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AN EFFICIENT COMPUTATION OF THE SOLUTION
OF THE BLOCK DECOUPLING PROBLEM
WITH COEFFICIENT ASSIGNMENT OVER A RING

Jean Assan and Anna M. Perdon

The paper presents procedures to check solvability and to compute solutions to the Block
Decoupling Problem over a Noetherian ring and procedures to compute a feedback law that
assigns the coefficients of the compensated system while mantaining the decoupled structure
over a Principal Ideal Domain. The algorithms have been implemented using MapleVr
and CoCoA [7].

1. INTRODUCTION

Systems over rings have recently received a renewed attention, since they appear
to be useful in describing various classes of systems such as, for instance, delay
differential systems and systems depending on parameters. A number of control
problems such as the Disturbance Decoupling Problem, the Model Matching Problem
and the Block Decoupling Problem for systems over rings are known to be solvable
in theory using geometric methods [8, 9, 10, 13, 14, 16].

An obstacle to the practical implementation of such methods is represented by
the fact that the algorithms usually employed for linear systems over a field do not
work when the coefficients of the systems belong to a ring. However, new geometric
algorithms have recently been found (see [2, 3]), and tools for symbolic computer
algebraic computations, such as MapleVr, Matematicar and CoCoA [7], allow us
to implement them.

In this paper we describe a number of procedures, implemented using MapleV and
CoCoA, that check the solvability conditions of the Block Decoupling Problem, and,
in case of positive answer, compute the state feedback which achieves the decoupling
for systems over a Noetherian ring.

In the case of a Principal Ideal Domain, if the coefficients or the poles of the
closed loop system have to be assigned in order to assure, for instance, stability,
a further procedure computes a feedback which achieves the coefficient assignment
while maintaining the decoupled structure.

The paper is based on the results of [10] for the solution of the Block Decoupling
Problem using the geometric approach and on the results of [11] and [5] on the
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Coefficient Assignment Problem. An application to the Block Decoupling Problem
with stability for delay differential systems with a finite number of incommensurable
delays is given in the examples.

2. PRELIMINARIES AND STATEMENT OF THE PROBLEM

Let Σ be the system defined over a ring R (commutative, with identity, without zero
divisors) by {

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)
(1)

where x(·) belongs to the free state module X = Rn, u(·) belongs to the free input
module U = Rm, y(·) belongs to the free output module Y = Rp, and A, B,C are
matrices of suitable dimensions with entries in R.
A good reference for the reader who is not familiar with algebraic notions such zero
divisors, Principal Ideal Domain, Noetherian ring etc. is [15].

Let us assume that the output of (1) splits into k blocks, k ≥ 2. Writing yi ∈
Yi := Rpi , i = 1, . . . , k with

∑k
i=1 pi = p and Y = Y1⊕. . .⊕Yk, the output equations

of (1) read as
yi(t) = Cix(t), i = 1, . . . , k, (2)

where Ci : X → Yi, i = 1, . . . , k are matrices of suitable dimensions with entries in
R. Then our problem can be stated as follows.

Problem Statement. Given a system Σ of the form (1), (2), the Block Decoupling
Problem for Σ, shortly BDP, consists in finding, if possible, suitable integers na and
mi, i = 1, . . . , k, and a dynamic state feedback law of the form

{
xa(t + 1) = A1x(t) + A2xa(t) +

∑k
i=1 Gaivi(t)

u(t) = Fx(t) + Hxa(t) +
∑k

i=1 Givi(t)
(3)

where xa ∈ Xa := Rna , vi ∈ Rmi , i = 1, . . . , k, A1, A2, F, H, Gi and Gai are matrices
of suitable dimensions with entries in the ring R, such that in the compensated
system ΣF,G

ΣF,G =





x(t + 1) = (A + BF ) x(t) + BHxa(t) +
∑k

i=1 BGivi(t)

xa(t + 1) = A1x(t) + A2xa(t) +
∑k

i=1 Gaivi(t)

yi(t) = Cix(t), i = 1, . . . , k

(4)

each block input vi completely controls yi, but has no influence on the output yj for
j 6= i, i = 1, . . . , k.

In case it is also required that the coefficients of the characteristic polynomial of„
A + BF BH

A1 A2

«
are assigned, we will speak of BDP with Coefficient Assignment

and will modify accordingly the previous definition.
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For systems with coefficients in a field, the solvability of the BDP can be charac-
terized in terms of controllability subspaces (see [17]). For systems with coefficients
in a ring, it is more convenient, in order to avoid problems connected with the defi-
nition of controllability submodules (see [9]), to use pre-controllability submodules.

Definition 1. (see [9]) Given a system Σ described over a ring R by equations of
the form (1), a submodule R is a pre-controllability submodule if

i) R is (A,B)-invariant, i. e. AR ⊆ R+ ImB;

ii) R is the minimum element of the family

SR = {S ⊆ X such that S = R∩ (AS + Im B)}.

Pre-controllability submodules which satisfy the strong condition of being (A,B)-
invariant submodules of feedback type, i. e. such that (A + BF )R ⊆ R for some
static state feedback F : X → U , are controllability submodules in classical sense.
In general (A,B)-invariance does not imply (A,B)-invariance of feeback type and,
to this regards, it is of crucial importance the following result.

Proposition 1. [9] Let Σ be a system defined by (1) over a Noetherian ring R.
Then, an (A,B)-invariant submodule of the state module X = Rn which is a direct
summand of X is an (A,B)-invariant submodule of feedback type.

An important consequence of the above Proposition is that, by using a suitable
extension of the system Σ, one can always expand an (A,B)-invariant submodule into
an (A,B)-invariant submodule of feedback type in the extended system (see [9]). In
other words, this means that an (A, B)-invariant submodule can be made invariant
by using a dynamic feedback.

We can state the following result about the solvability of the BDP, whose proof
can be found in [10].

Theorem 1. [10] Assume that the system Σ, defined over a Noetherian ring R by
(1) and (2), is reachable. Let R∗i denote the maximum pre-controllability submodule
of Σ contained in Ki := ∩k

j=1,j 6=iKer Cj . Then, the Block Decoupling Problem with
Coefficient Assignment is solvable for the system Σ if and only if

R∗i + Ker Ci = X , i = 1, . . . , k. (5)

In practical terms, to check the above solvability conditions for the BDP one has
to compute a number of pre-controllability submodules. Since classical geometric
algorithms (see [17]) do not converge in a finite number of steps over a ring, new
“ad hoc” algorithms for the computation of maximal pre-controllability submodules
have been introduced.
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Proposition 2. [2] Let Σ be a system defined by (1) over a PID R and let V ⊆ X
be a submodule. Then, the sequence {R1

i } defined by
{ R1

0 := S∗(Im B) ∩ V
R1

k := S∗(Im B) ∩ V ∩A−1(R1
k−1 + Im B),

(6)

where S∗(Im B) is the maximum submodule of X containing Im B and verifying
A(S∩Ker C) ⊆ S, converges in a finite number of steps towardsR∗(V), the maximum
pre-controllability submodule contained in V.

Recently, the following more general algorithm was obtained.

Proposition 3. [3] Let Σ be a system defined by (1) over a Noetherian ring R
and let V ⊆ X be a submodule. Then the sequence {R2

i } defined by
{ R2

0 := S∗(Im B) ∩ V ∩A−1(Im B)

R2
k := S∗(ImB) ∩ V ∩A−1(R2

k−1 + Im B),
(7)

where S∗(Im B) is the maximum submodule of X containing Im B and verifying
A(S∩Ker C) ⊆ S, converges in a finite number of steps towardsR∗(V), the maximum
pre-controllability submodule contained in V.

The above algorithms and the results mentioned in Theorem 1 allow us to com-
pute practically a solution to the BDP with Coefficient Assignment when one exists.

3. THE ALGORITHMS

The procedures we describe in this section allow one to check the solvability condi-
tions of the BDP for a system Σ described by (1) and (2) over a Noetherian ring.
In case of positive answer a feedback which decouples the system is computed. If
the ring is a PID, it is also possible to assign the coefficients, or the poles, of the
closed loop system and a feedback is computed which achieves coefficients or pole
assignment, while mantaining the decoupled structure.

3.1. Checking the solvability conditions

PID case. In order to check conditions (5) one has to compute the elements of the
sequence {R1

i } using Algorithm (6). This requires the computation of the sum of
two submodules, of the intersection of two submodules and of the inverse image of a
submodule by a linear map. Over a PID a submodule V of a free module Rn is free
and can be described by a generating-matrix V , namely a matrix whose columns are
a minimal set of generators for V. It can be shown that

i) Let S = P
(

V1 | V2

)
Q =

„ ∗ 0
0 0

«
, be the Smith Form of the matrix

(
V1 | V2

)
with P and Q unimodular, V1 and V2 generating matrices of V1

and V2 respectively. Writing Q =
(

Q1 Q2

)
, we have that the matrix

W = P
(

V1 | V2

)
Q1 is a generating matrix for the submodule V1 + V2;
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ii) denoting by K12 a generating matrix for the Kernel of
(

V1 | −V2

)
, a gener-

ating matrix for V1 ∩ V2 is given by the matrix
(

In | 0
)
K12;

iii) denoting by KA1 a generating matrix for the Kernel of
(

A | −V1

)
, a gener-

ating matrix for A−1(V1), the inverse image of V1 by A, is given by the matrix(
In | 0

)
KA1.

Using MapleV, each of the elementary procedures mentioned above, including
the construction of the Smith Form, can be implemented. Then, the elements of
the sequence {R1

i } can be computed using Algorithm (6) and conditions (5) can be
practically checked.

Remark that the computations are carried on in a symbolic way and therefore no
numerical approximation is involved.

Noetherian case. In the more general case of systems over a Noetherian ring
R, more sophisticated tools are needed, since submodules of a free module are not
necessarily free and the Smith Form is no longer available. In general, a submodule V
of Rn can be characterized by a generating matrix V whose columns form a Gröbner
Basis for V (see [6]). In order to deal with the general case, we’ll need to consider the
module of all the solutions of an homogeneous system of linear equations V w = 0
with coefficients in the ring, called the Syzygy module of V . More precisely, let us
state the following Definition.

Definition 2. [1] Given the vectors v1,. . . ,vs ∈ Rn, a syzygy of the n× s matrix
V = [v1 · · · vs] is a vector w ∈ Rs such that V w = 0. The set of all such syzygies is
called the Syzygy module of V .

To construct the elements of the sequence {R2
i } using Algorithm (7) one has to

compute the sum of two submodules and the intersection of two ideals or of two
submodules and to determine if an element, or a vector, belongs, respectively, to an
ideal or to a submodule (see [1] for details).

If A is an n × n matrix with entries in a Noetherian ring R, V1, V2 are two
submodules of Rn and the columns of Vi are a Gröbner basis for Vi, i = 1, 2, it can
be shown that

i) a Gröbner basis for the submodule V1 + V2 and for V1 ∩ V2 can be computed
directly from Vi, i = 1, 2;

ii) a Gröbner basis for A−1(V1), the inverse image of V1 by A, can be obtained
by computing the Syzygy module of the matrix

(
A | −V1

)
and by taking

the first n coordinates of each syzygy.

The package CoCoA [7], devoted to computations in commutative algebra, allows
one to compute the Gröbner basis of a submodule and the Syzygy module of a set
of homogeneous linear equations. Then, Algorithm (7) can be directly implemented
using CoCoA and Gröbner bases Ri for the submodules {R∗i } are computed. The
integers ni are the number of vectors in Ri. The solvability conditions (5) of the
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Block Decoupling Problem can therefore be practically checked. Also here compu-
tations are carried on without introducing numerical approximation, in a symbolic
way.

3.2. Constructing the decoupling feedback

Assume that the solvability conditions (5) are satisfied and that Ri is a generating
matrix for R∗i , i = 1, . . . , k. Following the lines in the proof of Theorem 1 (see [10]),
we extend the system Σ to a system Σe described by the matrices:

Ae =
(

A 0n×na

0na×n 0na×na

)
, Be =

(
B 0n×na

0na×m Ina×na

)

and
Ce =

(
C 0p×na

)

where na = n1 + n2 + · · · + nk and the integers ni, i = 1, . . . , k, are the number of
elements of a Gröbner Basis Ri for the submodules R∗i , i = 1, . . . , k. The columns

of the matrices

0
BBBBB@

Ri

0
.
..

Ini×ni

0

1
CCCCCA

span the submodules R∗ei, which are (Ae,Be)-invariant

of feedback type, since they are direct summands of Rn+na (compare with Proposi-
tion 1.

The matrix Re =

0
BBB@

R1 . . . Rk In×n

In1×n1 0 . . . 0

0
. . . 0 0

0 0 Ink×nk 0

1
CCCAis unimodular and we have R−1

e =

0
B@

0 In1×n1 . . . 0

0
. . . 0 Ink×nk

In×n −R1 . . . −Rk

1
CA.

The first step towards the construction of a Decoupling Feedback is now the
computation of matrices Mi ∈ Rm×ni and Li ∈ Rni×ni such that

ARi = RiLi + BMi,

whose existence is guaranteed by the (A,B)-invariance of R∗i .
This is achieved computing a generating matrix

0
@

Xi,1

Xi,2

Xi,3

1
Afor the Syzygy module

of the matrix (
A −Ri −B

)
, (8)

where the number of rows in Xi,1, Xi,2, Xi,3 is respectively n, ni and m. Since

the columns of

0
@

Ri

Li

Mi

1
Aare also elements of the Syzygy module of the matrix (9), a

matrix Ki, with ni columns, can be found by solving a linear system such that

Ri = Xi,1Ki, Li = Xi,2Ki and Mi = Xi,3Ki.
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A generating matrix

(
Gi,1

ie

G0,1
ie

)
for the Syzygy module of the matrix [ Ri | −B ]

gives the matrices Gi,1
ie and G0,1

ie such that

RiG
i,1
ie = BG0,1

ie , i = 1, . . . , k,

Then, a static state feedback which solves the Block Decoupling Problem for Σe is

given by (Fe, Ge)

Fe =




F1 −M1 − F1R1 −M2 − F1R2 . . . −Mk − F1Rk

0 L1 0 . . . 0
0 0 L2 . . . 0
...

...
. . .

...
...

0 0 0 . . . Lk




, (9)

(the matrix F1 can be chosen arbitrarily to satisfy further conditions if needed) and

Ge =




G
(01)
1e G

(0,1)
2e . . . G

(0,1)
ke

G
(1,1)
1e 0 . . . 0

0 G
(2,1)
2e 0

...
. . .

...
0 0 . . . G

(k,1)
ke




. (10)

In fact, (see [10]), we have that

R−1
e (Ae + BeFe)Re =




L1 0 . . . 0 0
0 L2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Lk 0
0 0 . . . 0 A + BF1




(11)

and

R−1
e BeGe =




G
(1,1)
1e 0 . . . 0 0
0 G

(3,1)
2e . . . 0 0

...
...

. . .
...

...
0 0 . . . G

(k,1)
ke 0

0 0 . . . 0 0




. (12)

The static state feedback (Fe, Ge) which decouples Σe gives rise to a dynamic
feedback of the form (3) for Σ.

The procedure to compute the matrices Li,Mi, G
0,i
ie , Gi,1

ie implemented using Co-
CoA is much simpler than the one written with MapleV, which anyway can be used
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only for systems defined over a PID. In fact, even if also MapleV allows the use of
Gröbner Bases, CoCoA is much more efficient and the time required to perform the
computations is ten times smaller. On the other hand, in building up the Decoupling
Feedback Fe, Ge, MapleV is faster, being more suitable to matrix manipulation.

3.3. Assigning the coefficients

In the PID case, in addition to decouple one can also stabilize or assign the coeffi-
cients of the resulting closed loop system. For this, the integers n̄, n̄i should be chosen
as follows: n̄ = 0 if m = 1 and n̄ = 1 otherwise, and n̄i = 0 if dim(G(2i−11)

ie ) = 1,
n̄i = 1 otherwise (see [10]). After having achieved the decoupled form, one can
assign arbitrarily the coefficients of (A,B) and of each subsystems (Li, G

(2i−11)
ie ),

maintaining the decoupled structure, by following the procedure described in [12].
Implementation of such procedure requires essentially the same elementary opera-
tions we have already used and can therefore be performed in MapleV or CoCoA.

4. EXAMPLES

To illustrate the procedures described above we will apply them to a couple of delay
differential systems.

Example 1. Let us consider the delay-differential system Σ′1 given by:




ẋ1(t) = x1(t) + x2(t) + u1(t)

ẋ2(t) = x1(t− ∂) + x3(t) + u2(t)

ẋ3(t) = x2(t) + u1(t− ∂)

y1(t) = x1(t)

y2(t) = x2(t− ∂)

(13)

where h represents a delay. By introducing the delay operators ∆, defined for any
function f(t) by ∆f(t) = f(t − h), we can formally associate to Σ′1 the system Σ1

over the PID ring R[∆] of polynomials in one indeterminate. Σ1 is then defined by
equation of the form (1), with

A :=




1 1 0
∆ 0 1
0 1 0


 , B :=




1 0
0 1
∆ 0


 and C :=

(
1 0 0
0 ∆ 0

)
.

We search for a dynamic feedback law of the form (3) which decouples the two
outputs of the system. The algorithm (6) implemented using MapleV, following the
lines described above, gives generating matrices

R1 :=




0 −1
0 0
−∆ −∆


 and R2 :=




0 0
−1 0
0 1−∆



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for the pre-controllability submodules R∗i , i = 1, 2. The solvability conditions (5)
are satisfied, so BDP is solvable for Σ1. Since n1 = n2 = 2, an extension of na = 4 is
needed to decouple the system. Following the procedure described above we obtain
the matrices Fe, Ge (with F1 = 0)

Fe :=




0 0 0 0 0 1 0
0 0 0 ∆ 2∆ 0 0
0 0 0 0 −1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 −1 + ∆
0 0 0 0 0 −1 0




Ge :=




−1 0
0 −1
0 0
1 0
0 1
0 0




.

Since

R−1
e =




0 −1 0 0 1 0 0
0 0 −1 0 0 1 0
−∆ −∆ 0 1−∆ 0 0 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0




,

one has

R−1
e (Ae + BeFe)Re =




0 −1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 −1 + ∆ 0 0 0
0 0 −1 0 0 0 0
0 0 0 0 1 1 0
0 0 0 0 ∆ 0 1
0 0 0 0 0 1 0




R−1
e BeGe =




0 0
1 0
0 1
0 0
0 0
0 0
0 0




and CeRe =
[

0 −1 0 0 1 0 0
0 0 −∆ 0 0 ∆ 0

]
.
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The resulting closed loop system is




x1(t) = −x2(t)

ẋ2(t) = x2(t) + v1(t)

ẋ3(t) = −x4(t) + x4(t− ∂) + v2(t)

ẋ4(t) = −x3(t)

ẋ5(t) = x5(t) + x6(t)

ẋ6(t) = x5(t− h) + x7(t)

ẋ7(t) = x6(t)

y1(t) = −x2(t) + x5(t)

y2(t) = −x3(t− ∂) + x6(t− ∂).

(14)

The closed loop transfer matrix of the system is then

T (s) =



− 1

s− 1
0

0 − e−∂s s

−1 + e−∂s + s2




and the system Σ′ is decoupled.
Suppose now that we want to assign all the coefficient at 2. As R∗i ∩ Im B is of
dimension 1 for i = 1, 2, it follows that n̄i = 0 for i = 1, 2 as the subsystems
(Li, G

(2i−11)
ie ) are cyclic. Thus, n̄ must be equal to 1 to make the subsystem (A,B)

cyclic. Now, one should take a dynamic extension of na = 5. The program then
computes the new matrices Fe and Ge, giving rise to the closed loop transfer function

T (s) =




−s

4 + 4s + s2
0

0
−e∂ss

4 + 4s + s2


 .

The coefficients of the matrix Fe have very involved expressions, so they will not be
displayed here. The computation of this example were performed with MapleV on
a PC 166MHz in 26 seconds.

Example 2. We consider now a system with two incommensurable delays, which
can be modeled by a system over the ring R[∆1, ∆2], which is not a PID but is
Noetherian. Let the delay-differential system Σ′2 be given by the equations





ẋ1(t) = x3(t) + u1(t− h2)

ẋ2(t) = x1(t− 4h1) + x2(t− h2)

ẋ3(t) = x1(t− 3h2) + +x2(t− h2) + x3(t) + u2(t)

y1(t) = x2(t)− x3(t− h1)

y2(t) = x1(t),

(15)
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where h1, h2 are two incommensurable delays. Introducing the delay operators ∆1,
∆2, defined by ∆if(x) := f(x− hi), i = 1, 2, we can associate to Σ′2 the system Σ2

defined by the following matrices:

A :=




0 0 1
∆4

1 ∆2 0
∆3

2 ∆2 1


 , B :=




∆2 0
0 0
0 1


 and C :=

(
0 1 −∆1

1 0 0

)

and consider the problem of decoupling the two outputs of Σ2. By CoCoA we
compute Gröbner Bases of the submodules R∗i , i = 1, 2,

R1 =




0
0

∆2


 , R2 =




∆2 0
0 ∆4

1∆2

0 ∆3
1∆2


 .

The Block Decoupling Problem is solvable here only in a weak sense, (see [10]) since
Σ2 is only weakly reachable. In fact, a Gröbner Basis of the reachability submodule

of Σ2 is

0
@

1 0 0
0 ∆4

1 0
0 0 1

1
A.

The dimension na of the extension required to achieve decoupling is: na =1+2=3
and the decoupling feedback is given by the matrices Fe, Ge:

Fe :=




0 0 0 −1 0 0
0 0 0 0 f1 f2

0 0 0 1 0 0
0 0 0 0 0 ∆3

1

0 0 0 0 1 ∆2




, Ge :=




0 1
∆2 0
1 0
0 1
0 0




with f1 = ∆3
1∆2 −∆4

2, f2 = ∆3
1∆

2
2 −∆3

1∆2 −∆4
1 ∆2

2.
The decoupled system is then given by

W−1
e (Ae + BeFe) We =




1 0 0 0 0 0
0 0 ∆3

1 0 0 0
0 1 ∆2 0 0 0
0 0 0 0 0 1
0 0 0 ∆4

1 ∆2 0
0 0 0 ∆3

2 ∆2 1




,

W−1
e BeGe =




1 0
0 1
0 0
0 0
0 0
0 0




and CeWe =
[ −∆1 ∆2 0 0 0 1 −∆1

0 ∆2 0 1 0 0

]
.

The transfer function matrix of the compensated system is

T (s) =

[
∆1∆2
−1+s 0

0 ∆2(∆2−s)
∆3

1+s∆2−s2

]
.



776 J. ASSAN AND A.M. PERDON

5. CONCLUSIONS

The paper shows how to practically check the solvability conditions and compute
solutions for the Block Decoupling Problem and the Coefficient Assignment Prob-
lem The proposed procedures are based on the results obtained using the geomet-
ric approach in [10] and perform symbolic computer algebraic computations using
MapleVr and CocoA. Examples are provided concerning delay differential systems.

(Received December 11, 1998.)
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