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NUMERICAL STUDY OF DISCRETIZATIONS
OF MULTISTAGE STOCHASTIC PROGRAMS

Petri Hilli and Teemu Pennanen

This paper presents a numerical study of a deterministic discretization procedure for
multistage stochastic programs where the underlying stochastic process has a continuous
probability distribution. The discretization procedure is based on quasi-Monte Carlo tech-
niques originally developed for numerical multivariate integration. The solutions of the
discretized problems are evaluated by statistical bounds obtained from random sample av-
erage approximations and out-of-sample simulations. In the numerical tests, the optimal
values of the discretizations as well as their first-stage solutions approach those of the
original infinite-dimensional problem as the discretizations are made finer.

Keywords: stochastic programming, discretization, integration quadratures, simulation

AMS Subject Classification: 90C15, 49M25, 90C25

1. INTRODUCTION

This paper is concerned with numerical solution of multistage stochastic programs
where the underlying stochastic process has a continuous distribution. These are
infinite-dimensional optimization problems that come up quite naturally in practi-
cal decision making. For example, in financial applications it is customary to model
uncertain future development of asset prices by stochastic processes that have a
continuous parametric distribution. Despite the large number of potential applica-
tions only few papers have been devoted to numerical solution of such models; see
Olsen [13], Frauendorfer [5], Pflug [17], Shapiro [21, 22], Chiralaksanakul [2], Chi-
ralaksanakul and Morton [3], Kuhn [10], Blomvall and Shapiro [1], Pennanen and
Koivu [16], Pennanen [14, 15], Kall and Mayer [9], and Heitsch and Römisch [7].
This paper presents a numerical study of the discretization techniques proposed in
[14, 15, 16].

We will consider the following stochastic programming model from Rockafellar
and Wets [19, 20]. At each stage k = 0, . . . , K, the decision maker observes the value
of a random variable ξk, and makes a decision xk depending on the observed values
of ξ0, . . . , ξk. Each ξk takes values in a Borel subset Ξk of Rdk and xk is Rnk -valued.
We assume that Ξ0 is a singleton, so that ξ0 and thus x0 will be deterministic. The
vector ξ = (ξ0, . . . , ξK) will be modeled as a random variable in the probability
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space (Ξ,F , P ), where Ξ = Ξ0 × · · · × ΞK , F is the Borel σ-field on Ξ and P is a
probability measure on (Ξ,F). A realization of ξ and a sequence x = (x0, . . . , xK)
of decisions will result in a cost given by a function f : Rn ×Ξ → R∪ {+∞}, where
n = n0 + . . . + nK . We will study multistage stochastic programs of the form

minimize
x∈N (P )

EP f(x(ξ), ξ), (SP (P ))

where EP is the expectation operator, f is a convex normal integrand on Rn×Ξ and

N (P ) =
{
x ∈ L∞(Ξ,F , P ;Rn) |x contains an (Fk)K

k=0-adapted function
}
.

Here (Fk)K
k=0 is the filtration of σ-fields

Fk :=
{
Bk × Ξk+1 × · · · × ΞK | Bk ∈ Bk

}
,

where Bk is the Borel σ-field on Ξ0 × · · · × Ξk. A function x̃ = (x̃0, . . . , x̃K) is
said to be adapted to (Fk)K

k=0 if for each k, x̃k is Fk-measurable, or equivalently,
only depends on the part of ξ that has been observed by stage k. We would like to
emphasize that the function f is allowed to take on the value +∞ so that various
constraints (of the “almost surely-type”) can be taken into account through infinite
penalties.

When the stochastic process ξ is a random variable with an infinite sample space
(as in most econometric models), (SP (P )) is an infinite-dimensional optimization
problem whose solution requires discretization. One way to discretize it is to ap-
proximate the original measure P by a finitely supported measure of the form

P ν =
∑

i∈I(ν)

pν,iδξν,i ,

where I(ν) is a finite index set, δξν,i is the unit mass at a point ξν,i ∈ Ξ, and
pν,i > 0. Then L∞(Ξ,F , P ν ;Rn) ∼= (Rn)I(ν), and (SP (P ν)) can be written in the
finite-dimensional form

minimize
x∈N (P ν)

∑

i∈I(ν)

pν,if(x(ξν,i), ξν,i), (SP (P ν))
where

N (P ν) =
{
x ∈ L∞(Ξ,F , P ν ;Rn) |x contains an (Fk)K

k=0-adapted function
}

=
{
x ∈ L∞(Ξ,F , P ν ;Rn) |xk(ξν,i) = xk(ξν,j) if ξν,i

l = ξν,j
l ∀l = 0, . . . , k

}
.

This is a mathematical program which can in principle be solved numerically by
general purpose solvers or special purpose algorithms designed to take advantage of
problem structure.

A few methods for constructing approximations P ν of P for purposes of multistage
stochastic programming have been proposed. The best known, most widely studied
and probably the most widely applied method is conditional sampling, where P ν

is constructed by recursively sampling from the conditional distribution of ξk given
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ξ0, . . . , ξk−1; see [1, 2, 3, 21, 22]. In barycentric approximation, P ν is constructed
so that, under certain convexity properties with respect to the random variables,
one obtains lower/upper approximations of the original problem; see [5, 10]. In
the methods of [17] and [7], the general idea is to choose P ν so as to approximate
the original measure P as well as possible, in the sense of a metric in the space of
probability measures. The same general idea is behind quasi-Monte Carlo (QMC)
methods, which are a class of integration quadratures; see e. g. [11]. The main
difference is in the choice of the metric and in that in QMC methods the original
measure is the uniform distribution in the unit cube. For the metric used in QMC,
there exist many techniques for constructing discrete measures that are close to the
original one. To apply QMC methods, one has to write a given integral in terms
of the uniform distribution, which can often be done by an appropriate change of
variables.

We would like to emphasize that discretizations obtained with conditional sam-
pling are random whereas those obtained with the methods of [5, 7, 10, 17] or with
QMC are deterministic. This is a fundamental difference in that the first-stage solu-
tion obtained through deterministic discretization can be viewed as a decision rule
that is fully determined by the original infinite dimensional problem and the cho-
sen discretization procedure; see Section 3.2. This way, a deterministic discretization
procedure gives a well-defined candidate solution for the original multistage stochas-
tic program that can be evaluated e. g. by out-of-sample simulations.

QMC was first proposed for discretization of multistage stochastic programs in
[16]. It was shown in [14, 15] that, under fairly general conditions, QMC produces
consistent approximations in the sense that the optimal values of the approximations
converge to that of the original problem and that the cluster points of the first stage
solutions are optimal first stage solutions of the original problem. However, the
results of [14, 15] are nonquantitative and, in particular, say nothing about the
accuracy of (SP (P ν)) for a fixed ν. The purpose of this paper is to present a
numerical study of the discretization procedures studied in [14, 15, 16]. We solve a
sequence of refined discretizations numerically and compute statistical bounds for
the optimal value of the original infinite-dimensional problem. The lower bound is
obtained as a sample average of optimal values of random discretizations whereas the
upper bound is obtained through out-of-sample evaluation of the strategies obtained
through QMC discretizations. The results support the theoretical findings of [14, 15]
namely that the optimal values of the discretizations converge to that of the original
problem and that the cluster points of first stage solutions are optimal first stage
solutions of the original problem.

The rest of this paper is organized as follows. Section 2 recalls the discretization
procedure from [15, 16]. Section 3 describes the statistical lower and upper bounds
used in the numerical tests. Section 4 describes the test problems and summarizes
the computational results. The parameter values used in the test problems are given
in the Appendix.
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2. DISCRETIZATIONS

As in [15, 16], we assume that the underlying stochastic process ξ is driven by a
time series model of the form

ξk = gk(ξ0, . . . , ξk−1, ωk) for k = 1, . . . ,K, (1)

where ξ0 is given, ω1, . . . , ωK are mutually independent random variables, with ωk

uniformly distributed in the dk-dimensional unit cube (0, 1)dk , and gk : Ξ0 × · · · ×
Ξk−1×(0, 1)dk → Ξk are Borel-measurable functions. It follows that ξ = (ξ0, . . . , ξK)
is uniquely determined by ω = (ω1, . . . , ωK) so that

P = UG−1, (2)

where G denotes the mapping that sends ω to ξ and U = U1 × · · · × UK , where Uk

is the uniform distribution on (0, 1)dk . Notation (2) means that P (A) = U(G−1(A))
for every A ∈ F , or equivalently, EP ϕ(ξ) = EUϕ(G(ω)) for any measurable function
ϕ on Ξ.

Expression (2) suggests the following

Discretization procedure

1. For each k = 1, . . . ,K, approximate Uk by a discrete measure Uν
k ;

2. Let Uν = Uν
1 × · · · × Uν

K and P ν = UνG−1.

More concretely, if for k = 1, . . . , K

Uν
k =

∑

i∈Ik(ν)

pν,i
k δων,i

k
,

where Ik(ν) is a finite index set, then

Uν =
∑

i∈I(ν)

pν,iδων,i ,

where

I(ν) =
{
(i1, . . . , iK) | ik ∈ Ik(ν)

}
,

ων,i =
(
ων,i1

1 , . . . , ων,iK

K

)
,

pν,i = pν,i1
1 · · · pν,iK

K ,

and P ν = UνG−1 becomes

P ν =
∑

i∈I(ν)

pν,iδξν,i ,

where ξν,i = G(ων,i).
When the discrete measures Uν

k are the empirical measures corresponding to a
random sample of size |Ik(ν)|, the above procedure is nothing but the well-known
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conditional sampling procedure. It was shown in [14, 15] that if each measure Uν
k

converges weakly to the uniform distribution, as ν → ∞, then under rather mild
conditions, problems (SP (P ν)) will be consistent discretizations of (SP (P )) in the
sense that the optimal values of (SP (P ν)) converge to that of (SP (P )) and all
cluster points of first-stage solutions of (SP (P ν)) are optimal first-stage solutions
of (SP (P )).

The nontrivial parts in implementing the above procedure are the construction
of the discrete measures Uν

k that approximate the uniform distribution and the
evaluation of G(ων,i) for given ων,i, that is, the evaluation of the functions (1)
for k = 1, . . . , K. As for Uν

k , we will use quasi-Monte Carlo (QMC) methods, as
proposed in [16]. In QMC, one sets pν,i

k = 1/|Ik(ν)| and the points ων,i
k are chosen

so as to minimize certain measure of uniformity. There exists a wide literature on
such methods; see for example Niederreiter [11], Sloan and Joe [23] or Niederreiter
and Talay [12].

Difficulty of evaluating G(ων,i) depends on the form of the time series model at
hand. For example, in (multivariate) ARMA, VEqC or GARCH models with Gaus-
sian innovations this part is quite simple. For them, evaluation of gk comes down to
evaluating the inverse of the univariate Gaussian distribution function at the com-
ponents of the the vectors ων,ik

k , forming the Cholesky factorization of a covariance
matrix and performing few matrix-vector multiplications. These operations can be
executed quite efficiently by publicly available subroutines.

3. STATISTICAL BOUNDS FOR THE OPTIMAL VALUE

3.1. Lower bounds

It is well-known that if one makes random discretizations by conditional sampling
(i. e. taking Uν

k in the above discretization procedure to be empirical measures cor-
responding to random samples), the corresponding optimal value vν of (SP (P ν)) is
a random number whose expectation is less than that of (SP (P )); see Shapiro [21],
Chiralaksanakul [2, Theorem 4] or Chiralaksanakul and Morton [3]. Moreover, vν

converges almost surely to the optimal value of (SP (P )) as ν → ∞ provided the
sample sizes |Ik(ν)| tend to infinity. These properties remain valid if instead of crude
Monte Carlo sampling one uses non-iid sampling techniques such as Latin hyper cube
sampling or antithetic sampling; see for example Glasserman [6, Chapter 4]. Such
techniques can result in more efficient estimates in direct numerical integration and
possibly tighter lower bounds in random discretization of stochastic programs.

One can estimate the expectation of vν by constructing N independent random
discretizations and taking the average over the corresponding optimal values. The
resulting average vν

N provides a statistical lower bound for the optimal value of
(SP (P )). To our knowledge, the only numerical study of such estimates in case
of multistage stochastic programs with continuous distributions has been reported
in [1].
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3.2. Upper bounds

For any x ∈ N (P ) the expectation EP f(x(ξ), ξ) is greater than or equal to the opti-
mal value of (SP (P )). The expectation can be approximated by general techniques
of numerical integration. Using Monte Carlo sampling one obtains random approx-
imations whose expectations equal EP f(x(ξ), ξ). Besides being a statistical upper
bound for the optimal value of (SP (P )) the sample average gives also an unbiased
estimator of the quality of the chosen strategy x ∈ N (P ). Such a technique for
evaluating a decision strategies is often called out-of-sample testing.

We propose to use strategies given by recursive use of the discretization procedure
described in the Section 2. Other, computationally less demanding, methods for
generating policies that can be used in computation of upper bounds have been
proposed in [2, Section 3.3], [3] and [1].

A discrete measure Uν = Uν
1 ×· · ·×Uν

K chosen in the discretization procedure of
Section 2 gives rise to an adapted strategy xν ∈ N (P ) as follows. Given a scenario
ξi = (ξi

0, . . . , ξ
i
K), define xν(ξi) = (xν

0(ξi), . . . , xν
K(ξi)) recursively for k = 0, . . . ,K

by letting xν
k(ξi) be the first-stage solution of the discretization of the multistage

stochastic program
minimize
x∈Nk(Pk)

EPkfk(x(ξ), ξ), (SPk(Pk))

where Pk denotes the conditional probability distribution of (ξk+1, . . . , ξK) given
(ξ0, . . . , ξk) = (ξi

0, . . . , ξ
i
k) and fk is the normal integrand obtained from f by fixing

the values of ξ0, . . . , ξk and x0, . . . , xk−1 to ξi
0, . . . , ξ

i
k and xi

0, . . . , x
i
k−1, respectively.

Here, we discretize (SPk(Pk)) with the procedure of Section 2 using the discrete mea-
sure Uν

k+1×· · ·×Uν
K . Note that the conditional distribution Pk is determined simply

by fixing the values of ξ0, . . . , ξk to ξi
0, . . . , ξ

i
k in (1). In this way, each discretization

(choice of a QMC technique and the number of quadrature points per stage) gives
rise to an adapted strategy xν ∈ N (P ) that can be evaluated numerically along a
given scenario by solving a sequence of discretized multistage stochastic programs
(SPk(Pk)), k = 0, . . . ,K.

The out-of-sample test proceeds by sampling M scenarios (ξi)M
i=1 of the stochastic

process ξ. Then along each scenario ξi = (ξi
0, . . . , ξ

i
K), one solves discretizations of

problems (SPk(Pk)) for k = 0, . . . , K and records the value of f(xν(ξi), ξi). Again,
one can use variance reduction techniques instead of crude Monte Carlo when con-
structing the scenarios (ξi)M

i=1.

4. NUMERICAL TESTS

The discretization procedure of Section 2 was applied to four different multistage
stochastic programs where the stochastic process ξ was driven by time series models
of AR-, VEqC- and GARCH-type. Each of the four problems was discretized by
choosing the discrete measures Uν

k as empirical measures corresponding to quasi-
Monte Carlo methods with equal number |Ik(ν)| = L of quadrature points for each
period k = 0, . . . , K. For a fixed L, we then solved the discretization, recorded
the optimal value and computed lower and upper bounds. The lower bound was
computed by making N = 1000 random discretizations with Monte Carlo with L
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points per period. The upper bound was computed by making M = 10000 out-of-
sample simulations with Monte Carlo and using quasi-Monte Carlo with L points
per stage when solving the problems (SPk(Pk)). We then increased the number L
of quadrature points per stage and repeated the computations. The quasi-Monte
Carlo method used in the experiments was the Sobol sequence [24]. We computed
also a second set of lower and upper bounds by replacing Monte Carlo by antithetic
sampling. In antithetic sampling, one half of the sample points are independently
uniformly distributed in the unit cube and the second half is obtained by reflecting
each sample point through the center of the cube.

The computations were performed on Red Hat Enterprise Linux WS v.4 operating
system running on workstation with 64-bit 3.8GHz Intel Xeon processor and 8GB
memory. The discretization procedure was implemented in C programming language
using CBLAS and LAPACK libraries, Numerical recipes C-routines [18], Marsenne
twister (www.math.sci.hiroshima-u.ac.jp/∼m-mat/MT/emt.html) for random num-
ber generation and Peter J. Acklam’s algorithm for the inverse of the univariate
normal distribution (home.online.no/∼pjacklam/notes/invnorm). The implementa-
tion applies to multivariate time series models of ARMA-, VEqC- and GARCH-type.
It takes as input the parameters of the time series model, the initial values ξ0 of the
time series, the number of periods K and the number L of quadrature points used
for each k = 1, . . . , K in the discretization Uν

k of the uniform distribution Uk. The
discretizations Uν

k can be constructed either by crude Monte Carlo sampling, anti-
thetic sampling or by quasi-Monte Carlo methods. The output is a description in an
AMPL-format (see [4]) of the discretized measure P ν in terms of the scenarios ξν,i

and the associated probabilities pν,i. The discretized optimization problems were for-
mulated in AMPL and solved with the primal-dual interior point solver of MOSEK
(http://www.mosek.com). Instead of standard software, one could use (as e. g. in
[1]) specialized software that employs the structure of tree based discretizations.

4.1. Problem 1: Swing option

The first test problem can be written as

minimize
x∈N (P )

EP exp

(
−ρ

K∑

k=0

(Sk(ξ)−X)xk(ξ)

)

subject to
K∑

k=0

xk(ξ) ≤ U,

l ≤ xk(ξ) ≤ u, k = 0, . . . ,K,

P -a.s.

where ρ, X, U , l and u are positive constants and S is a real-valued stochastic price
process. This models the problem of finding an optimal exercise strategy x for a
“swing option” that gives the access to a total amount U of energy for a fixed unit
price X over the life time [0,K] of the option but restricts the usage xk per period
to lie in the interval [l, u]. It is assumed that at each stage, xk will be immediately
sold for the current market price Sk thus giving the revenue of (Sk − X)xk. The
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Table 1. Dimensions of decision and random variables in Problem 1.

The numbers nk and dk give the dimensions of the decision

and random variables, respectively, for period k.

k 0 1 2 3 4
nk 1 1 1 1 1
dk 0 1 1 1 1

Table 2. Dimensions and computation times (seconds)

for discretizations of Problem 1.

L Variables Constraints Discretization AMPL MOSEK
2 31 16 0.0 0.0 0.0
4 341 256 0.0 0.0 0.1
8 4681 4096 0.0 0.2 1.0
16 69905 65536 0.5 2.9 23.0
32 1082401 1048576 7.6 34.0 508.4

objective is to maximize the expected utility from cumulated wealth at the terminal
stage K as measured by the exponential utility function with parameter ρ.

The price process S follows a geometric Brownian motion. That is, Sk(ξ) =
exp(ξk), where ξ = (ξk)K

k=0 follows a discrete time Brownian motion

∆ξk = µ + σεk,

where εk has standard normal distribution. All the parameters of the model are
given in the Appendix.

In the numerical test, the number of stages was K = 4. Table 1 summarizes the
dimensions of Problem 1. The number nk is the dimension of the decision variable at
stage k and dk is the dimension of the random variable in period k (the one between
stages k − 1 and k). Table 2 gives the dimensions of its discretizations as well as
computation times for increasing values of the discretization parameter L.

Figure 1 plots the optimal value of the discretizations together with the upper
and lower bounds for increasing values of the discretization parameter L. As L is
increased, the lower and upper bounds as well as the optimal value of the discretiza-
tions seem to converge towards a common value. This is in line with the conclusions
of [15, Theorem 5], which says that the optimal values of discretizations converge to
that of the original problem and that the cluster points of the first stage solutions are
optimal first stage solutions of the original problem. The latter fact is reflected in
the upper bound, which decreases as the discretizations are made finer. Indeed, the
upper bound is a non-biased estimator of the objective value given by the strategy
obtained by solving discretized problems stage by stage. Refining the discretization
thus seems to yield better first stage solutions.

Evaluation of the upper bound with M = 10000 independent simulations and
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Fig. 1. Optimal values of discretizations and statistical bounds for Problem 1.

L = 32 quadrature points per period took approximately 31 hours. Evaluation of
the lower bound with N = 1000 independent random discretizations and L = 32
quadrature points per period took approximately 152 hours.

The lower bound obtained with antithetic sampling is notably tighter than the
one obtained with crude Monte Carlo. In the case of the upper bound, the difference
is insignificant.

4.2. Problem 2: Portfolio optimization

The second test problem may be written as

minimize
h∈N (P )

EP exp


−ρ

∑

j∈J

RK,jhK−1,j




subject to
∑

j∈J

h0,j ≤ 1,

∑

j∈J

hk,j ≤
∑

j∈J

Rk,jhk−1,j , k = 1, . . . K,

h ≥ 0,

P -a.s.

This models a portfolio optimization problem, where one is seeking for a nonnegative
portfolio process h = (hk)K

k=0, where hk = (hk,j)j∈J gives the amount of wealth
invested in each asset j ∈ J at the beginning of period k. The random number Rk,j

gives the return on an asset j ∈ J over period k.
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Table 3. Dimensions of decision and random variables in Problem 2.

k 0 1 2 3
nk 10 10 10 0
dk 0 10 10 10

Table 4. Dimensions and computation times (seconds

for discretizations of Problem 2.

L Variables Constraints Discretization AMPL MOSEK
2 70 7 0.0 0.0 0.0
4 210 21 0.0 0.0 0.1
8 730 73 0.0 0.0 0.2
16 2730 273 0.3 0.3 0.6
32 10570 1057 1.9 2.5 4.1
64 41610 4161 15.0 16.4 27.2

The set J contains 10 assets and the returns are given by Rk,j = Sk,j/Sk−1,j

where the price vector Sk = (Sk,j)j∈J follows a 10-dimensional geometric Brownian
motion. That is, Sk,j = exp(ξk,j) where ξk = (ξk,j)j∈J follows a 10-dimensional
Brownian motion

∆ξk = µ + σεk,

where εk has 10-dimensional standard normal distribution. All the parameters of
the model are given in the Appendix.

In the numerical test, the number of stages was K = 3. Table 3 summarizes the
dimensions of Problem 2 and Table 4 gives the dimensions of its discretizations as
well as computation times for increasing values of the discretization parameter L.

Figure 2 plots the optimal value of the discretizations together with the upper
and lower bounds for increasing values of the discretization parameter L. Again,
the lower and upper bounds converge towards each other while the optimal values of
the discretizations approach the common value as the discretizations are made finer.
The lower bound obtained with antithetic sampling is again much tighter than the
one obtained with crude Monte Carlo.

Evaluation of the upper bound with M = 10000 independent simulations and
L = 64 quadrature points per period took approximately 14 hours. Evaluation of
the lower bound with N = 1000 independent random discretizations and L = 64
quadrature points per period took approximately 16 hours.

4.3. Problem 3: Optimal consumption

The third problem is a variation of the portfolio optimization problem where at
each stage, one can withdraw some of the wealth for consumption. The goal is to
maximize accumulated utility from consumption as measured by the negative power
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Fig. 2. Optimal values of discretizations and statistical bounds for Problem 2.

utility function. The problem is further complicated by adding transaction costs for
buying and selling the assets. It can be written

minimize
(h,p,s,c)∈N (P )

EP
K∑

k=0

(ck − ρ1)
−ρ2

subject to h0,j ≤ h0
j + p0,j − s0,j ,

hk,j ≤ Rk,jhk−1,j + pk,j − sk,j , k = 1, . . . , K,

ck ≤
∑

j∈J

(1− δj)sk,j −
∑

j∈J

(1 + δj)pk,j , k = 0, . . . ,K − 1,

cK ≤
∑

j∈J

Rk,jhk−1,j ,

p, s, h, c ≥ 0,

P -a.s.

where h and R are as in the previous problem, parameter h0
j gives initial portfolio,

pk,j and sk,j give the purchases and sales, respectively, of asset j ∈ J at the beginning
of period t, ck gives the consumption over period t. In this problem, the decision
strategy is the vector process consisting of h, p, s and c. The parameters δj give the
proportional transaction costs for purchases and sales.

The set J contains three assets, two stock indices SP500 and NAS and a money
market account E3. The returns can be expressed as

Rk,j =





Sk,j/Sk−1,j if j ∈ {SP500, NAS}
(1 + rk/100)

1
4 if j = E3,
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Table 5. Dimensions of decision and random variables in Problem 3.

k 0 1 2 3
nk 10 10 10 1
dk 0 3 3 3

Table 6. Dimensions and computation times (seconds)

for discretizations of Problem 3.

L Variables Constraints Discretization AMPL MOSEK
2 78 36 0.0 0.0 0.0
4 274 148 0.0 0.0 0.0
8 1242 804 0.0 0.0 0.1
16 6826 5188 0.1 0.2 0.9
32 43338 36996 0.6 1.9 8.9
64 303754 278788 4.5 11.9 97.8

where Sj denotes the value of a stock index and r is a three-month interest rate.
The vector of logarithms

ξk = (ln Sk,SP500, ln Sk,NAS , ln rk)

follows a VEqC-GARCH process

∆ξk = µk + σkεk,

where
µk = A∆ξk−1 + α(βT ξk−1 − γ) + c

and
σ2

k = C(∆ξk−1 − µk−1)(∆ξk−1 − µk−1)T CT + Dσ2
k−lD

T + Ω.

All the parameters of the model are given in the Appendix.
In the numerical test, the number of stages was K = 4. Table 5 summarizes the

dimensions of Problem 3 and Table 6 gives the dimensions of its discretizations as
well as computation times for increasing values of the discretization parameter L.

Figure 3 plots the optimal value of the discretizations together with the upper
and lower bounds for increasing values of the discretization parameter L. Similar
conclusions as for the earlier test problems apply except that here the improvement
of the lower bound with antithetic sampling over crude Monte Carlo is even more
striking.

Evaluation of the upper bound with M = 10000 independent simulations and
L = 64 quadrature points per period took approximately 11 hours. Evaluation of
the lower bound with N = 1000 independent random discretizations and L = 64
quadrature points per period took approximately 32 hours.
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Fig. 3. Optimal values of discretizations and statistical bounds for Problem 3.

4.4. Problem 4: Asset liability management

The fourth problem is an asset liability management model developed originally for
a Finnish pension fund; see [8]. Here the goal is to find an optimal portfolio strategy
over a set J = {1, 2, 3, 4, 5} of assets, with respect to nonlinear trading costs, portfolio
constraints and certain solvency targets. The problem can be written as

minimize
(h,p,w,z)∈N (P )

EP

[
K−1∑

k=0

1
Vk

(wk − ρ1zk,1 − ρ2zk,2) +
1

VK
(wK − ρ1zK,1)

]

subject to h0,j ≤ h0
j + p0,j , j ∈ J,

hk,j ≤ Rk,jhk−1,j + pk,j , j ∈ J, k = 1, . . . ,K

C(pk) ≤
∑

j∈J

Dk,jhk−1,j + Fk, k = 0, . . . , K

wk ≤
∑

j∈J

hj , k = 0, . . . , K − 1

ljwk ≤ hk,j ≤ ujwk, j ∈ J, k = 0, . . . , K − 1 (3)
zk,1 ≥ Vk − wk, k = 0, . . . , K

zk,2 ≥ Vk − wk −m · hk + (hk · Σhk + ε)
1
2 , k = 1, . . . , K − 1

h, z ≥ 0,

P -a.s.



198 P. HILLI AND T. PENNANEN

where h and p are as in the previous problem, except that here p is allowed to be
negative which corresponds to sales. The function

C(p) := p1 +
∑

j∈J\{1}

exp(δjpj)− 1
δj

gives the total cost of purchases. Inequalities (3) describe proportional portfolio
constraints. The following two constraints define “short fall” variables zk,1 and zk,2

that describe how much the total wealth w is short of target levels that depend on
the value V of liabilities. The second target level depends also on the portfolio h
according to a nonlinear formula specified by the supervisors in the Finnish pension
scheme. The value of the liabilities V as well as the cash-flow F are stochastic pro-
cesses whose development is described below. In this problem, the decision strategy
is the vector process consisting of h, p, w, z1 and z2.

The stochastic factors R, D, F and V are driven by a quarterly time series model
where as the decision stages occur every four quarters. The return variables are
given by

Rk,j =





∏tk

t=tk−1+1(1 + rt/100)
1
4 if j = 1,

(
1+btk

/100

1+btk−1/100

)−5

if j = 2,

Stk,j/Stk−1,j j ∈ {3, 4, 5},
and the dividend variables by

Dk =





∑tk

t=tk−1+1 bt/400 if j = 2,

∑tk

t=tk−1+1(Stk,6/Stk,5 − 3)/400 if j = 5,

0 j ∈ {1, 3, 4}.
Here tk := 4k gives the date of stage k in quarters. The values of F0 and V0 are
fixed parameters whereas for k = 1, . . . , K

Fk = q

tk∑
t=tk−1+1

Wt − ek,

Vk = (1 + r̄)Vk−1 + Fk,

where q, r̄ and (ek)K
k=0 are parameters. The 8-dimensional vector

ξt =




ln rt −∆ln It

ln bt −∆ln It

ln St,3 − ln It

ln St,4 − ln It

ln St,5 − ln It

ln St,6 − ln It

ln Wt − ln It

ln It



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Table 7. Dimensions of decision and random variables in Problem 4.

k 0 1 2 3
nk 13 13 13 2
dk 0 32 32 32

Table 8. Dimensions and computation times (seconds)

for discretizations of Problem 4.

L Variables Constraints Discretization AMPL MOSEK
2 122 106 0.0 0.0 0.0
4 486 400 0.0 0.0 0.1
8 2558 1972 0.1 0.2 0.4
16 16110 11740 0.6 1.3 2.5
32 113102 79276 4.6 14.0 19.5
64 844686 578380 36.1 81.2 174.3

follows a VEqC-model ∆ξt = µt + σεt,

where εt are iid standard normal,

µt = A∆ξt−1 + α(βT ξt−1 − γ) + c

and the volatility matrix σ ∈ R8×8 is constant. All the parameters of the model are
given in the Appendix.

In the numerical test, the number of stages was K = 4. Table 7 summarizes the
dimensions of Problem 4 and Table 8 gives the dimensions of its discretizations as
well as computation times for increasing values of the discretization parameter L.

Figure 4 plots the optimal value of the discretizations together with the upper
and lower bounds for increasing values of the discretization parameter L. Again, one
gets convergence of the bounds and the optimal values of the discretizations with
the lower bound obtained with antithetic sampling being much tighter than the one
obtained with crude Monte Carlo.

Evaluation of the upper bound with M = 10000 independent simulations and
L = 64 quadrature points per period took approximately 74 hours. Evaluation of
the lower bound with N = 1000 independent random discretizations and L = 64
quadrature points per period took approximately 81 hours.

APPENDIX: PARAMETERS FOR THE TEST PROBLEMS

Problem 1. Parameters for the objective and constraints are as follows

Parameter ρ X U l u
Value 1 1 2 0 1 .
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Fig. 4. Optimal values of discretizations and statistical bounds for Problem 4.

Parameters for the time series model are

ξ0 = ln 1,

µ = 0,

σ2 = 0.2.

Problem 2. The parameter in the objective is

ρ = 1.

Parameters for the time series model are

ξ0 =
(
4.16 3.81 3.54 4.15 3.30 2.99 3.44 4.42 4.24 2.96

)T
,

µ =
(
0.084 0.071 0.041 0.087 0.071 0.09 0.089 0.080 0.083 0.072

)T
,

σ2 = 10−2




12.90 3.96 1.01 5.17 3.71 3.23 4.41 1.05 5.64 4.48
3.96 11.83 0.73 3.53 2.98 3.28 3.56 1.29 4.66 4.68
1.01 0.73 4.92 0.70 0.75 0.56 0.67 0.21 1.47 0.55
5.17 3.53 0.70 19.15 4.07 2.40 4.51 1.39 6.36 4.38
3.71 2.98 0.75 4.07 11.25 4.88 3.23 1.22 4.59 5.00
3.23 3.28 0.56 2.40 4.88 18.06 3.10 1.43 4.91 7.30
4.41 3.56 0.67 4.51 3.23 3.10 12.22 1.16 3.85 3.88
1.05 1.29 0.21 1.39 1.22 1.43 1.16 9.70 1.42 1.78
5.64 4.66 1.47 6.36 4.59 4.91 3.85 1.42 20.60 6.81
4.48 4.68 0.55 4.38 5.00 7.30 3.88 1.78 6.81 18.77




.
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Problem 3. Parameters for the objective and constraints are

Parameter ρ1 ρ2 δSP500 δNAS δE3 h0
SP500 h0

NAS h0
E3

Value -1 10 0.005 0.005 0 1 1 1

Parameters for the time series model are

ξ−1 =
(
7.016233 7.547945 0.582216

)T
,

ξ0 =
(
7.030150 7.588319 0.765468

)T
,

µ0 =
(
0.005000 0.007622 0.041185

)T
,

A = 10−2




0 0 0
0 9.5920 0
0 7.7350 55.0770




α =
(
0 0 −0.005770

)T
, β =

(
0 0 1

)T
, γ =

(
0 0 1.300000

)T
,

c =
(
0.005000 0.004520 −0.000387

)T
,

C = 10−2




37.9891 0 0
0 33.0872 0
0 0 50.2267


 ,

D = 10−2




86.7300 0 0
0 91.9705 0
0 0 0


 ,

Ω = 10−2




0.0200 0.0188 0.0165
0.0188 0.0206 0.0373
0.0165 0.0373 0.1782


 ,

σ2
0 = 10−2




0.1050 0.1467 0.0163
0.1467 0.2797 0.0368
0.0163 0.0368 0.1783


 .

Problem 4. Parameters for the objective and constraints are

Parameter ρ1 ρ2 h0
1 h0

2 h0
3 h0

4 h0
5 δ2 δ3 δ4 δ5

Value 10 2 20 65 40 60 50 0.0002 0.002 0.002 0.02

Parameter l1 l2 l3 l4 l5 u1 u2 u3 u4 u5

Value 0.01 0 0 0 0 1 1 0.5 1 0.45
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m =
(−0.001944 −0.011664 −0.120528 −0.120528 −0.071928

)T
,

Σ = 10−3




1.270210 −0.444573 −2.718249 −2.718249 0.000000
0.444573 15.560068 9.513870 9.513870 −6.668600
−2.718249 9.513870 581.705188 581.705188 122.321184
−2.718249 9.513870 581.705188 581.705188 122.321184
0.000000 −6.668600 122.321184 122.321184 285.797160




.

ε = 0.01.

Parameters for F and V are

Parameter V0 F0 q r̄ e0 e1 e2 e3

Value 215 25.948 0.153097 0.045 27.90 29.11 30.18 31.55

Parameters for the time series model are

ξ−1 =
`
0.353101 1.150000 1.723809 1.002339 0.101330 1.911712 4.879275 0.249151

´T
,

ξ0 =
`
0.313223 1.200000 1.811451 1.083672 0.102742 1.914840 4.878644 0.254137

´T
,

A = 10−2




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 70.3070 0 0 0
0 0 0 0 0 75.0830 0 0
0 0 0 0 0 0 98.4630 0
0 0 0 0 0 0 0 85.3790




,

α = 10−2




−6.9950 0 0
0 −20.3310 0
0 0 0
0 0 0
0 0 4.4625
0 0 0
0 0.0475 0
0 0 0




,

β =




1 −1 0
0 1 0
0 0 0
0 0 0
0 0 −1
0 0 1
0 0 0
0 0 0




,

γ =
(−0.213706 0.223144 1.945910

)T
,
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c =
(
0.014949 −0.045367 0 0 0.086836 0 0.000106 0

)T
,

σ2 =10−4




2459.3665 2474.6456 −44.8775 −88.3291 14.5393 6.6564 −6.3217 7.2190
2474.6456 2591.4208 −18.6423 −74.1652 20.4939 6.2654 −6.4979 7.5418
−44.8775 −18.6423 253.0327 122.0457 5.1302 −0.3554 0.1016 −0.0265
−88.3291 −74.1652 122.0457 94.3365 2.8128 0.0872 0.2266 −0.0933
14.5393 20.4939 5.1302 2.8128 3.5865 0.1731 −0.0452 0.0106
6.6564 6.2654 −0.3554 0.0872 0.1731 0.1939 −0.0174 0.0046
−6.3217 −6.4979 0.1016 0.2266 −0.0452 −0.0174 0.0167 −0.0198
7.2190 7.5418 −0.0265 −0.0933 0.0106 0.0046 −0.0198 0.0618




.
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