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Numerical Study of Discretizations of Multistage Stochastic
Programs

Petri Hilli; Teemu Pennanen

Abstract: This paper presents a numerical study of a deterministic discretization
procedure for multistage stochastic programs where the underlying stochastic
process has a continuous probability distribution. The discretization procedure
is based on quasi-Monte Carlo techniques originally developed for numerical
multivariate integration. The solutions of the discretized problems are evaluated
by statistical bounds obtained from random sample average approximations
and out-of-sample simulations. In the numerical tests, the optimal values of the
discretizations as well as their first-stage solutions approach those of the original
infinite-dimensional problem as the discretizations are made finer.
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