Dµ(λ), for µ = 1, . . . , n, denote the greatest common divisor
of all the nonzero minors of order µ of the characteristic matrix λI−A. The invariant
factors of A, say ψi(λ), are the polynomials:

ψµ(λ) =
Dn−µ+1(λ)
Dn−µ(λ)

, for µ = 1, . . . , n (3)

where D0(λ) = 1.

Note the following properties of the invariant factors.
3 Notation. Script capitals V,W, . . . , denote linear spaces with elements v, w, . . .;

span {x1, x2, . . . , xm} is the linear space spanned by the vectors x1, x2 . . . , xm. The dimension
of a space V is denoted dimV. A, B, . . . , is used to denote a given map or its matrix representation
in a suitable base. The image of A is denoted ImA. A|V denotes the restriction of A to V . When
V ⊂ W, WV or W/V stands for the quotient space W modulo V. The direct sum of independent
spaces is written as ⊕. α and β being two polynomials, α |β means α divides β; deg α denotes
the degree of α. The n × n unity matrix diagonal{1, . . . , 1} is denoted In. Jn will stand for the

n × n matrix

»
0 In−1

0 0

–
. {αi} \ {βi} denotes the set {γi} which contains the elements of the

set {αi} which are not in the set {βi}. 〈H | T 〉 denotes
Pn

i=1 Hi−1T where T ⊂ X , H : X → X
and n = dimX .
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Property 1. The invariant factors satisfy:

(i) ψ2(λ) |ψ1(λ), ψ3(λ) |ψ2(λ), . . . , ψn(λ) |ψn−1(λ),

(ii) π(λ) = ψ1(λ)ψ2(λ) · · ·ψn(λ),

(iii) The polynomials ψi form a complete set of invariants of A under change of
basis on X .

As it is well-known, X is decomposed into cyclic subspaces accordingly to the
invariant factors of the map A. Wonham [11] restated this result in terms of con-
trollability.

Theorem 1. ([12]: Ch 1.4) Let (A,B) be controllable and let ψ1(λ), . . . , ψr(λ) be
those of the invariant factors of A which are not equal to 1 (r is called the cyclic
index of A). Then m ≥ r. There exist A-invariant subspaces Xi ⊂ X , and vectors
bi ∈ ImB, for i = 1, . . . , n, such that:

(i) X =
r⊕

j=1

Xj ,

(ii) A | Xi is cyclic with minimal polynomial ψi(λ), i = 1, . . . , r, i. e. ∃vi ∈ Xi =
span {vi, Avi, . . . , A

ni−1vi} where: ni := degψi(λ)

(iii) 〈A | span {b1, . . . , bi}〉 =
i⊕

j=1

Xj ; i = 1, . . . , r.

To each nonunit invariant factor ψµ(λ) is thus associated an isolated chain of
integrators, spanning Xµ, having deg{ψµ(λ)} for size and whose dynamic is given
by ψµ(λ).

We review now the Brunovský canonical form of a controllable pair (A,B) [1], [12].

Theorem 2. [1] Let (A,B) be controllable and define:

ki := card{j | k̄j ≥ i}; i = 1, . . . ,m (4)

where 



k̄i := dim
{

Im B+A Im B+···+Ai−1 Im B

Im B+···+Ai−2 Im B

}
; i = 2, . . . , n

k̄1 := dim {ImB}.
(5)

Then there exists a feedback F : X → U and two isomorphisms T : X → X ,
G : U → U such that (in the given basis):

{
Ac = T−1(A+BF )T = block diagonal matrix {A1, . . . , Am}n×n

Bc = T−1BG = block diagonal matrix {b1, . . . , bm}n×m

(6)
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with, for i = 1, 2, . . . ,m,
{

Ai = Jki
,

bTi = [0, 1, 0, . . . , 0]1×ki
.

(7)

The lists of integers {k1, . . . , km} and {k̄1, . . . , k̄n} are respectively called the
controllability indices and the Brunovský indices of the pair (A,B). The relation
(4) defines the list {ki} as the conjugate of the list {k̄i}.

This two lists have the following properties.

Property 2. ([1], [2]) {ki} and {k̄i} satisfy:

(i) n ≥ k1 ≥ k2 ≥ · · · ≥ km > 0

(ii) m = k̄1 ≥ k̄2 ≥ · · · ≥ k̄n ≥ 0

(iii) k̄1 + k̄2 + · · ·+ k̄n = n

(iv)
i∑

j=1

k̄j = dim

{
i∑

j=1

Aj−1 ImB

}

(v) k̄i = card{j | kj ≥ i}; i = 1, . . . ,m.

Let us recall another useful result related with the conjugated lists {ki} and {k̄i}.

Property 3. [8], [2] Let {αi} and {βi} be two finite lists of non negative integers
ranged in non increasing order, and let {ᾱi} and {β̄i} their conjugated lists:

ᾱi = card{j |αj ≥ i}, i ≥ 1,

β̄i = card{j |βj ≥ i}, i ≥ 1.

The two following statements are equivalent.

i∑

j=1

αj ≥
i∑

j=1

βj ; i ≥ 1 (8)

∞∑

j=i

ᾱj ≥
∞∑

j=i

β̄j ; i ≥ 1. (9)

We are now in position to formulate the RTPA.
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Theorem 3. RTPA [11] Let (1) be a controllable system with controllability
indices {k1, . . . , km} and {ψ1(λ), . . . , ψn(λ)} be a set of monic polynomials satisfying
the divisibility conditions

ψi+1(λ) |ψi(λ), i = 1, . . . , n− 1.

Then there exists a feedback F : X → U such that the invariant factors of (A+BF )
are precisely the above polynomials ψi(λ) if and only if:

n∑

j=i

nj ≥
n∑

j=i

kj ; i = 2, . . . , n (10)

and
n∑

j=1

nj =
n∑

j=1

kj (11)

where nj = degψj(λ) and kj = 0 for j ≥ m+ 1.

3. GEOMETRIC PROOF OF THE NECESSITY

In this Section we are going to show that the invariant factors of A, ψ1(λ), . . . , ψm(λ),
satisfy (10) – (11).

We need for this the following Corollary of Theorem 1.

Corollary 1.

〈A | span {b1, . . . , bi}〉 =
i⊕

µ=1

nµ⊕

j=1

Aj−1span {bµ}; i = 1, . . . , r. (12)

P r o o f of Corollary 1. Note that (12) is true for i = 1 (remember Theorem 1).
Assume that (12) is true for i− 1, i. e.

〈A | span {b1, . . . , bi−1}〉 =
i−1⊕
µ=1

nµ⊕

j=1

Aj−1span {bµ}. (13)

Defining

Qµ : X → X the projection on
r⊕

j=µ

Xj along
µ−1⊕

j=1

Xj
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where the Xj are the subspaces given in Theorem 1, we obtain (see Theorem 1)

i⊕
j=1

Xj = 〈A | span {b1, . . . , bi−1}〉 +
n∑

j=1

Aj−1span {bi}

⊂ 〈A | span {b1, . . . , bi−1}〉 +
n∑

j=1

Aj−1span {(I−Qi)bi}

+
n∑

j=1

Aj−1span {Qibi}

= 〈A | span {b1, . . . , bi−1}〉 +
ni⊕

j=1

Aj−1span {Qibi}

⊂
i⊕

j=1

Xj .

(14)

The last equality is due to

n∑
j=1

Aj−1span {(I−Qi)bi} ⊂ 〈A | span {b1, . . . , bi−1}〉 ,

Qibi ∈
(

i⊕
j=1

Xj

)
∩

(
r⊕

j=i

Xj

)
= Xi ,

and from the fact that the minimal polynomial of Xi has degree ni. Thus the last
inclusion follows since Qibi ∈ Xi and AXi ⊂ Xi.

From (14) and (13) we have:

i⊕
j=1

Xj =
i−1⊕
µ=1

nµ⊕
j=1

Aj−1span {bµ}+
ni⊕

j=1

Aj−1span {Qibi}

=
i−1⊕
µ=1

nµ⊕
j=1

Aj−1span {bµ}+
ni⊕

j=1

Aj−1span {bi}.
(15)

Indeed, let x be in
⊕i

j=1 Xj then there exists a vector z in 〈A | span {b1, . . . , bi−1}〉,
α1, . . . , αni ∈ R, such that: x=z+

∑ni

j=1A
j−1Qibiαj =

(
z−∑ni

j=1A
j−1(I−Qi) biαj

)

+
∑ni

j=1A
j−1biαj ∈ 〈A | span {b1, . . . , bi−1}〉 +

⊕ni

j=1A
j−1span {bi}. On the other

hand 〈A | span {b1, . . . , bi}〉 ⊃ 〈A | span {b1, . . . , bi−1}〉+
⊕ni

j=1A
j−1span {bi}.

Now, since dim
{⊕i

j=1 Xj

}
=

∑i
j=1 nj (see Theorem 1) it appears that (15)

implies (12). 2

3.1. Proof of the necessity

Let us define: {
λµ := min{i, nµ}
n̄j := card{µ |nµ ≥ j}; j = 1, . . . , i.

(16)
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We then have from (12), Theorem 1 and (16):

i∑
j=1

Aj−1 ImB ⊃
i∑

j=1

Aj−1

(
r⊕

µ=1
span {bµ}

)

=
r∑

µ=1

(
i∑

j=1

Aj−1span {bµ}
)

⊃
r⊕

µ=1

(
λµ⊕
j=1

Aj−1span {bµ}
)

=
i⊕

j=1

Aj−1

(
n̄j⊕

µ=1
span {bµ}

)
.

(17)

Now, from claim (iv) of Property 2 and (17) we have:

i∑

j=1

k̄j ≥
i∑

j=1

n̄j . (18)

Hence, (18) and Property 3 imply (10).
On the other hand, from claim (iii) of Property 2 and Theorem 1, we have

n∑

j=1

k̄j = n =
n∑

j=1

degψj(λ) (19)

which, together with Property 3, imply (11) and concludes the proof of necessity.

4. GEOMETRIC PROOF OF THE SUFFICIENCY

In this Section we are going to show that for a given set of polynomials, ψ1(λ),
. . ., ψn(λ), satisfying (10) – (11) and the three claims of Property 1, there exists a
feedback F : X → U such that the invariant factors of (A+BF ) be ψ1(λ), . . . , ψn(λ).
For this, we are first going to give some geometric interpretation of RTPA.

4.1. Preliminaries

Theorem 2 expresses that X can be decomposed as follows (cf. Theorem 5.10 of
Wonham [12]):

X =
m⊕

i=1

R∗i (20)

where R∗i satisfies, for i = 1, . . . ,m,




R∗i = span {bi, Acbi, . . . , A
ki−1
c bi} ≈ Rki ,

AcR∗i ⊂ R∗i ,
Aki

c R∗i = {0}
(21)
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where {b1, . . . , bm} is some basis of Im B.

Let us establish the following result:

Lemma 1. Given a contrallable pair (A,B) and a list of integers n1, . . . , nµ, µ ≤ m,
satisfying 




n1 ≥ n2 ≥ . . . ≥ nµ

j∑
i=1

ni ≥
j∑

i=1

ki

µ∑
i=1

ni =
m∑

i=1

ki = n

, j = 1, . . . , µ (22)

we can decompose X as follows

X =
µ⊕

i=1

Ii (23)

where, for i = 1, . . . , µ,




Ii = span {b̄i, Āb̄i, . . . , Āni−1b̄i} ≈ Rni

ĀIi ⊂ Ii

ĀniIi = {0}
(24)

being the b̄i some projections of the bi on Ii and Ā = Ac +BF .

We shall now establish the result in the case m = 2.

P r o o f . i) Let us first consider a pair (A,B) having only two controllability
indices, namely k1 and k2 with k1 ≥ k2. Under these conditions the state space X
can be decomposed as in (20) – (21) with m = 2.

Now, j being an integer, 0 ≤ j ≤ k2, we define the feedback Fj : X → U and the
map Ā : X → X as follows:





BFjR∗1 = {0}
BFjA

j−1
c b2 = b1

BFjA
i−1
c b2 = 0, i ∈ {1, . . . , k2} \ {j}

(25)

Ā := Ac +BFj , (26)

we can construct the following subspace:

I1 := span {b2, Āb2, . . . , Āk1−1+jb2}. (27)



A Geometric Proof of Rosenbrock’s Theorem on Pole Assignment 365

Which has the following properties (see: (20), (21), (25) – (27)):




I1 = span {b2, Acb2, . . . , A
j−1
c b2, A

j
cb2 + b1, . . . , A

k2−1
c b2 +Ak2−1−j

c b1,

Ak2−j
c b1, . . . , A

k1−1
c b1}

≈ Rk1+j ,

ĀI1 ⊂ I1,

Āk1+jI1 = {0}.
(28)

Remark that I1 is an Ā-invariant cyclic subspace generated by b2 with dimension
k1 + j and minimal polynomial λk1+j .

Let us now construct another subspace, say I2, as follows

I2 := span {Aj
cb2, . . . , A

k2−1
c b2}. (29)

It is readily seen that




I2 ≈ Rk2−j ,

R∗2 = (R∗2 ∩ I1)⊕ I2

X = I1 ⊕ I2

(30)

(first and second claim follow from (29), (20) and (28), and for the third claim,
we have from this two first claims and the first claim of (28): dim (I1 +R∗2) =
dim I1 + dim I2 = (k1 + j) + (k2 − j) = n).

Let us now define the following projection:

Pj : X → X the projection on I2 along I1 (31)

we then have from (27), (28) and (30):

Pjb1 = Pj

(
Ājb2 −Aj

cb2
)

= −Aj
cb2 (32)

and from (25) we have:

Ā
(
Ai−1

c b2
)

= Ai
cb2; i = j + 1, . . . , k2 (33)

which implies:
Aj+i

c b2 = Āi
(
Aj

cb2
)
; i = 1, . . . , k2 − j. (34)

And thus, we have from (32), (34), (29) and (21.c):




I2 = span {b̄1, Āb̄1, . . . , Āk2−j−1b̄1} ≈ Rk2−j ,

ĀI2 ⊂ I2,

Āk2−jI2 = {0},
(35)

with
b̄1 = Pjb1. (36)
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Which implies that I2 is also an Ā-invariant cyclic subspace generated by the pro-
jection of b1 on I2 (see (31)) with dimension k2 − j and minimal polynomial λk2−j .

2

For the case of more than two controllability indices it is enough to apply (i)
successively.

4.2. Proof of the Sufficiency

Without any loss of generality, we can assume that the pair (A,B) is already in
Brunovský canonical form (we can achieve that by means of a change of bases in
X and U and with a first state feedback). We next apply a second state feedback
as in (25) – (26) and express the state space in terms of the subspaces I1, I2, . . .
(see (27) – (28) and (35) – (36)). We thus have obtained a matrix A which is block
diagonal with minimal polynomials λn1 , λn2 , . . . , λnµ where the ni satisfy (22), and
each block is expressed in its rational canonical form (see [12] and [5]).

Let us now go back, without any loss of generality, to the case of two controllability
indices.

After having applied the above mentioned procedure, we obtain from (27) – (28)
and (35) – (36)

[(λI−A2) |B] =
[
λI− Jn1 0 | ? b2

0 λI− Jn2 | b̄1 0

]
(37)

where bT2 =
[

0 · · · 0 1
]
1×n1

, b̄T1 =
[

0 · · · 0 1
]
1×n2

, ? is a vector which
value is not precised and n1 ≥ n2.

Applying now the third state feedback:

F3 =
[

0 0 · · · 0 a2
1 a2

2 · · · a2
n2

a1
1 a1

2 · · · a1
n1

0 0 · · · 0

]

in order to assign the coefficients corresponding to the desired invariant factors

ψi(λ) = λni − (
ai
1 + ai

2λ+ · · ·+ ai
nλ

ni−1
)
, i = 1, 2.

We have (with A3 := A2 +BF3)

[(λI−A3) |B] =
[
λI − L1 X | ? b2

0 λI − L2 | b̄1 0

]
, (38)

where Li = χ
ni
aT + Jni , a

T =
[
ai
1 ai

2 · · · ai
ni

]
, χT

ni
=

[
0 · · · 0 1

]
1×ni

,
j = 1, . . . , n2, and where X is some n1×n2 real matrix, which entries will be denoted
xi,j in the following.

Note that the matrices A2, A3 and B are expressed in the basis {e1, . . . , en1} of
X1 and {en1+1, . . . , en1+n2} of X2 (see Ch. 0.10 and 1.3 of [12]) as





ej = ψ
(j)
1 (L1)b2, j = 1, . . . , n1

ej+n1 = ψ
(j)
2 (L2)b̄1, j = 1, . . . , n2

(39)
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where for i = 1, 2: ψ
(0)
i (λ) := ψi(λ) and ψ

(j)
i (λ) := 1

λ

(
ψj−1

i (λ) + ai
j

)
, with j =

1, . . . , ni.
The column vectors xj :=

[
x1,j · · · xn1,j

]T of the matrix X are expressed
in this basis as

xj =
n1∑

κ=1

xκ,jeκ = (L1∆j + αj)b2, j = 1, . . . , n2 (40)

where ∆j =
n1−1∑
κ=1

xκ,jψ
κ+1
1 (L1) and αj = xn1,j −

n1−1∑
κ=1

xκ,ja
1
κ+1, with j = 1, . . . , n2.

If we now define the new basis:
{

ēj = ej ; j = 1, . . . , n1

ēj+n1 = ej+n1 −∆jb2, j = 1, . . . , n2

(41)

we obtain {
ēn1 = b2

A3ēj = ēj−1 + a1
jb2, j = 1, . . . , n1

(42)

since A3ej = L1ej , for j = 1, . . . , n1, and
{

ēn1+n2 = b̄1 −∆n2b2

A3ēj+n1 = ēj+n1−1 + a2
j b̄1 + βjb2, j = 1, . . . , n2

(43)

since A3ej+n1 = L2ej+n1 + xj , xj = (L1∆j + αj)b2 and A3b2 = L1b2.
In this new basis, (38) takes the form

[(λI−A3) |B] =

[
λI − L1 χ

n1
βT | ? b2

0 λI − L2 | b̄1 0

]
, (44)

where β =
[
β1 · · · βn2

]
.

Finally with the feedback F4 =
[

0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 −β1 −β2 · · · −βn2

]
, we

achieve the desired goal.

Let us finish with an illustrative example.

4.3. Illustrative example

Consider the system

ẋ(t) =







0 1 0
0 0 1
0 0 0


 0

0




0 1 0
0 0 1
0 0 0






x(t) +







0
0
1


 0

0




0
0
1






u(t),
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to which we want to assign the following invariant polynomials
{

Ψ1(λ) = (λ+ 1)4 = λ4 + 4λ3 + 6λ2 + 4λ+ 1,

Ψ2(λ) = (λ+ 1)2 = λ2 + 2λ+ 1.

Following the above mentioned proof, we first apply the state feedback F2

u(t) =
[

0 0 0 0 0 1
0 0 0 0 0 0

]
x(t) + v(t) ,

which gets the closed–loop system

ẋ(t) =







0 1 0
0 0 1
0 0 0




0 0 1

0




0 1 0
0 0 1
0 0 0






x(t) +







0
0
1


 0

0




0
0
1






v(t).

Applying the basis change matrix, x = T1ξ,

T1 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0



, T−1

1 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 −1 0 1 0 0
0 0 −1 0 1 0



,

we obtain

ξ̇(t) =







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


 0

0
[

0 1
0 0

]




ξ(t) +







0
0
1
0







0
0
0
1




[
0

−1

] [
0
0

]




v(t) .

Note that we have already obtained in this way the sought dimensions of the
invariant subspaces which correspond to the degrees of the desired invariant poly-
nomials.

Apply now the state feedback F3

v(t) =
[

0 0 0 0 1 2
−1 −4 −6 −4 0 0

]
ξ(t) + w(t),
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it comes

ξ̇(t) =







0 1 0 0
0 0 1 0
0 0 0 1

−1 −4 −6 −4







0 0
0 0
1 2
0 0




0
[

0 1
−1 −2

]



ξ(t) +







0
0
1
0







0
0
0
1




[
0

−1

] [
0
0

]



w(t),

and after applying the basis change matrix, ξ = T2ζ,

T2 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 −1 −2
0 0 0 0 1 0
0 0 0 0 0 1



, T−1

2 =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 1 2
0 0 0 0 1 0
0 0 0 0 0 1



,

we have

ζ̇(t) =







0 1 0 0
0 0 1 0
0 0 0 1

−1 −4 −6 −4







0 0
0 0
0 0
2 5




0
[

0 1
−1 −2

]



ζ(t) +







0
0
1

−2







0
0
0
1




[
0

−1

] [
0
0

]



w(t),

Finally applying the following state feedback F4

w(t) =
[

0 0 0 0 0 0
0 0 0 0 −2 −5

]
ζ(t) + r(t) ,

we obtain the desired internal structure.

5. CONCLUSION

We give a new proof of Rosenbrock Theorem on pole assignment. This proof is done
within a very geometric framework; it is based on two well–known basic results of
control theory (Theorems 1 and 2).

Our proof of the necessity provides a new interpretation of Rosenbrock inequal-
ities. Actually invariant factors are associated with cyclic subspaces generated by
projections of input vectors, the system being controllable, and the dimensions of
subspaces of that kind necessarily satisfy Rosenbrock’s inequalities.

The proof of the sufficiency, based on the construction of such cyclic subspaces,
is constructive and leads to an efficient method for the design of a feedback which
assigns the invariant factors of the system. This procedure can be summarized as
follows.
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(i) Calculate a feedback F1 which puts the system in Brunovský cannonical form.

(ii) Calculate a feedback F2, which as in (25), which leads to cyclic subspaces
having the desired dimensions, that are the degrees of the invariant factors.

(iii) The feedback F3 + F4 calculated as in subsection 4.2 finally permits to adjust
as specified the coefficients of the invariant factors.

(Received June 21, 1996.)
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