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PERIODIC SYSTEMS LARGELY SYSTEM EQUIVALENT
TO PERIODIC DISCRETE–TIME PROCESSES1

Osvaldo Maria Grasselli,2 Sauro Longhi and Antonio Tornambè

In this paper, the problem of obtaining a periodic model in state-space form of a linear
process that can be modeled by linear difference equations with periodic coefficients is
considered. Such a problem was already studied and solved in [20] on the basis of the notion
of system equivalence, but under the assumption that the process has no null characteristic
multiplier. In this paper such an assumption is removed in order to generalize the results
in [20] to linear periodic processes with possibly the null characteristic multiplier (e. g.,
multirate sampled-data systems). Large system equivalence between two linear periodic
models of such processes is introduced and analyzed. For a given linear periodic process
the necessary and sufficient conditions are found for the existence of a linear periodic system
(i. e., a linear periodic model in state-space form) that is largely system equivalent to the
given model of the process, together with an algorithm for deriving such a system when
these conditions are satisfied.

In addition, the significance of the periodic system thus obtained for describing the
original periodic process that is largely system equivalent to the system, is clarified by
showing that the controllability, the reconstructibility, the stabilizability, the detectability,
the stacked transfer matrix, the asymptotic stability, the rate of convergence of the free
motions, and even the number and the dimensions of the Jordan blocks of the monodromy
matrix corresponding to each nonnull characteristic multiplier of the periodic system, are
determined by the original periodic process (although the order of the periodic system is
not, in general, as well as its reachability and observability properties, because of some
possible additional or removed null characteristic multipliers).

1. INTRODUCTION

In order to find a state-space model for processes that can be modeled by linear
differential or difference equations with constant coefficients, Rosenbrock made use
of the following pair of vector equations [30]:

T (s)ξ = U(s)u, (1)
y = V (s) ξ + W (s) u, (2)

1This work has been supported by funds of Ministero dell’Università e della Ricerca Scientifica
e Tecnologica, of Consiglio Nazionale delle Ricerche and of Agenzia Spaziale Italiana.

2Corresponding author.
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where u is the input vector of the process, y is the output vector, ξ is the vector of
the internal variables, called here pseudo-state, and T (s), U(s), V (s) and W (s) are
polynomial matrices in the indeterminate s; if s is replaced either by differentiation
or by the one-step forward shift operator, the time-domain model of the process
under consideration is obtained. He showed that under polynomial transformations
on (1) and (2) that he called strict system equivalence and possibly an additional
extension or reduction of the dimension of the pseudo-state (which will be recalled
in detail in the next section), it is possible to obtain a description of process (1), (2)
in state-space form, i. e., of the type:

sx(t) = Ax(t) + Bu(t) (3)
y(t) = Cx(t) + Du(t) (4)

(where s means either differentiation or one-step forward shift operator), provided
that T (s) is square and nonsingular and the input-output transfer function ma-
trix corresponding to (1) and (2) is proper. It is stressed that for the linear sys-
tem (3), (4) thus obtained, not only the transfer function matrix is the same as
that of the given process described by (1) and (2), but also the Smith forms of
sI − A,

[
sI −A B

]
,

[
sI −AT CT

]T and of the Rosenbrock system matrix of
system (3), (4), coincide (possibly apart from some unit invariant polynomials) with
those of T (s),

[
T (s) U(s)

]
,
[
T (s)T V (s)T

]T , and of the system matrix of (1), (2),
respectively; this means that the asymptotic stability of system (3), (4), the rate of
convergence of its free motions, and even the whole Jordan form of A, together with
the whole Jordan forms of its non-reachable and unobservable parts, if any, and its
invariant zeros with their ordered sets of structural indices, are determined by the
original process described by (1), (2). Since then, several authors studied this kind
of problem (see, e. g., [3, 7, 11, 21, 24, 32]), which is different from the well-known
realization problem; this, in the time-invariant case, is the problem of finding a lin-
ear system of the form (3), (4) whose transfer matrix or impulse response matrix
coincide with a given one (see, e. g., [23]), so that the datum of this problem consists
of the input-output map that characterizes the mere zero-state output responses of
the system to be found, whereas no complete information is given on the input-
state map of the same system, nor on its free responses. This makes non-unique
the solution of the realization problem, if no a priori information is available about
the non-existence of non-reachable and/or unobservable states of the system to be
found; hence, arbitrary unobservable and/or nonreachable subsystems can be added
to a found minimal realization, still obtaining a solution of the realization problem.

The study of the problem of finding a state-space representation of a process that
can be modeled by equations (1), (2) was extended in [20] to processes that can be
modeled by linear difference equations with periodic coefficients (whose period will
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be denoted by ω) of the following form:

r∑

i=0

Ti(k)ξ(k + i) =
r∑

i=0

Ui(k) u(k + i), (5)

y(k) =
r∑

i=0

Vi(k)ξ(k + i) +
r∑

i=0

Wi(k)u(k + i), (6)

for some integer r ≥ 0, where k ∈ Z, ξ(k + i) ∈ Rm is the vector of the internal
variables or pseudo-state, u(k + i) ∈ Rp is the input, y(k) ∈ Rq is the output,
Ti(k), Ui(k), Vi(k) and Wi(k), i = 0, . . . , r, are real periodic matrices of period ω
(briefly, ω-periodic), and the Ti(k), i = 0, . . . , r, were assumed to be square. It was
shown that, within the class of transformations of (5), (6) that was called system
equivalence [20], it is possible to obtain a description of (5), (6) in state-space form,
i. e. a description of the form

x(k + 1) = A(k) x(k) + B(k) u(k), (7)
y(k) = C(k)x(k) + D(k) u(k), (8)

where x(k) ∈ Rn is the state, and A(·), B(·), C(·), D(·), are real ω-periodic matrices,
provided that the process described by equations (5), (6) satisfies some causality
conditions and, in addition, no null characteristic multiplier is associated with the
left-hand side of (5) (see the next section for a formal definition of the mentioned
notion of characteristic multiplier); moreover, most of the properties and features of
the ω-periodic system (7), (8) thus obtained are determined by the original process
(5), (6), as well as in the solution (3), (4) proposed by Rosenbrock [30] to the original
problem of giving a state-space description of (1), (2).

The interest of obtaining a description of (5), (6) in state-space form is motivated
by the variety of processes that can be modeled by linear difference equations with
periodic coefficients (e. g., multirate sampled-data systems, periodically time-varying
digital filters, seasonal phenomena [1, 2, 27]) and the resulting amount of contribu-
tions devoted to solve control problems for linear periodic discrete-time systems –
including eigenvalue assignment, state and output dead-beat control, disturbance
decoupling, optimal control, robust tracking and regulation, and input-output block
decoupling (see [4, 5, 9, 14, 15, 16, 17, 19, 28, 25, 22]) – since most of these con-
tributions are based on a state-space description. For similar reasons, the different
problem of finding discrete-time linear periodic realizations of input-output linear
maps was studied by several authors [8, 12, 26, 29, 31]; in particular, a necessary
and sufficient condition for the existence of a linear periodic minimal realization was
introduced in [31] in terms of the Hankel matrix associated with an input-output
periodic application. However, in general a periodic minimal (i. e., reachable and
observable at all times) realization may have a time-varying dimension (see [6, 12],
also for algorithms for its computation) – although “quasi-minimal” (i. e., reachable
and observable at least at one time instant) realizations with a constant dimension
[6, 26] can be obtained – ; this is because the zero-state output responses of system
(7), (8), which are its only features that have to be matched with the datum of the
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realization problem, do not depend on its unobservable and/or non-reachable parts,
which, however, may have time-varying dimensions [13].

On the contrary, the number of arbitrary and independent initial conditions on
which the solutions of (5), (6) depend (which is the natural characterization of the
dimension of the state of the corresponding system (7), (8) to be found) is constant
with time, namely it does not depend on the initial time under consideration [20],
while process (5), (6) could actually have some pseudo-state free motions that are
unobservable from y and/or some subvector of ξ that cannot be influenced by u,
so that the equations (5), (6) (which are assumed to be a complete description of
the process under consideration) could actually be equivalent (in some sense) to a
complete description of an arbitrary periodic system of the form (7), (8), and not
only to that of its zero-state output responses. Therefore it seems to be of interest
to find a ω-periodic system of such a form that preserves most of the properties and
features of the original ω-periodic process (5), (6), without the assumption about the
null characteristic multiplier that was used in [20]. This is just the purpose of this
paper, in order to give a solution to the same kind of problem that was studied in
[20] also for the class of periodic processes of the form (5), (6) that actually have the
null characteristic multiplier (e. g., multirate sampled-data systems [1] always have
it).

Preliminarily, in Section 2 a polynomial time-invariant characterization of such a
process, and some related notions and results, will be recalled, including the notion
of system equivalence [20] between two models of the form (5), (6). In Section 3
the more general notion of large system equivalence between two such models will
be introduced, and the properties and features that are invariant under it will be
analyzed. In Section 4 the necessary and sufficient existence conditions of a periodic
system described by (7), (8) that is largely system equivalent to a periodic process
described by (5), (6) will be given, together with an algorithm for deriving such a
periodic system from the given process (5), (6).

2. NOTATIONS AND SOME BACKGROUND MATERIAL

Henceforth, the identity matrix of dimension ν will be denoted either by Iν , or
simply by I; ∆ will denote the ω-steps forward-shift operator, and ∆−1 its inverse;
in addition, Rν(∆), ν ∈ Z+ will denote the following matrix operator:

Rν(∆) :=
[

0 I(ω−1)ν

∆Iν 0

]
, (9)

where Z+ is the set of positive integers.
Let a vector function z(t) ∈ Rν be given, with t ∈ Z; for any k ∈ Z, the ω-stacked

form of z(t) at time k is defined by

zk(h) :=
[
zT (k + hω) zT (k + hω + 1) . . . zT (k + hω + ω − 1)

]T
, h ∈ Z.

From now on, whenever the operator Rν(∆) will be applied to zk(h), the operator ∆
will have the meaning of an ω-steps forward-shift in the k variable, or, equivalently,
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a one-step forward-shift in the h variable. Notice that [20]:

Rν(∆)zk(h) = zk+1(h). (10)

Let an ω-periodic matrix F (t) ∈ Rν×µ be given, with t ∈ Z, representing the
linear map z(t) = F (t)w(t); for any k ∈ Z, the ω-stacked form of F (t) at time
k is defined by Fk := diag {F (k), F (k + 1), . . . , F (k + ω − 1)} , and represents the
induced linear map between the ω-stacked forms at time k of the vector functions
z(t) and w(t), i. e. zk(h) = Fkwk(h), h ∈ Z.

By introducing the ω-stacked forms ξk0(h), uk0(h), yk0(h) at time k0 of vectors
ξ(k), u(k), y(k) and the ω-stacked forms Ti,k0 ,Ui,k0 ,Vi,k0 and Wi,k0 at time k0 of
matrices Ti(k), Ui(k), Vi(k),Wi(k), i = 0, . . . , r, the model (5), (6) of the process
under consideration can be expressed in the following form, which is called the ω-
stacked form at time k0 of model (5), (6) [20]:

Tk0(∆)ξk0(h) = Uk0(∆)uk0(h), (11)
yk0(h) = Vk0(∆)ξk0(h) + Wk0(∆)uk0(h), (12)

where Tk0(∆) :=
r∑

i=0

Ti,k0R
i
m(∆), Uk0(∆) :=

r∑
i=0

Ui,k0R
i
p(∆), Vk0(∆) :=

r∑
i=0

Vi,k0R
i
m(∆),

Wk0(∆) :=
r∑

i=0

Wi,k0R
i
p(∆). The following polynomial matrix of ∆:

SM
k0

(∆) :=
[−Tk0(∆) Uk0(∆)
Vk0(∆) Wk0(∆)

]
(13)

is termed the ω-stacked system matrix at time k0 of model (5), (6), thus extending
the time-invariant Rosenbrock system matrix [30]. It will be the main tool for
deriving a state-space representation (7), (8) of process (5), (6).

The following assumption is justified by Proposition 2.2 of [20], and will be as-
sumed to hold throughout the paper. In fact, if it is not satisfied, either the number
of scalar equations contained in (5) can be trivially reduced, without modifying the
set of pseudo-state and output solutions of (5), (6) for any given input function u(·),
or such solutions do not depend on a finite number of arbitrary and independent
initial conditions or even no solution exists for some u(·) [20].

Assumption 1. The polynomial matrix Tk0(∆) is square and nonsingular.

If Assumption 1 holds for k0 = k0 ∈ Z, then it holds for any k0 ∈ Z, and the
degree of det Tk0(∆) is independent of the time k0 [20]. Therefore, the degree of
det Tk0(∆) for an arbitrary k0 ∈ Z is called the order of model (5), (6), since it
coincides with the number of arbitrary and independent initial conditions on which
the solutions of (5), (6) depend [20].

Moreover, under Assumption 1 and for a fixed time k0, the application of the z-
transform to both sides of (11), (12), with zero initial conditions both for ξk0(h) and
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uk0(h), yields yk0(z) = GM
k0

(z)uk0(z), where GM
k0

(z) := Vk0(z)T −1
k0

(z)Uk0(z)+Wk0(z)
is called the ω-stacked transfer matrix at time k0 of model (5), (6).

For the linear ω-periodic system described by (7), (8), equations (11), (12) reduce
to the following ones:

Rn(∆) xk0(h) = Ak0 xk0(h) + Bk0 uk0(h), (14)
yk0(h) = Ck0 xk0(h) +Dk0 uk0(h), (15)

(where xk0(h), Ak0 ,Bk0 , Ck0 and Dk0 are the ω-stacked forms at time k0 of x(k),
A(k), B(k), C(k) and D(k), respectively), which are termed the ω-stacked form at
time k0 of system (7), (8); if the symbol SS

k0
(∆) is used in this case instead of SM

k0
(∆),

relation (13) reduces to

SS
k0

(∆) :=
[Ak0 −Rn(∆) Bk0

Ck0 Dk0

]
. (16)

SS
k0

(∆) is called the ω-stacked system matrix at time k0 of system (7), (8). In a
similar way, the ω-stacked transfer matrix GS

k0
(z) at time k0 of system (7), (8) is

expressed by GS
k0

(z) := Ck0(Rn(z)−Ak0)
−1Bk0 +Dk0 . Further, the state transition

matrix over a period Φ(k0 +ω, k0) of system (7), (8) at the initial time k0, expressed
by Φ(k0 + ω, k0) := A(k0 + ω− 1) · · ·A(k0 + 1)A(k0), will be called the monodromy
matrix at time k0 of system (7), (8).

The basic relation that will be used here between two (mω + qω) × (mω + pω)
polynomial matrices S1(∆) and S2(∆) with real coefficients will still be the same
relation that was introduced by Rosenbrock through strict system equivalence in the
time-invariant case [30]. Namely, two (mω + qω)× (mω + pω) polynomial matrices
S1(∆) and S2(∆) with real coefficients are said to be strictly system equivalent if a
relation of the following form holds:

S2(∆) =
[
M(∆) 0
Y (∆) Iqω

]
S1(∆)

[
N(∆) X(∆)

0 Ipω

]
, (17)

where M(∆), N(∆), X(∆) and Y (∆) are polynomial matrices in ∆ with real co-
efficients, and M(∆), N(∆) are square and unimodular [20]; in addition, if matrix
S1(∆) in (17) is an ω-stacked system matrix at some time k0, then the matrix S2(∆)
that is obtained by (17) for some M(∆), N(∆), X(∆) and Y (∆) of the type defined
above, will be referred to as an ω-stacked system matrix at the same time, with the
same abuse of terminology used in [20].

The meaning of the strict system equivalence relation between two ω-stacked sys-
tem matrices is similar to the meaning of the strict system equivalence relation be-
tween two system matrices corresponding to two time-invariant processes described
by a pair of equations of the form (1), (2). In the latter case, in order to obtain a
pair of equations of the form (3), (4) from the original model of the form (1), (2), an
extension of the dimension of ξ was needed whenever such a dimension was lower
than the degree of det T (s) in (1) [30]; it was obtained by introducing some addi-
tional scalar components ξj into ξ, characterized by the scalar equations ξj = 0,
which had to be added to the scalar components of equation (1), so as to obtain a
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new pair of vector equations of the form (1), (2) in such an extended pseudo-state
and with the matrices

T1(s) :=
[
I 0
0 T (s)

]
, U1(s) :=

[
0

U(s)

]
, V1(s) :=

[
0 V (s)

]
, (18)

instead of matrices T (s), U(s) and V (s), respectively. For similar reasons, the
same kind of extension of ξ(k) could be needed in equation (5) [20]; this can be
obtained by introducing some new zero components into ξ(k) and by introducing the
corresponding trivial scalar equations into vector equation (5). Denoting by ξj(k),
j = m + 1, . . . , m + ν, such new zero components of ξ(k), where the nonnegative
integer ν denotes their number, such an extension of ξ(k) gives rise to the following
operation to be performed on the original model (5), (6):

(a) for ν ≥ 0, ν ∈ Z, add the following ν scalar equations to equation (5):

ξj(k) = 0, (19)

for j = m + 1, . . . , m + ν, so that, defining

ξe(k) :=
[
ξT (k) ξm+1(k) . . . ξm+ν(k)

]T
, (20)

a new model of the form (5), (6) is obtained, with ξe(k) ∈ IRm+ν instead of ξ(k).
Notice that for ν = 0 such an operation leaves unchanged the original model

(5), (6).
As in [30], in order to find a state-space description (7), (8) of process (5), (6)

having the order of this as the dimension n of the state x(k), the converse of operation
(a) is actually needed whenever the dimension m of ξ(k) is greater than the order of
process (5), (6) [20], since strict system equivalence does not alter the dimension of
the pseudostate. The converse of operation (a) can be formally defined as follows:

(b) if, for some ν ≥ 0, ν ∈ Z, vector ξ(k) can be partitioned as follows:

ξ(k) =
[
ξ`(k)T ξm−ν+1(k) . . . ξm(k)

]T
, (21)

where ξj(k), j = m − ν + 1, . . . ,m, are scalar functions satisfying (19), and vector
ξ`(k) satisfies an (m − ν)-dimensional vector equation of the form (5) and a q-
dimensional vector equation of the form (6), with ξ`(k) ∈ Rm−ν instead of ξ(k),
then remove equations (19) from the given model for each j = m− ν + 1, . . . , m.

Operation (b) too leaves unchanged the original model (5), (6) for ν = 0.
The most general relation between two ω-periodic models of the form (5), (6) that

was used in [20] can be obtained by putting together strict system equivalence and
operations (a) and (b), and is now recalled, since the contribution of this paper is
based on enlarging such relation. Then, two ω-periodic models M1 and M2 of the
form (5), (6), satisfying Assumption 1 and having inputs and outputs of the same
dimensions p and q, respectively, are said to be system equivalent at time k0 if there
exist an operation of the type (a) or (b) to be carried out on M1 and an operation of
the type (a) or (b) to be carried out on M2 such that the ω-stacked system matrices
at time k0 of the resulting models are strictly system equivalent.
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System equivalence at time k0 is an equivalence relation [20] under which many
features and properties of process (5), (6) remain unchanged; among them, the ω-
stacked transfer matrix at any time and the order [20]. For the following develop-
ments it is useful to recall all of them, together with the definition of those which are
non-standard. Then, in view of the results in [20], under Assumption 1, the zeros of
the polynomial det Tk0(z) are called the characteristic multipliers of model (5), (6)
at time k0 with corresponding (ordered sets of) structural indices at the same time
defined as their (nondecreasing sequences of) multiplicities as zeros of the invariant
polynomials of Tk0(z). The polynomial det Tk0(z) is independent of k0 [20], and
is called the characteristic polynomial of model (5), (6). Further, under the same
Assumption 1, the invariant zeros, input decoupling zeros, and output decoupling
zeros of model (5), (6) at time k0 are defined to be the zeros of the invariant polyno-
mials of SM

k0
(z), [−Tk0(z) Uk0(z)], [−T T

k0
(z) VT

k0
(z)]T , respectively, with ordered

sets of structural indices at the same time defined as their nondecreasing sequences
of multiplicities as zeros of such polynomials.

About these notions, it can now be stressed that not only the ω-stacked transfer
matrix at any time of a model of the form (5), (6), and its order, but also its whole
characteristic polynomial (apart from some nonnull scalar constant), the nonnull
structural indices of its nonnull characteristic multipliers at any time, and all types
of the nonnull zeros at any time, together with their nonnull structural indices, are
invariant under system equivalence at time k0 [20], as well as its null characteristic
multiplier, if any, and its null zeros of all types at time k0, if any, together with their
nonnull structural indices at the same time.

In [20] this was discussed in order to clarify its meaning in terms of the very
strong properties that are not altered by system equivalence at time k0, and therefore
the significance of finding an ω-periodic system of the form (7), (8) that is system
equivalent at time k0 to a given model of the form (5), (6) satisfying Assumption 1.
In fact, in [20] such a problem was solved under the additional assumption that the
given model has no null characteristic multiplier. In the following sections similar
results will be obtained without such an additional assumption.

3. LARGE SYSTEM EQUIVALENCE

In order to make easier to find a solution to the problem of obtaining an ω-periodic
state-space description of the form (7), (8) of an ω-periodic process modeled by a pair
of equations of the form (5), (6), without any assumption about the null characteristic
multiplier of the original model, system equivalence at time k0 will be now suitably
enlarged.

Specifically, it will be convenient to allow to record the values of u(k − ω + 1),
u(k−ω+2), . . . , u(k−1) in a suitable extension ξL(k) of the pseudo-state ξ(k), and
to allow to correspondingly increase the order of the given model by introducing the
new factor zp(ω−1) into its characteristic polynomial (as will soon be clear). This will
be obtained by allowing the use of the following extra operation on the ω-periodic
model (5), (6):
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(c) add the following ω − 1 vector equations to equation (5):

ζ1(k + 1) = ζ2(k),
...

ζω−2(k + 1) = ζω−1(k),
ζω−1(k + 1) = u(k),

(22)

so that, defining

ξL(k) := [ζT
1 (k) ζT

2 (k) . . . ζT
ω−1(k) ξT (k)]T , (23)

a new model of the form (5), (6) is obtained, with ξL(k) ∈ Rm+(ω−1) p instead of
ξ(k).

In addition, the converse of operation (c) has to be allowed in order that system
equivalence at time k0 remains an equivalence relation after the enlargement thus
obtained. The converse of operation (c) can be formally defined as follows:

(d) if vector ξ(k) can be partitioned as follows:

ξ(k) := [ζT
1 (k) ζT

2 (k) . . . ζT
ω−1(k) ξ0T

(k)]T , (24)

where ζi(k) ∈ Rp, i = 1, . . . , ω− 1, satisfy (22) and ξ0(k) satisfies an [m− (ω− 1) p]-
dimensional vector equation of the form (5), and a q-dimensional vector equation of
the form (6), with ξ0(k) ∈ Rm−(ω−1) p instead of ξ(k), then remove equations (22)
from the given model.

It is clear from (22) that the solutions y(k) of (5), (6) are not altered by the
operations of the types (c) and (d).

Notice also that, by (10), the ω-stacked system matrix at time k0 of the model
obtained after that an operation of the type (c) has been carried out on model
(5), (6), is strictly system equivalent to the following one:

SML
k0

(∆) =




−Rp(∆) Iωp . . . 0 0 0
0 −Rp(∆) . . . 0 0 0

. . . . . . . . . . . . . . . . . .
0 0 . . . Iωp 0 0
0 0 . . . −Rp(∆) 0 Iωp

0 0 . . . 0 −Tk0(∆) Uk0(∆)
0 0 . . . 0 Vk0(∆) Wk0(∆)




=:
[−T L

k0
(∆) UL

k0
(∆)

VL
k0

(∆) Wk0(∆)

]
, (25)

having ω − 1 block rows and columns in addition to SM
k0

(∆). Hence, the following
relation holds:

det T L
k0

(z) = ±zp(ω−1)det Tk0(z), (26)

as it was previously mentioned.
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Then, two ω-periodic models M1 and M2 of the form (5), (6), satisfying Assump-
tion 1 and having inputs and outputs of the same dimensions p and q, respectively,
are said to be largely system equivalent at time k0 if there exist a (possibly null)
finite number of operations of the type (c) or (d) to be carried out on M1 and
a (possibly null) finite number of operations of the type (c) or (d) to be carried
out on M2, such that the resulting models, M1 and M2, respectively, are system
equivalent at time k0.

Proposition 1. The relation of large system equivalence at time k0 between two
ω-periodic models of the form (5), (6) is an equivalence relation.

P r o o f . The reflexivity and symmetry properties are obvious. As regards tran-
sitivity, given three ω-periodic models Mi, i = 1, 2, 3, having inputs and outputs of
the same dimensions p and q, respectively, assume that the pairs M1 and M2, and,
respectively, M2 and M3, are largely system equivalent at time k0. That is, there
exist pairs of integers j1, j2, and j̃2, j̃3, such that the pairs of models M1,M2 and
M̃2,M̃3, respectively, are system equivalent at time k0, where Mi is obtained from
Mi after that ji operations of the type (c) (−ji operations of the type (d)) have
been carried out on Mi, if ji ≥ 0 (if ji < 0), i = 1, 2, and M̃i is obtained from
Mi after that j̃i operations of the type (c) [−j̃i operations of the type (d)] have
been carried out on Mi, if j̃i ≥ 0 (if j̃i < 0), i = 2, 3. Without loss of generality
(apart from a renumbering of the three models), assume that j2 ≥ j̃2, and define
j2 − j̃2 =: j2 ≥ 0. It can be easily checked that the system equivalence at time k0

of M̃2 and M̃3 implies the system equivalence at time k0 of ˜̃M2 and ˜̃M3, where
˜̃Mi is the model obtained from M̃i after that j2 operations of the type (c) have

been carried out on M̃i, i = 2, 3. Since M2 = ˜̃M2, models M1 and ˜̃M3 are system
equivalent at time k0, by virtue of the transitivity of system equivalence at time k0

[20]. This proves that M1 and M3 are largely system equivalent at time k0. 2

The following proposition and remark stress that most of the features and prop-
erties of a given model that are invariant under system equivalence at time k0, are
still invariant under large system equivalence at time k0.

Proposition 2. Given two ω-periodic models M1 and M2 of the form (5), (6),
satisfying Assumption 1 and having inputs and outputs of the same dimensions p
and q, respectively, pseudo-states of dimensions mi, i = 1, 2, and ω-stacked system
matrices at time k0 SM

k0,i(∆), i = 1, 2, if they are largely system equivalent at time
k0, then:

(α) the ω-stacked transfer matrices of M1 and M2 at any time coincide;

(β) M1 and M2 have the same nonnull characteristic multipliers, nonnull input
decoupling zeros, and nonnull output decoupling zeros at all times and the same cor-
responding ordered sets of structural indices (apart from ω|m1−m2| null structural
indices);
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(γ) SM
k0,1(∆) has full row-rank if and only if SM

k0,2(∆) has full row-rank;

(δ) if SM
k0,i(∆), i = 1, 2, have full row-rank, then SM

k,i(∆), i = 1, 2, has full row-
rank for all k ∈ Z, and M1 and M2 have the same nonnull invariant zeros at all
times and the same corresponding ordered sets of structural indices (apart from
ω|m1 −m2| null structural indices).

P r o o f . By relation (25) and by the properties of strict system equivalence, the
ω-stacked transfer matrix at time k0 of the model obtained after that an operation
of the type (c) has been carried out on model (5), (6), coincides with that of the
same model (5), (6). This, together with Proposition 3.3 and relation (22) of [20],
proves (α).

Item (γ) trivially follows from (9) and (25), together with Proposition 3.3 of [20].
The former assertion in the item (δ) follows from Proposition 2.4 of [20].
As regards nonnull input decoupling zeros and their ordered sets of structural

indices in item (β), using the notations in (25), notice that there exist unimodular
matrices M(z) and R(z) such that

M(z)[−T L
k0

(z) UL
k0

(z)]R(z) =


−Rp(z) Iωp 0 . . . 0 0 0
0 −Rp(z) Iωp . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −Rp(z) Iωp 0
0 0 0 . . . 0 −Rp(z) U(z)
0 0 0 . . . 0 0 S(z)




, (27)

where S(z) is the Smith form of [−Tk0(z) Uk0(z)] and U(z) is some polynomial
matrix. Then, the meaning of the invariant polynomials of the matrix in the right-
hand side of (27) in terms of the g.c.d. of its minors, and Propositions 2.4 and 3.3 of
[20], prove the assertion in item (β) concerning nonnull input decoupling zeros and
their ordered sets of structural indices. The other assertions in item (β), as well as
the latter assertion in item (δ), can be proved in a similar way. 2

Remark 1. By Proposition 2, if a system M2 in the state-space form (7), (8)
is largely system equivalent at some time k0 to a given model M1 of the form
(5), (6), then the ω-stacked transfer matrix of M2 at any initial time and all the
features of M2 that are listed in items (β), (γ) and (δ) of Proposition 2 are specified
by the original model M1. Their meaning and significance with reference to the
structural properties and to the free motions of system M2 is analyzed in detail in
[18] (where it is shown that, in particular, the characteristic multipliers of systemM2

coincide with the eigenvalues of its monodromy matrix). This connection allows to
deduce from Proposition 2 that, for example, such a systemM2 is controllable (resp.,
reconstructible) if and only if M1 has no nonnull input (resp., output) decoupling
zeros, it is stabilizable (resp., detectable), if and only if M1 has no input (resp.,
output) decoupling zeros outside the open disk of unit radius [18]; moreover, not
only the ω-stacked transfer matrix at any time k0 and all the nonnull characteristic
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multipliers of system M2 – and therefore the asymptotic stability [10], and the rate
of convergence of the free motions –, but even the number and the dimensions of the
Jordan blocks corresponding to each nonnull characteristic multiplier, in the Jordan
form of the monodromy matrix of system M2, at any time k0, are determined by the
properties of the original model M1 (in fact, in [20] a short analysis was developed
about the role of the characteristic multipliers of model M1 for its pseudo-state free
motions). In addition, the relevance of the property that SM

k0,2
(z) has full row-rank

for any k0 ∈ Z and for any nonnull z ∈ C if and only if SM
k0,1

(z) has full row-rank
(which is implied by items (γ) and (δ) of Proposition 2) is clarified by recalling that
such a condition on the ω-stacked system matrix SM

k0,2
(z) of the ω-periodic system

M2, is necessary and sufficient, together with stabilizability and detectability, for
the existence of a solution of the robust tracking and regulation problem for system
M2 when the ω-stacked forms of reference signals and disturbance functions have a
time dependence characterized by zh, |z| ≥ 1 [17].

The above analysis, if it is compared with a similar one concerning with system
equivalence between a system of the form (7), (8) and a modelM1 of the form (5), (6)
(i. e., Remark 3.4 in [20]), shows that most of the features and properties of system
(7), (8) that are determined by the features and properties of the given model M1,
which is system equivalent at time k0 to the system, are preserved in the system M2

of the same form (7), (8) that is obtained through large system equivalence at time
k0 from the same given model M1. However, it is worth to stress that the order
and the characteristic polynomial of the system M2 can be different from those of
the original model M1 (since factors zp(ω−1) can be introduced or removed – see
(26)), and that, in addition, the reachability and the observability at time k0 of the
system M2, the Smith form of its stacked system matrix at time k0, and its nonnull
invariant zeros at all times, are not specified, in general, by the original model M1,
whereas in system equivalence they are.

On the other hand, it is emphasized that, by (22) and Remark 3.2 of [20], the
output solutions of M1 and M2 over the interval [k0,∞), for each given input
function u(·)[k0,+∞), are exactly the same, and their pseudo-state solutions over the
same interval are biuniquely related apart from transient terms, which become equal
to zero from time k = k0 + ω − 1. 2

In view of the previous discussion, it seems reasonable to look for an ω-periodic
system of the form (7), (8) that is largely system equivalent at time k0 to a given
ω-periodic model of the form (5), (6).

4. MAIN RESULT

The conditions for the existence of an ω-periodic system (7), (8) that is largely system
equivalent at time k0 to the given ω-periodic model (5), (6), under Assumption 1,
are expressed by the following theorem.

Theorem 1. For the ω-periodic model (5), (6), under Assumption 1, there exists
an ω-periodic system of the form (7), (8) that is largely system equivalent at time
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k0 to the model (5), (6), if and only if its ω-stacked transfer matrix GM
k0

(z) satisfies
the following conditions:

(i) GM
k0

(z) is a proper rational matrix;

(ii) if GM
k0

(z) is rewritten as GM
k0

(z) = Fk0(z) + Qk0 , with Fk0(z) strictly proper and
Qk0 constant, and Qk0 is decomposed into blocks of dimensions q × p, then Qk0 is
lower block triangular.

If conditions (i) and (ii) hold for k0 = k0, k0 ∈ Z, then (i) and (ii) hold for all
k0 ∈ Z.

P r o o f . The last statement is contained in Proposition 2.5 of [20].
Since system (7), (8) satisfies conditions (i) and (ii) restated in terms of the same

system (see Theorem 3.1 and relations (2.2) and (2.3) in [18]), then the necessity
follows from Proposition 2.

As regards the sufficiency, denote by M the given ω-periodic model (5), (6), and
by ñ its order, i. e. the degree in ∆ of det Tk0(∆). Denote by M̃ the ω-periodic
model that is system equivalent to M at time k0, and is obtained from M by an
operation of the type (a) with ν := ñ − m, if m ≤ ñ, and with ν := 0, if m > ñ;
denote by m̃ := m + ν ≥ ñ the dimension of the pseudo-state of M̃, by S̃M

k0
(∆) its

ω-stacked system matrix at time k0, and by T̃k0(∆), Ũk0(∆), Ṽk0(∆) and W̃k0(∆)
the four blocks constituting S̃M

k0
(∆).

Call M the ω-periodic model that is largely system equivalent to M̃ at time
k0, and is obtained from M̃ by an operation of the type (c). The ω-stacked system
matrix ofM at time k0 is strictly system equivalent to the matrix SML

k0
(∆) expressed

by (25) rewritten with T̃k0(∆), Ũk0(∆), Ṽk0(∆) and W̃k0(∆) instead of Tk0(∆),
Uk0(∆), Vk0(∆) and Wk0(∆), respectively.

Since, by Proposition 3.3 of [20], the hypotheses on M still holds on M̃, and
m̃ω ≥ ñ, there exist [30] unimodular matrices M(∆) and N(∆), and polynomial
matrices Y (∆) and X(∆) such that:

ŜML
k0

(∆) :=




Iωp(ω−1) 0 0
0 M(∆) 0
0 Y (∆) Iqω


 SML

k0
(∆)




Iωp(ω−1) 0 0
0 N(∆) X(∆)
0 0 Ipω




=




−Rp(∆) Iωp . . . 0 0 0 0
0 −Rp(∆) . . . 0 0 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 . . . Iωp 0 0 0
0 0 . . . −Rp(∆) 0 0 Iωp

0 0 . . . 0 −Im̃ω−ñ 0 0
0 0 . . . 0 0 EM

k0
−∆Iñ JM

k0

0 0 . . . 0 0 LM
k0

PM
k0




(28)
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where EM
k0

, JM
k0

, LM
k0

and PM
k0

are constant and, if PM
k0

is decomposed into blocks of
dimensions q × p, then PM

k0
is lower block triangular by Proposition 3.3 in [20] and

condition (ii). Relation (28) implies that ŜML
k0

(∆) is strictly system equivalent to
SML

k0
(∆). Let JM

k0
, LM

k0
, and PM

k0
be partitioned as follows:

JM
k0

=
[
JM

k0,0 JM
k0,1 . . . JM

k0,ω−1

]
, (29)

PM
k0

=




PM
k0,0,0 0 0 . . . 0

PM
k0,1,0 PM

k0,1,1 0 . . . 0
. . . . . . . . . . . . . . .

PM
k0,ω−1,0 PM

k0,ω−1,1 PM
k0,ω−1,2 . . . PM

k0,ω−1,ω−1


 , (30)

LM
k0

=




LM
k0,0

LM
k0,1

. . .
LM

k0,ω−1


 , (31)

where all the blocks in (29), (30) (and, respectively, (30), (31)) have p columns (and,
respectively, q rows). Then, it is possible to check that the following strict system
equivalence relation holds:

[
M̂ 0
Ŷ Iqω

]
ŜML

k0
(∆)

[
N̂ X̂
0 Ipω

]
= ˆ̂

SML
k0

(∆), (32)

where M̂, N̂ , X̂ and Ŷ are constant (with M̂ and N̂ being nonsingular) and expressed
by

M̂ =




0 −I(m̃−ñ)ω 0
Iωp(ω−1) 0 0

M̂31 0 M̂33


 , (33)

Ŷ =
[
Ŷ1 0 Ŷ3

]
, (34)

N̂ =




0 Iωp(ω−1) 0
−I(m̃−ñ)ω 0 0

0 0 N̂33


 , (35)

X̂ = 0, (36)

and

ˆ̂
SML

k0
(∆) =
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2
6666666664

−I(m̃−ñ)ω 0 0 . . . 0 0 0 0
0 −Rp(∆) Iωp . . . 0 0 0 0
0 0 −Rp(∆) . . . 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −Rp(∆) Iωp 0 0
0 0 0 . . . 0 −Rp(∆) 0 Iωp

0 −Tω−1,0 −Tω−1,1 . . . −Tω−1,ω−3 −Tω−1,ω−2 −Tω−1,ω−1(∆) Uω−1

0 V0 V1 . . . Vω−3 Vω−2 Vω−1 W

3
7777777775

,

(37)
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with

M̂31 =
[
M̂310 M̂311 . . . M̂31,ω−2

]
(38)

M̂31i =
[

0 0 . . . 0 0
−JM

k0,−ω+i+2 −JM
k0,−ω+i+3 . . . −JM

k0,i 0

]
, i = 0, ..., ω − 2, (39)

JM
k0,j := 0, j = −ω + 2,−ω + 3, . . . ,−1, (if ω > 2), (40)

M̂33 =
[

−Iñ(ω−1) 0ˆ
EM

k0 EM
k0 . . . EM

k0

˜
Iñ

]
, (41)

Ŷ1 =
[
Ŷ10 Ŷ11 . . . Ŷ1,ω−2

]
, (42)

Ŷ1i =
[
0 . . . 0 0 0
0 . . . 0 Y 1,i 0

]
, i = 0, . . . , ω − 3, (43)

Ŷ1,ω−2 =
[

0 0
Y 1,ω−2 0

]
, (44)

Y 1,i =




−PM
k0,ω−1−i,0 0 . . . 0 0

−PM
k0,ω−i,0 −PM

k0,ω−i,1 . . . 0 0
. . . . . . . . . . . . . . .

−PM
k0,ω−2,0 −PM

k0,ω−2,1 . . . −PM
k0,ω−2,i−1 0

−PM
k0,ω−1,0 −PM

k0,ω−1,1 . . . −PM
k0,ω−1,i−1 −PM

k0,ω−1,i




,

i = 0, . . . , ω − 2, (45)

Ŷ3 =




0 0 . . . 0 0
LM

k0,1 0 . . . 0 0
LM

k0,2 LM
k0,2 . . . 0 0

. . . . . . . . . . . . . . .
LM

k0,ω−2 LM
k0,ω−2 . . . 0 0

LM
k0,ω−1 LM

k0,ω−1 . . . LM
k0,ω−1 0




, (46)

N̂33 =




Iñ −Iñ 0 . . . 0 0
0 Iñ −Iñ . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . Iñ −Iñ

Iñ 0 0 . . . 0 0




, (47)

Tω−1,i =




0 0 . . . 0 0
0 0 . . . 0 0

. . . . . . . . . . . . . . .
0 0 . . . 0 0
0 0 . . . 0 −JM

k0,i




, i = 0, . . . , ω − 2, (48)

Tω−1,ω−1(∆) = Rñ(∆)− diag
{
Iñ, . . . , Iñ, EM

k0

}
, (49)

Uω−1 =




0 0 . . . 0 0
0 0 . . . 0 0

. . . . . . . . . . . . . . .
0 0 . . . 0 0
0 0 . . . 0 JM

k0,ω−1




, (50)

Vi =

[
0 0
0 diag

{
PM

k0,ω−1−i,0, P
M
k0,ω−i,1, . . . , P

M
k0,ω−1,i,

}
]

, (51)

i = 0, . . . , ω − 2,

Vω−1 = diag
{
LM

k0,0, L
M
k0,1, . . . , L

M
k0,ω−1

}
, (52)

W = diag
{
PM

k0,0,0, P
M
k0,1,1, . . . , P

M
k0,ω−1,ω−1

}
; (53)
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in (39) there are ω block columns, each of which with p scalar columns; each block
column Ŷ1i in (42) has ωp scalar columns; the null block columns in (43) and (44)
have p scalar columns; the null block column in (46) has ñ scalar columns. Now,

it is easy to see that, by a further strict system equivalence on ˆ̂
SML

k0
(∆), consisting

of suitably interchanging its first (ω − 1) pω + m̃ω rows and columns, the following
system matrix is obtained:

˜̂
SML

k0
(∆) =

2
4
−I(m̃−ñ)ω 0 0

0 diag {A0, A1, . . . , Aω−1} −R(ω−1) p+ñ(∆) diag {B0, B1, . . . , Bω−1}
0 diag {C0, C1, . . . , Cω−1} diag {D0, D1, . . . , Dω−1}

3
5 ,

(54)

where

Ai =




0 I(ω−2) p 0
0 0 0
0 0 Iñ


 , i = 0, . . . , ω − 2, (55)

Aω−1 =




0 Ip 0 . . . 0 0
0 0 Ip . . . 0 0

. . . . . . . . . . . . . . . . . .
0 0 0 . . . Ip 0
0 0 0 . . . 0 0

JM
k0,0 JM

k0,1 JM
k0,2 . . . JM

k0,ω−2 EM
k0




, (56)

Bi =




0
Ip

0


 , i = 0, . . . , ω − 2, (57)

Bω−1 =




0
Ip

JM
k0,ω−1


 , (58)

C0 =
[
0 . . . 0 LM

k0,0

]
, (59)

Ci =
[
0 . . . 0 PM

k0,i,0 . . . PM
k0,i,i−1 LM

k0,i

]
, i = 1, . . . , ω − 2, (60)

Cω−1 =
[
PM

k0,ω−1,0 . . . PM
k0,ω−1,ω−2 LM

k0,ω−1

]
, (61)

Di = PM
k0,i,i, i = 0, . . . , ω − 1; (62)

in (55) – (61) the square matrices Ai, i = 0, . . . , ω − 1, have the same dimensions, as
well as the matrices Bi, i = 0, . . . , ω − 1, and the matrices Ci, i = 0, . . . , ω − 1; the
numbers of scalar rows of the row blocks of Bi in (57) are the same as those of the
corresponding row blocks of Ai in (55). Lastly, by a further strict system equivalence
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on ˜̂
SML

k0
(∆) — merely consisting of proper interchanges of the first (ω− 1) pω + m̃ω

rows and columns of ˜̂
SML

k0
(∆) —, the ω-stacked system matrix at time k0 is obtained

of an ω-periodic model of the form (5), (6) having m̃− ñ identically null components
of the pseudo-state; since the hypotheses required by operation (b) are satisfied, an
operation of the type (b) with ν := m̃− ñ can be performed, so that the ω-stacked
system matrix at time k0 is obtained of an ω-periodic system of the type (7), (8),
with n = ñ + (ω − 1) p and

A(k0 + i + hω) = Ai, i = 0, . . . , ω − 1,∀h ∈ Z, (63)
B(k0 + i + hω) = Bi, i = 0, . . . , ω − 1, ∀h ∈ Z, (64)
C(k0 + i + hω) = Ci, i = 0, . . . , ω − 1, ∀h ∈ Z, (65)
D(k0 + i + hω) = Di, i = 0, . . . , ω − 1, ∀h ∈ Z. (66)

Thus, such a system is largely system equivalent to M. 2

Now, the constructive procedure that is contained in the sufficiency proof of
Theorem 1 will be given in full details for the simplest case ω = 2 and ñ = m, where
ñ denotes the degree of det Tk0(∆).

Then, consider a 2-periodic model M of the form (5), (6) satisfying Assumption 1
and conditions (i) and (ii) of Theorem 1, with the degree ñ of det Tk0(∆) equal to m.
In this case no preliminary operation of the type (a) is needed. After an operation of
the type (c), the ω-stacked system matrix at time k0 of the model M thus obtained
is strictly system equivalent to the matrix SML

k0
(∆) expressed by

SML
k0

(∆) =



−Rp(∆) 0 I2p

0 −Tk0(∆) Uk0(∆)
0 Vk0(∆) Wk0(∆)


 .

Then, by standard strict system equivalence, polynomial matrices M(∆), N(∆),
Y (∆) and X(∆) are found [30], with M(∆) and N(∆) being unimodular, such that
(28) holds, where EM

k0
, JM

k0
, LM

k0
and PM

k0
are constant, and matrix ŜML

k0
(∆) reduces

to

ŜML
k0

(∆) =




0 −Ip 0 0 Ip 0
−∆Ip 0 0 0 0 Ip

0 0 −Iñ 0 0 0
0 0 0 EM

k0
−∆Iñ JM

k0,0 JM
k0,1

0 0 0 LM
k0,0 PM

k0,0,0 0
0 0 0 LM

k0,1 PM
k0,1,0 PM

k0,1,1




, (67)

where the partitions (29), (30) and (31) of JM
k0

, PM
k0

and LM
k0

have been used, with
the last two block rows having q scalar rows.
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For ŜML
k0

(∆) the following strict system equivalence relation holds:



Ip 0 0 0 0 0
0 0 −Iñ 0 0 0
0 Ip 0 0 0 0

−JM
k0,0 0 EM

k0
Iñ 0 0

0 0 0 0 Iq 0
−PM

k0,1,0 0 LM
k0,1 0 0 Iq



· ŜML

k0
(∆)

·




Ip 0 0 0 0 0
0 0 Ip 0 0 0
0 Iñ 0 −Iñ 0 0
0 Iñ 0 0 0 0
0 0 0 0 Ip 0
0 0 0 0 0 Ip




=




0 0 −Ip 0 Ip 0
0 Iñ 0 −Iñ 0 0

−∆Ip 0 0 0 0 Ip

0 −∆Iñ JM
k0,0 EM

k0
0 JM

k0,1

0 LM
k0,0 0 0 PM

k0,0,0 0
0 0 PM

k0,1,0 LM
k0,1 0 PM

k0,1,1




,

:= ˜̂
SML

k0
(∆). (68)

Matrix ˜̂
SML

k0
(∆) is the ω-stacked system matrix at time k0 of a 2-periodic system

of the form (7), (8), with:

A(k0 + hω) =
[
0 0
0 Iñ

]
, ∀h ∈ Z, (69)

A(k0 + hω + 1) =
[

0 0
JM

k0,0 EM
k0

]
, ∀h ∈ Z, (70)

B(k0 + hω) =
[
Ip

0

]
, ∀h ∈ Z, (71)

B(k0 + hω + 1) =
[

Ip

JM
k0,1

]
, ∀h ∈ Z, (72)

C(k0 + hω) =
[
0 LM

k0,0

]
, ∀h ∈ Z, (73)

C(k0 + hω + 1) =
[
PM

k0,1,0 LM
k0,1

]
, ∀h ∈ Z, (74)

D(k0 + hω + i) = PM
k0,i,i, i = 0, 1, ∀h ∈ Z. (75)
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5. CONCLUSIONS

In this paper a description in state-space form of a discrete-time linear periodic pro-
cess has been obtained within the class of models which are largely system equivalent
at some time k0 to the given one.

It has been shown that the ω-stacked transfer matrix at any initial time and the
nonnull characteristic multipliers of the periodic system thus obtained coincide with
those of the original periodic model (although their orders do not coincide), and
the asymptotic stability, the controllability, the reconstructibility, the stabilizability,
the detectability, and even the number and the dimensions of the Jordan blocks, in
the Jordan form of the monodromy matrix of such a system, corresponding to each
nonnull characteristic multiplier, are determined by the original periodic model, as
well as the existence of a solution of the robust tracking and regulation problem.

(Received October 20, 1998.)
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Università di Roma “Tor Vergata”, via di Tor Vergata 110, 00133 Roma. Italy.

e-mail: grasselli@disp.uniroma2.it

Prof. Dr. Sauro Longhi, Dipartimento di Elettronica e Automatica, Università di An-
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